0

1
0

文字

分享

0
1
0

心誠則靈、命中注定、花小錢賺大錢有影無?日常生活中的邏輯

賴昭正_96
・2016/01/20 ・3216字 ・閱讀時間約 6 分鐘 ・SR值 481 ・五年級

多一分分析,少一尺迷糊

在「適者生存是理論嗎」一文裡(科學月刊2014年四月號),筆者辯稱達爾文的「適者生存」雖是生物學上非常偉大的發現,但因即使在辯論上都不可能被推翻或反駁,因此不是一個物理學的「理論」;它事實上只是用來定義「適者」:「生存」下來的就是「適者」。雖然如此,但這類的「研究」還是常可以申請到研究費的(例如該文章裡所提到的例子)。仔細看看週遭,事實上這類混淆不清的邏輯在日常生活中是俯拾皆是的我們現在就來談談這些「邏輯」。

定義的問題

z(15)
Source: life

「誠者靈」(心誠則靈)在宗教信迎上是一個最常被用來說服信徒的「邏輯」。例如你內心真的是非常誠懇地相信上帝的存在(譬語,此處指的不一定是天主教),因此也像某些教徒一樣,很希望能在夢中看到祂;但就是一直無法如願以償。此時你如果問牧師,他將告訴你:因爲你信得不夠誠,因此才見不到祂!你不可能反駁他的,因爲「誠者靈」根本不是一個理論,「靈」只是用來定義「誠」的:你既然看不見(不「靈」),那當然不「誠」了,這還用問?!同樣的道理,如果有廟宇說你因「香火不夠」,才一直許願未償,你最好還是馬上另拜神明為妙!

內人每次預測她的股票一定會大漲、發個大財退休不對後,便會大聲感嘆説「呀,人算不如天算!」爲了安慰她,我立刻迫不及待地告訴她:「天從來沒有算過,妳當然不及它!」這道理似乎非常易懂,但「人算不如天算」還是我們常用來自責的藉口——或許是因我們不肯承認失敗?

瞎貓碰到死老鼠

與之正好相反的是:整天無時無刻不停地預測,因此總有碰對的時候!這也是非常易懂的道理,因此你以爲「騙」不了人?錯也!在「經濟學是科學嗎」一文裡(科學月刊2014年五月號),筆者提到了2013年諾貝爾經濟學獎得主耶魯大學的席勒(Robert J. ‏‏‏Schiller),「成功地」預測了「上世紀美國高科技股泡沫」及2008年的「房地產泡沫」;但同年得獎的芝加哥大學教授法瑪(Eugene Fama)卻一點也未所動,他說:「一有大事發生,媒體總會去挖掘,找到早就有人預測到,而大肆宣傳加冠。你從不回頭去看看過去的預測,想想這一預測是否只是運氣而已!」筆者在此每半年預測一次全世界股票大崩盤,「王師北定中原日,家祭勿忘告乃翁」(「那天應証了,不要忘了告訴筆者」是也)。

-----廣告,請繼續往下閱讀-----

這類的例子事實上是到處可見。例如整天祈禱各種願望,總有一天某一願望將應願的。同樣地,大部分的股票投資公司總有一、兩次會碰到死老鼠,讓他們大肆吹噓他們的專業知識是如何地不得了、了不得的!又如「禍不單行」(單行的禍全給忘了)及「烏鴉嘴」(不對的話全給忘了)也是屬此類瞎貓碰到死老鼠的。請不要小看此一亂用邏輯的威力;事實上幾乎所有的「不尋常」藥物、醫療方法、補品、健康器材、….. 等等,因爲「人體太複雜了」,因此大概總會有「成功」的例子,讓他們拿來做見証大做廣告――但從不提成功的比率到底多高(低)!仔細想一想,你不是也曾因看了這類廣告而挑了腰包嗎?!

命中注定

20141201163950857
Source: cmoney

算命先生及占星術等的邏輯也是很奇怪的:他們總是會建議我們做一些事來避免惡運。他們似乎沒想到:如果命運可因我們的做爲而改變,那他們怎可能算出一個人的命運呢――除非我們的做爲也是一生下來就被上天注定、無法改變的!可是果如是,那他們又爲何建議我們做一些事來避免注定的命運?……越想越糊塗;算了,「勸君惜取少年時,莫待無花空折枝」,盡力而爲就是了,少花點冤枉錢吧!

