3

0
0

文字

分享

3
0
0

各位觀眾!兩道彩虹!

陸子鈞
・2011/12/14 ・257字 ・閱讀時間少於 1 分鐘 ・SR值 446 ・四年級
相關標籤: 光 (19) 彩虹 (7)

-----廣告,請繼續往下閱讀-----

紅橙黃綠藍靛紫,對科學家來說,彩虹沒這麼神祕。陽光被雨滴反射,散出組成的顏色,映在精準的角度上,讓你可以在任何位置都看到拱型的彩虹。那一次看到兩道彩虹又是怎麼一回事?科學家藉由電腦模擬,或許找到了可能的答案,解釋這罕見的現象。關鍵在於「burgeroids」-被空氣擾動壓平的大雨滴。模擬顯示,這種異常形狀的水滴,使光線由兩個不同角度反射,在天空產生兩道彩虹。研究團隊認為,這項發現或許能使電腦動畫更栩栩如生。

資料來源:ScienceShot: ‘Burgeroids’ Cause Double Rainbows [12 December 2011]

文章難易度
所有討論 3
陸子鈞
294 篇文章 ・ 4 位粉絲
Z編|台灣大學昆蟲所畢業,興趣廣泛,自認和貓一樣兼具宅氣和無窮的好奇心。喜歡在早上喝咖啡配RSS,克制不了跟別人分享生物故事的衝動,就連吃飯也會忍不住將桌上的食物作生物分類。

0

9
6

文字

分享

0
9
6
誰在海邊蓋天文台啊(惱)──世界第一座電波干涉儀
全國大學天文社聯盟
・2022/04/15 ・4114字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/玄冥
    曾經做過 Radio Astronomy,現在叛逃去 Structure Formation 了,但也許有天會再回去。喜歡的動物是樹懶。

1946 年 2 月的某個清晨,澳洲東海岸的一群無線電科學家嚴陣以待,將電波接收器對向海的彼岸。如果是幾年前,他們會膽顫心驚地觀察日軍戰機的動向,但是今天不一樣,他們滿懷期待地等著日出。因為科學家們知道,他們正將原本用於國家間內鬥的利器 —— 電波干涉術(Radio Interferometry),用於人類探索太空的共同嚮往。

電波干涉術原先是二戰時用來提高電波觀測準確度的技術,如果說大家對電波干涉術不熟悉的話,那麼對人類拍攝的第一張黑洞影像應該記憶猶新(圖一)。這張黑洞影像的成像原理便是電波干涉術,拍攝這張照片的電波干涉儀則是遍佈全球的「事件視界望遠鏡(EHT)」(圖二)。

圖一:事件視界望遠鏡拍攝之 M87 星系中心的超大質量黑洞。圖/EHT
圖二:事件視界望遠鏡。圖/NRAO

大家聽到「電波干涉儀」時,腦海中浮出的想像,可能都是如圖二中的碟狀接收器。然而實際上,電波干涉儀最初的樣貌是非常簡單的(圖三),以下這篇文章會分別介紹電波和干涉術,再介紹兩者結合的原理,一步步帶大家了解電波干涉儀的原型機是如何被設計出來的。

圖三:在澳洲 Dover Heights 岸邊的電波干涉儀。圖/CSIRO

什麼是無線電波?

無線電波(Radio wave,簡稱電波)是一種電磁波,它充斥於我們現代生活的各個角落。例如手機產生的信號、衛星轉播,以及藍牙、WIFI 等等。電波與可見光是唯二能在地球大氣中自由穿行的電磁波波段,因此大多數地面望遠鏡都以觀測可見光跟電波為主。重要的是,相對於可見光波,電波波長更長(約 1 mm 以上),較容易穿過障礙物,讓它更便於觀測藏在宇宙塵埃後的物體(如原恆星)。然而,能穿透障礙物的代價是,在相同的望遠鏡口徑下,電波望遠鏡的「角解析度(Angular resolution)」比較低。

角解析度(或稱角分辨率)是探知物體細微移動或分辨兩個鄰近物體的能力,白話的說就是它能看得多「清楚」。角解析度正比於望遠鏡的直徑,但反比於所觀測的電磁波波長。做一個誇張的比喻,如果我們的眼睛能看到的是波長較長的電波而不是可見光的話,我們需要有一顆直徑約一棟樓高的眼睛,才能看得跟現實中一樣清楚。有限的角解析度,是電波天文台在 1930 年代剛出現時所面臨的主要困境之一。這個問題一直到二戰時期才得到解方 —— 干涉技術。

