Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

優酪乳中藏了這些成分,你知道嗎?

鳥苷三磷酸 (PanSci Promo)_96
・2016/07/12 ・2800字 ・閱讀時間約 5 分鐘 ・SR值 522 ・七年級

本文由味全公司委託,泛科學企劃執行

0613味全懶人包-1-02 (1)

許多人習慣喝優酪乳來「整腸胃」,也有些人因為乳糖不耐症(lactose intolerance),選擇以優酪乳來替代牛奶。不管你是什麼理由買優酪乳,當你站在一整櫃的優酪乳前,你怎麼選擇?

除去廠牌考量,當你轉到優酪乳瓶身上的成分,你可能就皺起眉頭,無法理解這一堆看不懂的名詞到底在講什麼。今天我們稍微來分析一下,這優酪乳中除了生乳、水和乳酸菌這必備的材料外,到底還加了什麼?

香料和色素:增加優酪乳風味與顏色

人依靠我們的感官生活,對於食物我們更是要求色香味俱全。為了讓優酪乳更好喝、更吸引消費者購買,研發出各種不同的口味,就是其中一個選擇。

-----廣告,請繼續往下閱讀-----

研究發現,優酪乳產品中加入草莓、蜂蜜、蘋果等味道,是消費者比較喜歡的口味,有助於增加產品的風味和吸引力[1]。製作這些口味的優酪乳,除了加入真正的果汁/果粒、蜂蜜之外,也可能是透過加入水果口味的香料製作或添加色素以提升產品的色澤。

0613味全懶人包-2-03

色素和香料,可以分成「天然」與「人工合成」這兩種來源。天然香料取自於動物或植物,透過各種方式提煉出來,而人造的香料則是由專業人員,混合各種化學化合物以不同比例去調配,模擬我們知道的天然味道[2]。以色素來說,天然色素來自於植物葉子、種子,或是如藍綠藻等。但因為天然色素不容易保持穩定,很容易在熱、光、酸性環境下變質,因而促使人工合成色素的開發。

然而,2007年學術期刊《刺胳針》(Lancet)刊載的一篇論文,卻顯示孩童攝食同時含有人工色素和防腐劑的食品,會造成孩童過動或注意力不集中,研究者認為是食品中的人工色素和防腐劑,其中之一或共同造成這個現象[3]。但這樣的研究也面對一些質疑,在美國食品藥物管理局下的食品安全與應用營養中心(Center for Food Safety and Applied Nutrition)服務的傑生.奧古斯特(Jason Aungst)博士,就曾做過一個分析報告,他認為這個實驗在評估系統上不夠嚴謹,數據仍有討論空間,因而無法用此一研究證實人工色素的危害[4]。目前還沒有明確證據證實人工色素對人體的直接危害(不然應該早就禁止使用了),因此人工色素仍是合法的食品添加物。

我們常出現在優酪乳中,但我們不屬於添加物

果膠:讓優酪乳濃稠、不沉澱

果膠(pectin)是植物初生細胞壁(primary cell walls)中重要的組成要素之一,也是它讓植物每個細胞都能緊緊相連[5]。

-----廣告,請繼續往下閱讀-----

果膠通常由水果中萃取出來,在大量工業生產過程常用柑橘類水果的皮做為原料製造果膠。它其實是一種我們無法消化的水溶性纖維,在優酪乳中它扮演穩定劑的作用,避免乳製品中的蛋白質-酪蛋白聚集在一起產生沉澱[6, 7]。它怎麼做到的呢?酪蛋白原先帶有負電荷,因此酪蛋白與酪蛋白之間會產生排斥作用,但在製作優酪乳的過程中牛奶酸化,酪蛋白不再帶有負電荷,因此很容易聚集、沉澱。因此在自製優酪乳的過程中,會看到優酪乳上層浮出一層淡黃色的液體(乳清)。當加入果膠後,果膠分子會與酪蛋白產生連結,避免酪蛋白與酪蛋白聚集在一起,產生沉澱[6]。

