分享本文至 E-mail 信箱

學術引用格式

MLA (點一下全選)

APA (點一下全選)

EndNote(.enw)

見微知著 微中子探索宇宙起源——《臺大科學家的研究故事》

2011 年、中華民國建國百年,臺大天文物理研究所教授陳丕燊,率領「天壇陣列」(Askaryan Radio Array,ARA)微中子天文臺研究計畫團隊登上南極,此行目的是安裝由臺灣主導的 ARA 國際合作研究計畫第一座天線臺;這是中華民國百年來首次在南極進行的科學研究,正好遇上人類首次抵達南極點百年紀念,陳丕燊在那裡插上親自手繪的中華民國國旗,讓它飄揚在−40˚C 南極蒼穹下,寫下我國天文研究新頁。

P22-100dpi

「天壇陣列」之鑿冰設備遠看好像一個沙漠中的駱駝商隊。設備上臺大校徽及梁次震中心(LeCosPA)徽章均清晰可見。圖/台大出版中心提供

南極研究 透過微中子探索宇宙

陳丕燊 2007 年返臺任教,在此之前,他於史丹佛大學主導「捕捉宇宙微中子計畫」,即透過「南極脈衝瞬態陣列」(Antarctic Impulsive Transient Antenna,ANITA)探測器,以熱氣球偵測南極洲冰層表面微中子所產生的訊號;返臺後,他把ANITA 計畫也帶回來;此外,他並進一步與國際有共同理想的學者發表白皮書,促成「天壇陣列」ARA 計畫,臺大團隊在這項跨國研究計畫中位居領導地位。

這兩項計畫利用南極洲巨大冰層作為阻擋超高能微中子的靶,來捕捉外太空進來的宇宙微中子,希望找到超高能 GZK 微中子,藉此回推極高能微中子方向,探索宇宙起源;並希望能蒐集到大量微中子數據,探究電子微中子、緲子微中子、濤子微中子三者之間,除了振盪,是否會衰變,對高能物理能有進一步貢獻。

CoverPhoto

陳丕燊教授。圖/台大出版中心提供

聽見來自宇宙的聲音

陳丕燊解釋,當超高能微中子穿入南極冰層,在冰層與原子核作用後,會產生正負電子對(electron-positron pair);在連鎖反應下,正負電子對一分為二、二分為四,造成十億、百億個正負電子對,沿著最初微中子自宇宙來到地球路徑,以接近光速速率前進,這種現象稱為「簇射」(shower)。

「簇射」在冰層中前進時,正子若與其他原子核碰撞,可能變成光後消失,電子則繼續前進;這種「簇射」移動、大規模正負電子對一路往前衝時,如同土石流,將沿岸巨石、樹木、連同沿途原子裡的電子通通帶走,到下游時電子數量比正子多了約 20%,使得原本中性的簇射發展成一帶電體;當此一帶電體在冰層以接近光速前進時,會發出「切仁可夫輻射」(Cherenkov radiation)。透過切仁可夫輻射的無線電波頻段,科學家可以「聽見」微中子在冰層中發出的訊號。

然而,ANITA 計畫以熱氣球從空中偵測微中子訊號,易受雜訊干擾,且在南極氣候影響下,無法全年偵測;回臺後,陳丕燊將探測方式轉向地下,以便終年都可進行微中子訊號探測。目前這兩項研究都在進行中,ANITA 已成功執行三次飛行任務,預計 2016 年底將執行第四次任務(ANITA-IV);ARA也已完成三座天線站,其中兩座完全由臺大團隊打造的天線站架設,運行兩年半來從未故障,雖然離架設 37 座目標還有段距離,但陳丕燊認為,臺大團隊的表現在國際上有目共睹,已獲多方肯定。一心要把臺灣帶進宇宙學領域的陳丕燊,其實本來並非出身宇宙學;他自臺大物理系畢業,直至美國加州大學洛杉磯分校(UCLA)博士班,均攻讀高能物理;陳丕燊說,高能物理自二戰以來蓬勃發展,「當時最年輕有為的物理學者,幾乎都在鑽研高能物理」,他也不例外; 在UCLA 陳丕燊師承高能物理學大師櫻井純(J. J. Sakurai),並與指導教授共同發表四篇國際期刊,研究成績卓越。但是櫻井教授在他拿到學位前突然過世,帶給他極大衝擊,當時他讀到《科學》(Science)期刊一篇專欄〈高能物理的未來〉(The Future of High Energy Physics)文章提到,高能物理加速器機制若不改進,將來想提高能量,長度勢必無止盡增長,有朝一日恐怕得繞地球一周,才能蓋一個加速器。這個看法引發陳丕燊深刻的省思,他認為這個預測雖不中、亦不遠矣。看當前全世界唯一、最大的加速器在瑞士,圓周已達 27 公里,如果要再加高能量,勢必得再擴大半徑;而該文也提到,當時兩位科學家提出新加速機制,即結合電漿與高能物理,利用電漿(plasma)來加速粒子;先將雷射光打到電漿裡,讓電漿產生像波浪一樣的振盪,波浪會強行將電漿中的正負離子分離,而產生很強的電場,再打進高能粒子,透過電場讓粒子加速到很高能量。