-----廣告,請繼續往下閱讀-----
如果我們的眼睛能看到的是波長較長的電波而不是可見光的話,我們需要有一顆直徑約一棟樓高的眼睛,才能看得跟現實中一樣清楚。圖/envato elements

光的干涉,相信大家在高中的物理實驗中都見過。在實驗中,我們將光源對準布幕,並將切有兩條平行狹縫的一塊紙板隔在光源與布幕之間。此時通過兩條狹縫的光,便會在布幕上產生黑白相間的干涉條紋。這些條紋,源自光通過不同狹縫抵達布幕所需的距離不同,因此不同狹縫發出的光波到達布幕時的震動方向會有所不同。如果兩道光波震動方向相反,會造成相消干涉而形成暗紋;若抵達布幕時震動方向相同,則造成相長干涉而形成亮紋。

利用動畫可能更好理解一些(見圖四、五)。從實驗設備的上方俯視,藍色的點代表光源,紅色的點則是紙板上的狹縫位置,圖片底端是布幕,白色與黑色的部分即為光波的亮紋和暗紋。從圖四我們發現,當狹縫間距越遠,布幕上亮紋就越細緻,而從圖五則可以看見,當光源橫向移動時,布幕上的亮紋及暗紋亦會大幅移動。結合這兩張圖可以看出,越細緻的亮紋對光源的移動就越敏感,電波作為一種波亦有相同的特性。

圖四(左)、圖五(右):雙狹縫干涉示意圖。

軍隊如何利用電波干涉偵測敵軍?

讓我們將焦點拉回二戰時期。當時的英國軍隊為了能預警敵機,通常會將電波接收器對準海平面,隨時觀察敵機的位置。圖六和圖七是電波接收器(紅點)跟敵機(藍點)以及海面(黑色區域)的相對位置圖,此時敵機發出的電波會從兩條不同路徑抵達電波接收器,其中較短的電波是從敵機直達接收器,而較長的則是經海面反射後抵達接收器,這兩條路徑的電波會互相干涉並形成明暗相間的條紋。

圖六(左)、圖七(右):海岸干涉儀示意圖。

這些干涉條紋如同雙狹縫干涉所產生的條紋一樣,對波源的移動非常敏感(圖六),因此可以非常準確的判斷出敵機的位置;而如圖七所示,當電波接收器與海平面之間的高度差愈大,干涉條紋愈細緻,這表示電波接收器的海拔高度正比於其角解析度。實際上,如果將電波接收器放在濱海的峭壁上,其影像的清晰度約為一台口徑為兩倍峭壁高度的電波接收器,這便是「電波干涉儀」最初的樣子——也就是圖三那一台在峭壁上的電波接收器。

-----廣告,請繼續往下閱讀-----

隨著二戰結束,許多軍事科技被轉為民用或科研用途,電波干涉儀也不例外。對於研究太陽黑子的天文學家們來說,電波干涉儀在這一年轉為民用更是生逢其時,因為隔年恰好迎來了百年內規模最大的太陽極大期。

太陽活動通常以 9~14 年為週期。在太陽活動最旺盛的時候,往往會伴隨著許多太陽黑子的出現、以及被磁場束縛住的日冕物質所迸發的強電波。然而過去受限於電波觀測的低角解析度,人們只知道電波的強度與太陽黑子數量呈正相關,卻並不知道電波具體源自太陽的何處。隨著電波干涉儀的出現,天文學家得以精確地觀測出電波強度的分佈,其範圍比太陽小、且位置與太陽黑子高度重疊,這為此後的太陽黑子研究以及電波通訊應用提供了不少幫助。(1)(2)(3)

使用電波干涉儀探索宇宙吧!

銀河系和太陽,是天空中兩個最亮的電波源,因此是天文學家最先望向的目標。但天文學家們也注意到,較弱的電波源其實散佈於天空各個角落。這些電波源在沒有干涉儀的時代,因低角解析度以及來自銀河系的電波干擾而遲遲無法精確定位,而這一情況在電波干涉儀出現後得到改善。

二戰後,澳洲海軍負責雷達設備的軍官 John Bolton 以及他的助手,在澳洲沿海各處搭建了電波干涉儀,以觀測來自天鵝座的電波。他們將該電波源的位置精確度,由先前透過一般電波望遠鏡量測的五度推進至七角分(約 1/10 度),也得知這個天體的大小在八角分以下。