算命先生有一個大敵人,那就是風水先生。記得十年前筆者因失業擬賣家產時,一對大陸來的年輕夫妻對筆者的房子有興趣,但風水先生説大門口正對著一棵大樹,擋住了錢財進來,因此他們的大陸父母說不能買。可是算命先生卻說筆者將大富大貴,你說那個對呢?照現狀看來,可能算命先生要輸了――因他未考慮風水的關係?可是話說回來,筆者銀行那幾萬塊美金存款,可能正是因為被那棵大樹擋住而未外流,這不正是驗了算命先生的「大富大貴」嗎(算命先生從未定義多少存款是「大富大貴」)?風水先生,筆者命中注定要大富大貴的,那大樹擋不了的!

以子之矛攻子之盾

偶爾我們會看到廣告謂:此座談班將告訴你如何在網路或房地產上賺大錢。讓筆者臉紅的是:也許是財迷心竅,筆者竟然相信他們,報名參加了曲指可數之數(還好只是單手!)。當然,每次均是因為要先花錢參加密集訓練班或買什麼祕笈等等,而失望而歸。每次回來一分析,便立即覺得怎麼會這樣笨,竟然相信他們的廣告?試想一想:如果他們的方法真能那麼「輕易地」賺錢,他們早就天天在夏威夷渡假了,還會花那麼大的精力來這裡教你嗎?真正容易賺的、且保證不會蝕本的恐怕應只是你的學費(錢)吧?!當然,筆者不否認是有人用了他們的方法賺了大錢的,可是相信那只是極少數!

-----廣告,請繼續往下閱讀-----

挑別人的骨頭容易;筆者也曾是「教」人的,因此不自覺地立即想到:我是否也曾犯了類似的邏輯毛病?仔細分析後,我想答案是否定的:大學從未廣告可以教你如何賺大錢或成為一位大學者。大學只是答應你如修完x學分,就發給你一個證書;從不保證那證書可以幫你找到一個好工作(像當「教授」)――雖然那乙張文憑還是真的很有用的(尤其在國內)。事實上,一所好的大學應是教你如何學習;而教授本身就是終身在學習的!好了,這下筆者可以心安了!筆者已是七十中旬的老翁,但還是時常向7歲的孫女討教英語的!

上述的分析應也適用於其它「授課」學校,如職業訓練班等!要你先交「小錢」去學賺「大錢」的技能在邏輯上是矛盾的:因為如果此技能真的有用,他們為什麼不用此方法去賺「大錢」,而在這裡賺你的「小錢」?至少他們應該等我們賺錢再抽成吧?「不久前」,美國這類以營利為主的私立大學還前途似錦(似乎將取代傳統的大學),它們大肆廣告,號稱可以教你能輕鬆地找到高薪的職業技能:從1990年到2010年間,它們授予的學位比例增加高達九倍之多!但曾幾何時,此一泡沫已因它們的「吹牛」而慢慢破裂:例如全美第二大之以營利為主的私立大學科雷訓學院公司(Corinthian ‏‏Colleges, Inc.)於2015年五月四日宣布破產;而另一「名校」芬尼斯大學(University  of  Phoenix)的註冊學生也只剩下2010年時的一半而已!

同樣的道理,如果你的理財專家或顧問告訴你,說他可以保證幫你賺大錢,你最好還是馬上提起你的錢袋離開吧!老實告訴讀者吧:筆者曾花上千元美金(內人從不讀筆者之大作的,因此不會造成「家庭糾汾」),加入股票投資公司,依照他們的所謂專家建議買股票。結果呢?「陪了夫人又折兵」。事實上已有許多研究指出:往華爾街日報的公司頁投擲標的所選出的股票,其結果將不亞於專業股票投資公司選股的結果!筆者是相信這些研究結果的:因那些專業股票投資公司如果真的能保證賺錢――不是客戶的錢,那老闆不是早就發了大財,就應抵押所有家產去理自己的財,那有空閉來幫你們玩股票?

不知讀者收過一般郵件或電子郵件謂有一大筆錢等著你去領?這筆錢的「來源」可能是中獎,或是是非洲某個王子在王室鬥爭失敗後留下來的;但因為稅或手續費等等關係,你必須先交一小筆錢才可拿到。仔細分析一下:如果我將取得一「大筆錢」,你還怕我交不出那筆「小錢」?邏輯很簡單――不須博士文憑就可瞭解,可是信不信由你,還是有很多人上當的!上面提到大學文憑在臺灣還是真的很有用的;事實上可能不只在國內,在國外也是很有用的。例如在美國,有許多調查統計發現,受過大學教育的平均收入較一般人高出不少。但請注意:這可能是「因果顛倒」的辯證邏輯,不一定是大學教授的功勞,因爲上大學的人一般均較聰明、家境較好、或較具進取心

-----廣告,請繼續往下閱讀-----

參考資料:

-----廣告,請繼續往下閱讀-----
文章難易度
賴昭正_96
50 篇文章 ・ 61 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此獲有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲它轉載我的科學月刊上的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」。