P24-100dpi

在南極研究時,劉宗哲博士在研究基地附近拍攝到企鵝。圖/台大出版中心提供

這段敘述引發陳丕燊濃厚的興趣,他發現這兩位科學家之一恰是他統計力學教授 John M. Dawson;正有意轉換跑道的他,便迫不及待地前往請教,相談十多分鐘,Dawson 教授即熱情邀請他到自己研究室進行博士後研究。陳丕燊將信將疑,心想:Dawson 教授專精的是電漿物理,與自己鑽研的高能物理截然不同,他能做什麼?他委婉地報告Dawson 教授:「等離子、電漿物理跟我所學的完全不同,我不確定能不能勝任。」Dawson教授鼓勵他可以邊做邊學,「你既然是櫻井教授的學生,一定辦得到。」就這樣,陳丕燊抱持改良高能物理加速機制的熱忱,轉進電漿物理領域。

發現尾隨場加速機制

從高能物理轉到電漿物理,陳丕燊從零開始;「小組討論時,連博士後、學生講的,我全聽不懂,壓力很大!」他說,國外學術研究競爭白熱化的程度,形同割喉戰,「你不前進?馬上被刷掉,非常慘烈。」陳丕燊每天一早醒來,壓力便如影隨形,讓他苦不堪言。

陳丕燊咬緊牙、拚命一年後,即和 Dawson 教授共同發表論文,提出電漿物理的第二種加速機制,即「尾隨場加速機制(plasma wakefield acceleration)」;是指高能電子束穿過電漿時,因為振盪分離出帶正電的質子與帶負電的電子,兩者產生一種電場,稱為「尾隨場」。陳丕燊舉汽艇航行掀起白色浪花為例,由於汽艇驚擾了水面,造成水分子上下振盪而產生浪花,像一條彩帶,「尾隨」在汽艇後面;但水分子並不會隨汽艇移動,待汽艇離開後,水分子會在原地慢慢恢復平靜。若將水換成電漿,汽艇視為打進電漿裡的一團高能電子束,電子束通過時,會在流體產生振盪,帶正電的質子比電子重,所以移動幅度較小;反觀帶負電的電子則運動激烈,因此,一旦高能電子束打進電漿,會使電子脫離身旁帶正電的質子而產生尾隨場。物理上,若將電子和質子拆開來,兩者之間會產生一庫倫電力;因此,當高能電子束被打進電漿後,產生的振盪強行分離質子和電子,產生的電場很大,可以拿來讓粒子迅速地加速到很高的能量。這個理論是電漿物理學界一大創新,後來尾隨場加速機制和原提出的電漿加速機制,同被列為國際同儕兩大電漿加速機制,陳丕燊也儼然成為尾隨場加速機制領域的開山祖之一。理論上,尾隨場加速機制的加速電場強度,要比現在瑞士歐洲核子研究組織加速器高上一千倍,同樣一公里,用電漿尾隨場加速機制可讓粒子加速到目前能量一千倍,這對高能物理研究有極大助益。陳丕燊強調,物理作為實證科學,唯有透過實驗來檢驗理論真偽,他盼望有朝一日,尾隨場加速機制的實際應用,能突破高能加速器建造的局限。

 


臺大科學家的研究故事5_封面-100dpi《臺大科學家的研究故事 5》書籍簡介

張錦華 策劃、李淑娟 主編

2015年12月出版

13項頂尖的研究發現,14個科學人的人生故事。

現今當紅的物理學前沿是什麼?從宇宙起源到高能物理,臺灣如何參與世界頂尖的研究?鳥類除了會合作孵育幼雛之外,竟然還有自己的方言?臺灣身為水果王國,農家要如何盡早預防蟲害,讓產業轉型成為科學農業?全球蜜蜂神祕消失的背後原因究竟為何?糖尿病患者的年齡逐漸下探,與兒童的肥胖有關?

本書收錄了享譽國際的十三項研究發現,透過深入探訪的報導,我們得以知道科學家如何帶領團隊、如何做研究、如何解決問題與困難,讓我們了解他們一路走來的心路歷程,一窺其內心深處的熱情與執著。細細品味書中的內容,可以發現這些科學研究不只是距離遙遠的學術論著,而是與生活息息相關的智慧結晶;其背後的故事不僅能打動人心,也讓我們能從中獲得值得仿效的處事之道。

其他相關文字可參考出版中心的書籍資訊網頁

ad3

問答是人類最原始的知識互動方式,也是文明火箭推進的燃料,更是茫茫知識大海中的羅盤
為什麼蘋果會落下?為什麼人類不能飛?所有偉大的事物,都萌芽於一個最初的問題。
我們全新推出的問答平台——泛答,讓大家用最輕鬆直接的方式挖掘最有價值的知識。

受夠了虛實難辨的假新聞?懷疑自己困在同溫層?想念那個充滿好奇的內心自我?
來泛答吧,跟我們一起用問答打破現狀,用問答找回專屬於你的知識。

關於作者