-----廣告,請繼續往下閱讀-----
在美國新墨西哥州的無線電干涉儀:甚大天線陣Very Large Array。圖/Hajor, CC BY-SA 3.0

然而弔詭的是,如果量測到的電波源自於這八角分不到的天體,這個天體所蘊含的能量密度將遠超出任何已知的天體!更令人驚訝的是,該天體並沒有對應到任何可見光影像中的恆星,於是他們將這個只出現在電波影像的天體稱為天鵝座 A(4) 。隨後他們用電波干涉儀掃瞄了南方的天空,陸續發現了許多類似天鵝座 A 的天體。

在後續技術發展下,天文學家終於找出這些電波天體在可見光的真身 —— 電波星系(5)(圖八、九)。電波星系在可見光波段的影像如同一般星系,然而在電波望遠鏡下,時常能看見噴流從電波星系中心噴湧而出,噴流的痕跡可達星系本體的數倍。現在我們知道,噴流是在星系中心大質量黑洞進食(吸積)時所噴出的強烈電漿流,其中的帶電粒子在噴流磁場的加速下會發出強電波,從而被電波干涉儀接收。

圖八:由甚大天線陣列(VLA)拍攝之天鵝座A電波星系的電波影像。圖/Mhardcastle, VLA data
圖九:由歐洲南方天文台拍攝之人馬座 A 電波星系,結合可見光與電波的影像。圖/ESO

這些噴流能夠改變星系的氣體與能量分佈,因此對星系演化有著至關重要的影響,今日人們也在透過更先進的電波望遠鏡了解這些星系。

時過境遷,如今的電波干涉儀,已經能夠將遍布全球各地多個電波接收器收到的電波進行干涉,不再是依託於大海的孤立接收器;干涉儀技術的改良,立基於全世界探索宇宙深空的好奇與嚮往,而非國家間互相對抗的戰火。

-----廣告,請繼續往下閱讀-----

回首過往,人們在戰爭中其實並未忘記對宇宙的嚮往,因此當硝煙散去,人們便互相合作,將戰時的科技化作探索太空的利器,揭開宇宙奧秘、滿足人類的好奇。如今,我們擁有更強大的科技,希望人們能夠繼承這份嚮往,一同探索更多宇宙的未知。

延伸閱讀

  1. 毀滅與新生:超大質量黑洞觸發的恆星形成- PanSci 泛科學
  2. 黑洞甜甜圈之後:宇宙噴火槍3C 279 黑洞噴流影像現蹤跡!——《科學月刊》 – PanSci 泛科學
  3. 黑洞攝影怎麼拍?七個問答來解謎——《黑洞捕手》 – PanSci 泛科學
  4. 仰望宇宙的好據點,大國爭相來插旗:「白山」毛納基亞——《黑洞捕手》
  5. 太陽升起前,把握最後的永夜!與時間賽跑的組裝任務——《黑洞捕手》 – PanSci 泛科學
  6. 人類史上首張黑洞近照:這張動員全球、沖洗兩年的照片是怎麼來的? – PanSci 泛科學

參考資料

  1. Some Highlights of Interferometry in early Radio Astronomy, Woodruff T. Sullivan III (2016)
  2. Pawsey, J. L., Payne-Soott, R., & McCready, L. L. (1946). Radio-frequency energy from the SunNature157(3980), 158-159.
  3. McCready, L. L., Pawsey, J. L., & Payne-Scott, R. (1947). Solar radiation at radio frequencies and its relation to sunspotsProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences190(1022), 357-375.
  4. Bolton, J. G., & Stanley, G. J. (1948). Variable source of radio frequency radiation in the constellation of Cygnus. Nature161(4087), 312-313.
  5. Bolton, J. G., Stanley, G. J., & Slee, O. B. (1949). Positions of three discrete sources of galactic radio-frequency radiation. In Classics in Radio Astronomy (pp. 239-241). Springer, Dordrecht.

0

4
1

文字

分享

0
4
1
與原色、光譜、煉金術交織而成的牛頓光學——《全光譜》
商周出版_96
・2022/03/19 ・2705字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/亞當.羅傑斯 
  • 譯者/ 王婉卉

光譜的故事

牛頓從三稜鏡中獲得的最大體悟,並非不同色光在穿透同一介質後,折射率會有所不同。席奧多瑞克與他同時代的研究學者已經證實這點了。

就算讓單色光再穿透另一個稜鏡也不會改變,牛頓甚至不是證明這點的第一人——證明的人是十七世紀的波西米亞科學家約翰尼斯.馬克斯.馬奇(Johannes Marcus Marci)。