0613味全懶人包-3-03

同時果膠也會透過,化學結構上「酯」這種官能基(ester groups)讓果膠分子間形成鍵結,優酪乳因此變得黏稠。果膠也能和水形成鍵結,讓優酪乳變得滑順。目前依台灣的法規,果膠仍屬於食品原料,但預計在105年底「食品添加物使用範圍及限量暨規格標準」預告草案公告後,將轉為食品添加物。

目前市面用在優酪乳上的穩定劑也不只有果膠,具有相似作用的包括明膠、藻膠、鹿角菜膠(卡拉膠)、刺槐豆膠、甲基纖維素、乳清蛋白粉等,從天然植物中萃取或是人工合成的都有[8]。

糖:甜甜的優酪乳比較好喝

優酪乳長年被大家批評的地方,大概就是優酪乳產品中的糖份相當驚人。世界衛生組織(WHO)最新的建議是每日游離糖(free sugar)的攝取量不應超過 50 克,但若能減為每日 25 克能為身體健康帶來額外的好處,而所謂游離糖包括了額外添加以及天然存在於蜂蜜、糖漿、果汁等食物中的糖類(包含單糖和雙糖 )[9]。2015 年董氏基金會的調查就發現,台灣市面上的優酪乳每 100 毫升添加的糖就高達 12 克,而 100 毫升也大概就是一瓶養樂多的大小,其中的糖量相當驚人[10]!在霍華德希爾曼(Howard Hillman)的《新廚房科學》中提到,市售優酪乳中加入大量的糖,可能是為了延長保存期限,但更可能是為了取悅消費者的舌頭[11]。

-----廣告,請繼續往下閱讀-----

0613味全懶人包-4

優酪乳的選擇

香料和色素確實都是業界經常使用且為國家認可,無論是人工或是天然目前均沒有證據證實對於人體有害。但我們真的需要在優酪乳中加入這些成分來讓優酪乳更好喝嗎?其實不一定。在製作優酪乳的過程,加入乳酸菌將牛奶發酵,而在這個發酵的過程中,乳酸菌其實自己就可以產生天然的香味成分,透過不同的乳酸菌菌株可產生不同的風味[12]。而濃郁的口感,也可以透過菌種天然產生的胞外多醣體[13],或是透過生產設備的精進來達成,也不需要透過添加果膠等膠體來增加優酪乳的濃稠度和避免沉澱。

身為消費者的我們在購買優酪乳前可以多花幾分鐘,轉轉瓶身看看產品的成分,這絕對不是成分添加越多越划算,至於做什麼樣的選擇就由自己決定!

0613味全懶人包-5-03

參考資料:

-----廣告,請繼續往下閱讀-----
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
226 篇文章 ・ 314 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
1

文字

分享

0
2
1
糖的致命誘惑:一場看似平凡的泡澡竟成了陷阱——《毒藥的滋味》
PanSci_96
・2024/09/05 ・2800字 ・閱讀時間約 5 分鐘

泡澡的巴洛太太

一九五七年五月四日星期六淩晨,約翰.奈勒(John Naylor)警長接獲報案,前往英國布拉德福(Bradford)索恩伯里(Thornbury)的半獨立式住宅新月樓(Crescent)。奈勒進屋時聽到一陣微弱的抽泣聲,看見一位焦躁的丈夫悲慟地緊緊握住一名女性的照片。一名警員帶領奈勒前往樓上的洗手間,照片中的那名女性此時赤身裸體地癱倒在浴缸裡。鄰居緊張但沉默地站在哭泣的丈夫身邊,空氣中瀰漫著不安,大家都相信他是真的悲痛欲絕——但奈勒倒沒有那麼肯定。

所有認識伊莉莎白.「貝蒂」.巴洛(Elizabeth “Betty” Barlow)的人都認為,她與她忠誠的丈夫肯尼斯(Kenneth)的婚姻似乎非常美滿。據鄰居表示,他們相當幸福,從不吵架。比肯尼斯小九歲的伊莉莎白其實是巴洛的第二任妻子,在他的第一任妻子去世後,兩人於一九五六年結婚。伊莉莎白嫁給肯尼斯後,也成為巴洛家的小兒子伊恩(Ian)的繼母。肯尼斯和伊莉莎白都曾在約克郡布拉德福鎮周邊的多家醫院工作,伊莉莎白擔任助理護理師,肯尼斯則是國家註冊護理師,這對夫婦可能也是這樣認識的。