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
2

文字

分享

0
2
2
歐氏幾何學的啟示
賴昭正_96
・2025/12/09 ・4611字 ・閱讀時間約 9 分鐘

無需證據就能肯定的事情,同樣也可以無需證據就能否定。

-歐幾里德(Euclid)古希臘數學和邏輯學家

當筆者還是一位教書匠時,時常鼓勵學生應該多讀數學,不是因為數學的實用性,而是因為它是訓練邏輯的基礎。愛因斯坦(A. Einstein)曾經說過:「就其方式而言,純數學是邏輯思想的詩歌。」而26歲時就提出了反物質的存在、奠定了量子電動力學基礎的狄拉克(Paul Dirac)更認為數學幫助他了解物理定律(宇宙)。我們不是大物理學家,在這裡只能介紹一個簡單的、 2300年前的數學━幾何(geometry),看它如何能幫助我們了解我們日常生活中的邏輯。

歐幾里德

歐幾里德(Euclid)大約於西元前 300 年生於埃及亞歷山大。我們對歐幾里德的生平知之甚少,只有希臘哲學家普羅克洛斯(Proclus,410-485 年)在其《希臘著名數學家》總結中提到:歐幾里德在托勒密一世(Ptolemy I Soter,公元前 323 年至公元前 285 年)統治時期在亞歷山大任教。儘管如此,雖然歷史上有過更偉大的數學家,也有過更重要的數學家,但如果說數學界有家喻戶曉的名字,那非「歐幾里德」莫屬!歐幾里德對人類文明的長期影響可以說非常深遠:幾個世紀以來,數學和歐幾里德在整個西方世界幾乎是同義詞。

歐幾里德的《幾何原本》(The Element of Geometry,通常縮寫為 Elements)是有史以來最著名數學著作之一。印刷術發明後,這部著作是最早以印刷形式出現的書籍之一:它出版了超過一千種不同的版本,只有《聖經》比它多。《幾何原本》通常被描述為一本幾何書,但它事實上也涉及數論和一種以幾何形式呈現的原型代數。

歐氏幾何

歐幾里德有兩大創新。其一是「證明」的概念:除非是從已知為真的命題中推導出來,歐幾里德拒絕接受任何數學命題為真。第二項創新是認識到任何事物都要始於無法被證明的某些「假設」。因此,歐幾里德預先提出了五個基本假設作為其所有推論的基礎:兩點可以用一條線連接;任何有限的線都可以延伸;可以以任意圓心和任意半徑畫一個圓;所有直角都相等;及兩條直線可以平行永不相交。

-----廣告,請繼續往下閱讀-----

對歐幾里德來說,邏輯證明是幾何學的本質特徵,而「證明」至今仍是數學事業的基石。缺乏證明的命題無論有多少間接證據支持它、或蘊含意義多麼重要,都會被(合理地)懷疑。歐幾里德公理━他精心挑選的邏輯推論鏈━的影響極為深遠。例如,他用當時被認為無可挑剔的邏輯證明了:一旦同意他的公理,你就必然得出不能理解之「無理數」存在的結論!

嚴格的邏輯證明

「無理數」是不能用兩個整數相除來精確表達的實數。所以要證明x不是一個無理數,我們只要能找出兩個實數來表達它即可。例如利用高速電腦或人腦,我們發現可以用 40/99 表達 1.212121……,所以 1.212121…… 不是無理數。可是如果我們也同樣地想利用高速電腦來證明 \(\sqrt{2}\) = 1.4142135……呢?我們可以在一秒鐘內完成成千上萬的嘗試;但如果在數年後,我們還是找不到一組整數來表達\(\sqrt{2}\) 時,我們能下結論說 \(\sqrt{2}\) 是無理數嗎?不能,因為對歐幾里德來說,這不是嚴格的邏輯證明(註一)!

同樣地,費馬(Fermat)大定理於 1637 年提出,謂若 n 大於 2(n>2),則沒有任何三個整數 a,b,c 可滿足 an+bn=cn 方程式。隨著時間的推移,這個簡單的定理成為數學界最著名的未證命題之一。許多數學家和業餘愛好者要麼適用於所有 n>2 的值,要麼針對特定情況,試圖證明這一命題,推動了數論領域全新的發展。最初是手工證明,後來是計算機證明,找到了最高可達 400 萬的所有 n 值;儘管如此,因為不是嚴格的邏輯證明,數學家還是不能肯定該定律的正確性。

英國數學家懷爾斯爵士(Sir Andrew Wiles)於 1993 年 6 月 23 日首次公佈了他的證明,不幸地該證明在三個月後被發現含一個錯誤。一年後的 1994 年 9 月 19 日,懷爾斯在其自謂為「職業生涯中最重要的時刻」時偶然發現了一個啟示,使他能夠修正該錯誤,於 1995 年令歐幾里德、數學界滿意地嚴格證明了費馬大定理的正確性。

-----廣告,請繼續往下閱讀-----

又雖然早在公元五百年左右就有印度數學家懷疑圓周率 π 是無理數;但兩千年過去了,雖然還是找不到一組整數來表達它,還是沒有任何數學家敢說π是無理數。1761 年法國數學家蘭伯特 (Johann Heinrich Lambert) 終於首次嚴格地證明了π 為一無理數!