牛頓的獨家發現是,那些色彩是如何混合在一起。他發覺,純粹陽光的白光,其實是所有其他色光混合而成的結果,透過稜鏡的折射,才使其分散開來。或者就像牛頓所說的,光是「由形形色色的光線構成,有些光比其他光更容易折射。」我們四周充斥的光是由順序固定的「純」色構成,而這個順序就是自亞里斯多德的時代起,眾人不斷在尋找的目標。

牛頓為這個順序想出了一個非常不錯的名稱,叫做「光譜」(spectrum)

模擬的自然光光譜。圖/Wikipedia

然後,牛頓誰也沒說,就這樣返回了劍橋。他協助一位年長導師編輯光學與色彩的著作,卻沒告訴對方自己的新發現。這位導師退休後,牛頓接任了這傢伙的職務:盧卡斯數學教授(Lucasian Professor of Mathematics)榮譽職位。

-----廣告,請繼續往下閱讀-----

牛頓這位據說上課很無聊的講師,這時才終於開始一點一滴發表自己從研究稜鏡所得出的結果。

儘管牛頓寫出的折射運算式既冰冷又毫不浪漫,卻依然有人深感崇拜。當時的皇家學會祕書是德國人亨利.歐登堡(Henry Oldenburg),工作主要是負責讓歐洲各地的研究人員能進行書信交流。(歐登堡精通荷蘭語、英語、法語、德語、義大利語、拉丁語。)

《自然科學會報》的鬥嘴故事

一六六四年,他向皇家學會創始成員的波以耳極力推銷一個可以賺錢的構想:把所有書信整合成只供訂閱的通訊刊物。

法國才剛開始出版《科學家週刊》(Journal des Sçavans),他們的編輯部也有向歐登堡邀稿。結果,歐登堡反而把先前出版的一本週刊帶到了學會的集會上,連同一份他自己想嘗試的通訊草稿或校樣——一份相似「但本質更偏向哲學」的刊物,他如此表示。

-----廣告,請繼續往下閱讀-----

於是,《自然科學會報》(Philosophical Transactions)就這樣創刊了,可說是世上首份徹徹底底的科學期刊。一份有兩三頁,要價一先令。

歐登堡聽說了牛頓正在埋首研究的主題,於是開始不斷央求他發表成果。最後,在一六七二年二月,牛頓洋洋灑灑寫了一封長信,描述自己的研究,以為這封信會在皇家學會的集會上由人朗讀。

由於歐登堡假定,任何人寄給自己的任何內容都屬於正式公開發表,於是就把那封信的內容刊登在當月的《自然科學會報》上。這時,歐登堡已經把這份期刊改為訂閱制,而這種模式是否可行,全取決於獨家內容。

《自然科學會報》自創刊以來的七年間,發表的論文格式大多遵循波以耳樹立的範本,也就是採時序敘事。現今期刊可能會遵循的格式——緒論、假設、研究方法、實驗結果、結論——當時尚未成形。

牛頓寫的信一開始有點像做工精良的成品,提出了研究方法與概念,並表達這整個研究到底多有樂趣,他自己對研究發現又是多樂在其中。

-----廣告,請繼續往下閱讀-----

然後,他似乎就放棄了。寫到一半,牛頓不再試圖用數學計算證明任何事,就只是寫下自己的理論,描述幾個實驗。這不是「我的彩虹之旅」。儘管如此,牛頓依然為世上有史以來的第一份科學期刊,寫下了有史以來的第一篇科學論文。內容還是關於色彩與光。

色彩與光。圖/Pexels

幾乎沒過多久,世上最聰明的一群人就開始酸他。虎克在信件內容發表後的一週內,就寫信給歐登堡,表示牛頓對折射性不同的看法錯了、對白光的看法錯了、對光是由什麼構成的看法也錯了。

況且無論如何,虎克說,他早就做過這些實驗了,不覺得有什麼了不起。接下來的四年間,《自然科學會報》不斷發表針對牛頓研究成果的批評,再刊登牛頓對這些批評的回應。

《光學》終於出版

最終,牛頓投降放棄。他不再跟歐登堡有所交流。虎克則在一七○三年去世,一年後,少了吹毛求疵的批評者,牛頓出版了《光學》(Opticks)。

在這本相當有分量的著作中,牛頓添加了一堆新難題。他先前就一直在思考原色的問題,但現在終於承認光譜是連續的,而這個連續光譜包含了無窮的色彩層次變化,也是色彩何以會改變、色彩順序何以會漸變的答案。