957年,英國警長奈勒在布拉德福的一起疑似謀殺案中,直覺丈夫嫌疑重大。圖/envato

婚禮結束後,肯尼斯繼續在布拉德福皇家醫院擔任護理師,但伊莉莎白則離開了護理行業,在當地一家洗衣店找到一份熨燙的工作。這項工作相當單調,周圍總是環繞著蒸汽雲霧,使她的衣服潮濕又不舒服;但薪水倒是挺合理的,對於他們家庭的財務狀況頗有幫助。伊莉莎白每星期五只上半天班,而一九五七年五月三日的這個星期五也不例外。

中午快到了,伊莉莎白一邊急忙收拾東西準備下班,一邊向朋友說,她很期待有一點自己的時間,她可以好好洗個頭。在從洗衣店走回索恩伯里新月樓的家的這段短短的路程中,伊莉莎白先在當地的炸魚薯條店為家人買了午餐。十二點三十分,她將熱騰騰的炸魚薯條從被醋浸透了的報紙中拿出裝盤,配著麵包、奶油還有一杯茶一起吞下肚子。

-----廣告,請繼續往下閱讀-----

看似平凡的泡澡竟成了致命陷阱

午飯後,伊莉莎白忙著做家事,清洗家人的衣服,而肯尼斯則在星期五的下午把車從附屬車庫裡開出來,打算徹底洗刷一番,好好打理他的這輛心頭好。伊莉莎白在下午四點鐘左右前去拜訪住在隔壁的史金納太太,她後來作證說伊莉莎白看起來很開朗,「充滿活力」。史金納太太回想:「事實上,她還給我看了一套她〔買的〕黑色內衣,並拿它來開玩笑。」

那天晚上,一家人轉移陣地到客廳放鬆。伊莉莎白在沙發上躺了一下,但逐漸變得坐立難安,最後跟家人說她要躺一會兒。晚上六點三十分,她一邊上樓,一邊要肯尼斯一個小時後來叫她,因為她想和他一起看一個電視節目。

然而,伊莉莎白其實再也不會看電視了。五十分鐘後,肯尼斯上樓,打算告訴妻子節目即將開始,但伊莉莎白已經換了睡衣躺上床,告訴丈夫她感覺「太舒服了,完全不想動」。肯尼斯獨自一人回到客廳看了半個小時的電視,然後倒了一杯水上樓給妻子,看看她情況如何。

肯尼斯發現伊莉莎白還躺在臥室的床上,並且感到非常疲憊。他後來作證表示,他的妻子告訴他,她「太累了,沒辦法和繼子說晚安」。距離肯尼斯晚上休息的時間還有點早,他也想給妻子一些獨自休息的時間,所以他回到樓下看完電視。接近九點三十分時,肯尼斯聽到伊莉莎白在他們的臥室裡叫他。他上樓走進臥室,發現妻子在床上吐了。他覺得有點不太妙。夫妻倆換了床單,肯尼斯把弄髒的床單拿到樓下廚房的水槽裡。此時伊莉莎白不只抱怨自己很累,她現在還「覺得太熱了」,於是決定躺在新換好的床單上。

-----廣告,請繼續往下閱讀-----
肯尼斯回到臥室時,發現伊莉莎白疲憊不堪。圖/envato

肯尼斯換好睡衣後上床,開始看書。到了十點,伊莉莎白仍然覺得不舒服,而且全身大汗淋漓。她脫掉衣服,告訴丈夫她要去泡澡讓自己冷卻一下。在睡著之前,肯尼斯聽到了洗澡水流淌的聲音。

無法解釋的瞳孔擴張:巴洛太太的最後時刻

突然間,肯尼斯沒來由地驚醒。他瞥了一眼床頭櫃上的鬧鐘,發現已經是晚上十一點二十分了,而且他還驚訝地發現妻子還在泡澡,沒有回到床上。他焦急地呼喚伊莉莎白,問她:「你還好嗎?還要泡多久?」他沒有聽到任何回答。肯尼斯擔心她在已經變得冰涼的洗澡水中睡著了,於是下床走進浴室,結果驚恐地發現伊莉莎白已經沉入水中,一動也不動。