-----廣告,請繼續往下閱讀-----

然而,牛頓也堅決主張,這個光譜具有亞里斯多德式(與煉金術)的七種色彩:他在紅、黃、綠、藍、紫羅蘭中,加上了橙與靛藍,接著將所有色彩圍成一圈,透過根本就是他虛構的非光譜紫色,把其中一端的紅色與另一端的紫羅蘭色連接起來。

以現代色彩學術語來說,他創造出一張色度圖(chromaticity diagram),試圖要量化混色的方式,似乎也呈現出色彩按順序漸變為另一種色彩。

色度圖。圖/Wikimedia

牛頓建構的色彩順序屬於現代,有如彩虹般的漸層變化,是以自然的物理現象為基礎。不過,把色彩圍成一圈,可能是牛頓輕觸尖頂巫師帽,向鍾情於畢達哥拉斯神奇數學比例的煉金術士致意。

牛頓實際上究竟有沒有尖頂巫師帽,歷史學家對此尚未發表意見,但他無疑相當熟悉煉金術是如何看待色彩,以及色彩具有的重要性:雖然是在背地裡,但牛頓確實寫下了大量關於煉金術的內容,而且在他位於三一學院〔Trinity College〕的實驗室裡,還放置了煉金術相關的藏書,以及煉金術會用到的常見材料。

但不像典型的煉金術士,牛頓運用的是數學。他能相當精確地計算出每個色彩之間的折射率差異,色環(color circle)也依各顏色的比例,分配到長短不一的周長,意即各顏色的扇形區塊有大有小。

無可否認的是,這些比例都是主觀分配的結果,跟對應音階的神祕關聯有關,但就像之後會看到的,一般人對色彩彼此是如何互有關聯的認知,一向都很主觀。這個色環逐漸成為具體表達色彩之間幾何關係的方法。簡言之,就是所謂的色彩空間。

-----廣告,請繼續往下閱讀-----

—摘自《全光譜》,2021 年 12 月,商業周刊

商周出版_96
119 篇文章 ・ 360 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。

0

2
1

文字

分享

0
2
1
牛頓發現光譜前的那些故事——《全光譜》
商周出版_96
・2022/03/18 ・2487字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/亞當.羅傑斯 
  • 譯者/ 王婉卉

牛頓對色彩與光的瞭解

一六五三到一六五九年間的某個時候,英國格蘭特罕鎮(Grantham)上的一名青少年買了一本小筆記本。這位年輕人(名為艾薩克.牛頓的藥劑師學徒)在筆記本上寫下自己正在學習的科學知識。

他為自己打造了一間小型工作室,放滿儀器設備,在筆記本中描述要如何運用這些儀器進行實驗,並記下自己正在讀的書的一些細節,這本書是約翰.貝特(John Bates)的《自然與藝術之謎》(Mysteries of Nature and Art),內容寫滿了如何打造像是風箏與磨坊等的指示說明。

對牛頓來說,用顏料製作墨水與塗料的配方顯然同樣很實用,因為他也辛勤地抄寫了這些內容。要製造出「海色」,就把藍色的靛藍植物浸泡在水中,再加入銅藍顏料,後者不是藍色的石青,就是綠色的孔雀石。高加索膚色:在塗上一層鉛白的雙頰上,點綴些許紅鉛,陰影處採用燈黑(lamp black)或棕土(umber),若人已經死了,那就把鉛白換成稀釋的黃莓汁液,陰影處改用靛藍。牛頓也曉得,黑與白加在一起就是灰色。

顏色的調和。圖/Pexels

牛頓在一六六一年抵達劍橋,展開大學生涯時,對色彩與光的瞭解可能就僅止於此。在歐洲某些地區,相關知識多為機密,或並未廣為散播。但牛頓開始求學後,讀了笛卡兒(Descartes)的著作,以及羅伯特.波以耳(Robert Boyle)在一六六四年出版的《關於色彩的實驗與思考》(Experiments and Considerations Touching Colors),書中強調,至少在染色與繪畫的過程,誰都可以混合來自三原色的所有色彩。

-----廣告,請繼續往下閱讀-----

接著,在一六六五年,由於鼠疫導致每週數千人死亡,劍橋大學取消開課。牛頓於是回到母親在伍爾索普(Woolsthorpe)的娘家,占用一個小房間作為書房,做了幾個書架,就開始進行將定義色彩與光之現代概念的實驗。