恐慌的肯尼斯肯定妻子溺水了,迅速拔掉浴缸裡的水塞,放掉泡澡水。等到水都流完,肯尼斯便拚命想把妻子從浴缸裡拉出來,好讓她躺在堅硬的浴室地板上。但不管他怎麼做,就是無法把她抬出來。幸運的是,身為一名訓練有素的護理師,肯尼斯知道自己必須為還在浴缸裡的妻子進行人工呼吸。他試圖將空氣吹入伊莉莎白死氣沉沉的肺部,但一切徒勞無功,他需要幫忙。

肯尼斯自家的屋裡沒有電話,於是他穿著睡衣衝到隔壁,吵醒了鄰居斯史金納一家。巴洛焦急地懇求他們叫醫師,然後他回去再次嘗試讓妻子甦醒。奇怪的是,鄰居沒有立即叫救護車,而是決定親眼看看發生了什麼。他們走到隔壁,沿著小樓梯走到浴室,震驚地發現伊莉莎白赤裸的身體仍然躺在空蕩蕩的浴缸裡,而肯尼斯正在揉她的肩膀。

-----廣告,請繼續往下閱讀-----

史金納夫婦現在確信情況的嚴重性,於是打了電話給家庭醫師,拜託他儘快趕來。在他們等待醫師的時候,史金納太太瞥了一眼肯尼斯,他坐在扶手椅上,臉埋在手裡,輕輕地抽泣著。儘管醫師已經盡快趕到,但為時已晚,伊莉莎白被宣佈死亡。

死亡總是令人不安,但當死者生前是一位健康的年輕妻子和母親時,又更令人不安。說不出為什麼,醫師總覺得事情似乎不太對勁。伊莉莎白當然已經死了,屍體也開始出現僵硬的跡象,但他的直覺讓他確定自己應該連絡警方。沒多久,奈勒警長便趕到現場調查。

伊莉莎白在那天晚上決定泡澡的行動確實相當關鍵。如果她繼續躺在床上,那麼她令人遺憾的英年早逝非常有可能會被判定為自然死亡。乍看之下,伊莉莎白似乎是溺水身亡,但她的瞳孔放大程度相當誇張,遠超過醫師在溺水者身上會看到的程度。

但是究竟是什麼使得伊莉莎白的瞳孔放大呢?是什麼讓她熱到需要洗個冷水澡來降溫?是什麼讓一個充滿活力的年輕女性如此疲憊?值得注意的是,伊莉莎白之死的答案圍繞著一種非常簡單的東西,也是數百萬人每天會在咖啡和茶中加入的東西:糖。

-----廣告,請繼續往下閱讀-----

——本文摘自《毒藥的滋味:11種致命分子與使用它們的凶手》,2024 年 7 月,方舟文化,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2413 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
喝糖比吃糖更肥?飲料慢慢喝比較不會胖!——《大自然就是要你胖!》
天下文化_96
・2024/06/25 ・1953字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

飲料中的添加糖和食物中的添加糖,造成的影響有所不同嗎?

如果生存開關的啟動只與熱量有關,無論是吃軟糖,還是喝汽水,高果糖玉米糖漿所產生的作用理當一樣。但事實並非如此,喝糖通常比吃糖更糟得多。為什麼會這樣?生存開關是由於肝臟中的 ATP 濃度下降所觸發,因此關鍵在於有多少果糖到達肝臟。如果肝臟接收到大量果糖,則 ATP 會大幅下降,刺激生存開關強烈反應。倘若只有少量果糖到達肝臟,果糖代謝效應會比較溫和。這意味著,儘管我們在談論生存開關時,一直將它簡化為一種按鈕,可控制為開或關,但實際狀況比較像是可調整強度的旋轉鈕,會根據狀況產生強弱不同的反應。