最初觀察光的方式

你現在心裡在想,故事終於要談到三稜鏡的實驗了。但你錯了,還早呢。首先,牛頓會把一根粗大的針插進自己的眼睛裡。

他想知道眼睛的運作原理,而且是親身瞭解。於是,從最初使用的手指,再換成黃銅片,他都一一插進自己的眼球與環繞其周圍的眼眶骨之間——我懂你的感受!——然後按壓眼睛,記錄自己看到的結果:「幻象」,他如此寫道。

接著,牛頓更進一步改換成「大眼粗針」,也把它塞進眼球後方。他看到多個圓圈,「持續用大眼粗針的尖端摩擦我的眼睛時,看得最清楚」,不再移動粗針,圓圈就會消失。

-----廣告,請繼續往下閱讀-----

牛頓也在自己能忍受的範圍內,盡可能直盯著太陽看,因而發覺盯著太陽後,亮色物體看起來是紅色,暗色物體則偏藍。只有在擔憂可能會對視力造成實際傷害後,他才不再對自己進行實驗,並在暗室中閉關好幾天,直到視力恢復。

六年後,在一七二六年,牛頓告訴助理,只要自己動念想到當時的太陽殘像,他依然看得見那個影像。

牛頓。圖/Pixabay

這些色彩與殘像讓牛頓想知道,腦中看到的色彩與現實世界中的色彩,兩者究竟各占多少。只靠施壓就能看到色彩,也就是當色彩實際上並不「存在」卻能看到,使牛頓得以推測出「神經錯亂與夢境的本質關鍵」,他如此寫道。

牛頓想瞭解光是如何產生色彩的同時,卻也領悟到感知這些色彩是另一項關鍵因素。若要產生色彩,不只光與化學物質得聯手合作,觀者的大腦也得加以配合。

當時牛頓也在讀虎克的作品。羅伯特.虎克(Robert Hooke)為一堆倫敦有錢人擔任「實驗管理負責人」,這些人當時早已開始聚在一起,討論彼此對「實驗哲學」的共同理念。

-----廣告,請繼續往下閱讀-----

一六六二年,這群英國人為他們創設的團體取得授權,成立了皇家學會(Royal Society)。三年後,虎克出版了《微物圖誌》(Micrographia),(輔以插圖)詳細描述他透過新發明的精良器材所看到的一切,這個工具就是顯微鏡。

虎克繪製的蝨子與雪花等插圖讓《微物圖誌》大為暢銷,但牛頓認為,虎克針對孔雀羽毛如彩虹般的斑斕色彩以及玻璃薄片的觀察結果,甚至比那些插圖更加重要。就某種程度來說,即使不是經由大氣中水分子折射光所產生的結果,這兩者也是彩虹。這些現象的背後還有更為根本的原理。

好的,現在輪到稜鏡登場了

三稜鏡。圖/Pixabay

在只有一扇窗的書房裡,牛頓關上百葉窗,然後跟法利希一樣,在上面弄出了個小洞,使細長光束能照射進來。他將三稜鏡設置好,讓光在穿透後可以在寬達七公尺房間的另一頭散開成彩虹的各種顏色,他記下看起來是藍色的光線,偏折角度比看起來是紅色的光線要大。

投射距離也導致牛頓看到的色彩散開成橢圓形,而不是緊密相連的圓形,這些有色光束之間的空間大到足以插入另一個稜鏡。

-----廣告,請繼續往下閱讀-----

第二個稜鏡折射藍光的角度比紅光要大,但這些光沒有再分離出其他顏色。藍光就是藍光,紅光就是紅光。如果再把另一個稜鏡放置在兩個稜鏡中間,使發散的光束再次聚合,將產生不同的效果。

「多個稜鏡產生的紅光、黃光、綠光、藍光、紫光混雜在一起,就會出現白光。」牛頓意識到,三稜鏡不是藉由改變白光來產生色彩,白光早已透過某種方式,把所有這些色彩混合起來了。

我在此應該要指出,這項實驗聽起來很困難,也確實是如此。我買了幾個品質不錯的三稜鏡(不像我,牛頓那時可沒有亞馬遜網路商店),然後把辦公室的門窗都關起來,就跟牛頓當時做的一樣。

我在百葉窗上拉開一個縫,設法在牆上投射出一道彩虹。但要對齊兩個稜鏡,讓色彩散開來,實在很難辦到。我想,這恐怕一定得有某種天分才做得到。

-----廣告,請繼續往下閱讀-----

—摘自《全光譜》,2021 年 12 月,商業周刊

商周出版_96
119 篇文章 ・ 360 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。