換句話說,肝臟的反應是依據接收到的果糖濃度,而不是果糖量。比起果糖一次全部進入的狀況,當果糖緩慢進入時,肝臟接觸到的果糖濃度會比較低。也因為如此,軟性飲料比固體糖類更容易啟動生存開關。軟性飲料含有大量的糖分(以 600 毫升的汽水為例,當中含有約 17 茶匙的高果糖玉米糖漿,其中約 9 茶匙是果糖),通常幾分鐘即可喝完,而且由於是液體,不需要消化,這會讓肝臟中迅速充滿果糖和葡萄糖。相較之下,固體食物必須經過消化,需要更長的時間才能到達肝臟。(這也是完整水果較不易啟動生存開關的原因,因為水果纖維有助於減緩吸收。)因此,固體食物中的果糖到達肝臟的速度較慢,不會讓生存開關一下子轉到最強狀態。

營養學家兼遺傳學家斯皮克曼(John Speakman)進行的實驗證實了這一點,他發現餵食液體糖的小鼠,比餵食固體糖的更肥胖。人體臨床研究也比較食用液體糖(來自軟性飲料或其他飲料)和固體糖(來自糖果和甜點)的差別,所有證據都指向同一個結果:液體糖導致肥胖和(或)糖尿病前期的可能性,比固體糖更高。在一項研究中,將年輕受試者隨機分成兩組,一組每天喝一杯 240 毫升的軟性飲料,一組吃下含糖量相等的軟糖,持續四週,然後恢復正常飲食,也持續四週,並在這段「淨化」期之後,讓兩組受試者交換,原本喝軟性飲料的改吃軟糖,反之亦然,再持續四週。試驗結束時,研究人員發現,受試者在「喝糖」期間攝取的總熱量,比「吃糖」期間多了約 17%。在喝了四週的軟性飲料後,受試者的體重增加,脂肪也增加。相較之下,吃軟糖的四週內,他們的體重並未增加。

液體糖導致肥胖和(或)糖尿病前期的可能性,比固體糖更高。圖/envato

液體糖比固體糖更容易導致肥胖,而且喝液體糖的速度也會造成影響。為了證明這一點,我們在伊斯坦堡科曲大學的合作夥伴坎貝,提供蘋果汁給志願的受試者,這些蘋果汁內的果糖含量與軟性飲料相似。坎貝讓一半的人在 5 分鐘內喝下 500 毫升果汁,另一半則是每隔 15 分鐘喝下 125 毫升,用一小時喝完 500 毫升的果汁。一小時結束時,雖然兩組人喝下的蘋果汁分量一樣,但兩組間的差異卻非常驚人。5 分鐘內喝完蘋果汁的人,體內的尿酸和血管加壓素(肥胖荷爾蒙)快速增加。相較之下,花一小時喝完蘋果汁的受試者,尿酸和血管加壓素的變化比較緩和。由於尿酸和血管加壓素升高相當於生存開關活化的證據,這表示如果一定要喝軟性飲料,慢慢享用會比大口豪飲來得安全。

-----廣告,請繼續往下閱讀-----
含糖飲料慢慢喝會比大口豪飲來得安全。圖/envato

幾年前,曾有人基於軟性飲料含糖量高,提議紐約市政府對軟性飲料課稅。軟性飲料業者指出其他食品也含有大量的糖,專挑軟性飲料課稅並不公平。基於這項爭議,再加上其他因素,飲料稅法案最後沒有通過。但根據前面提到的研究,軟性飲料業界的論點其實有誤。

根據液體糖和固體糖的研究,還可以得到一個結論:「魚與熊掌或許可以兼得」。也就是說,享用富含糖類的甜點時,如果吃得夠慢,或許可能避免觸發生存開關。這時蛋糕就只是熱量而已。問題是,要慢慢的吃甜點幾乎是不可能的事!

喝軟性飲料時不能大口暢飲,而得用一小時的時間慢慢啜飲完畢,也同樣不容易。另外,與其單獨飲用軟性飲料,不如在用餐之間慢慢喝,畢竟邊吃邊喝,讓液體中的糖與食物混合,可減慢吸收速度。

重點

液體糖比固體糖更有害,大口喝下軟性飲料是啟動生存開關最有效的方法。含糖軟性飲料、能量飲料、果汁、含糖的茶和咖啡,全都應該避免。如果偶爾想放縱一下,請放慢飲用速度,並一定要與食物搭配。

-----廣告,請繼續往下閱讀-----

——本文摘自《大自然就是要你胖!》,2024 年 06 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。