歐幾里德幾何學

歐幾里德之五個初始、無法被證明的命題似乎都是大家很容易認定或接受的日常生活經驗。但事實上,歐幾里德的第五公設「兩條直線可以平行永不相交」遠非那麼合理明顯。因此許多數學家一直在懷疑可以從其它四個假設中推導出來(刪除它),或者能用更簡單、與其它一樣明顯的東西代替。但到了十九世紀,數學家們終於證明了它不能從其它四個假設中推導出來,明白了歐幾里德加入第五個公設是絕對正確的!

我們之所以認為「兩條直線可以永不相交」是合理的是因為我們生活在平面宇宙中:例如如果宇宙是二維空間,那我們就是生活在一張無限大的平面白紙上。但如果我們是生活在一個圓球的表面上呢?事實上我們不正是生活在一個圓球的地球表面上嗎?!但因我們的生活圈太小了,故整個周圍看起來好像一平面上而已。如果在地球表面上我們將兩「平行線」(註二)往同一方向延長不到一萬公里,它們是會相交於一點的(如果該兩點是在赤道上,那麼垂直於赤道的兩「平行線」將相交於北極或南極)。所以「兩條直線可以永不相交」在地球上不但不合理,根本完全是錯誤的假設━它只適用於日常生活中。

這些合理的懷疑歐幾里德之第五公設並沒有付諸流水。1854年,黎曼(Bernhard Riemann)在一次著名的演講中建構了無限多的非歐幾里德幾何族,為非歐幾里德幾何學邁出了決定性的一步。其中最簡單的一族缺乏平行線的公設,被稱為「非歐幾何」(non-Euclidean Geometry)。

-----廣告,請繼續往下閱讀-----

在歐幾里德幾何裡,兩點之間的最短距離是一條直線;在非歐幾里德幾何球體表面上,兩點之間的最短距離則是沿著球體表面的大圓弧路徑(稱為測地線,註三)。在歐幾里德幾何裡,三角形內角總和為180度;但在非歐幾里德幾何球體表面上,由三個大圓弧組成的球體表面三角形內角總和則大於180度。

幾何與物理

非歐幾何的發展對數學和物理學產生了深遠的影響。它顯示歐幾里德幾何並非唯一邏輯一致的體系,為愛因斯坦的相對論鋪平了道路。

牛頓物理學從根本上來說是使用平坦的歐幾里德空間和通用時間的概念來描述運動,因此當地球不沿著直線運動時,牛頓必須用重力來解釋。愛因斯坦的相對論運用非歐幾何來描述彎曲時空,謂重力並非一種力,而是時空曲率的表現:巨大的太陽彎曲了其附近時空,地球只是沿著這一彎曲時空中之「最直」的路徑(測地線)運動而已。

同樣地,牛頓物理學假設重力只對有質量的物體施加力,而光是無質量的,因此光應該永遠沿著直線傳播。但愛因斯坦廣義相對論將重力描述為時空的彎曲(不是力),光將在這彎曲的時空沿著「直線」(測地線)傳播,但我們觀察到的將是「光不沿著直線傳播」!愛因斯坦的這一成功預測使他「瞬間」成為家喻戶曉的科學家(「延伸閱讀1」)。

歐幾里德幾何社會邏輯

人類可能是唯一知道死是怎麼一回事的動物,因此很早就在尋找生命的目的,很難接受霹靂一聲、無中生有地出現了時間、空間、及能量的近代宇宙觀(「延伸閱讀2」)。因此許多人認為我們來到這個世界是有目的的,我們是「上帝」(註四)創造出來的。因此「上帝」存在成了一個大家能接受、不需要證明的合理「公設」。對信教的人來說,它解釋了日常生活中的所有現象。對愛因斯坦及一些科學家來說:如果不是超人的「上帝」,為什麼我們看到的宇宙能不可思議地依循某些定律井然有序地運轉,但我們只是朦朧地了解這些定律?

-----廣告,請繼續往下閱讀-----

在「延伸閱讀3」裡,筆者提到了要證明上帝的存在是很困難的,但要證明上帝不存在更加困難!因此「上帝不存在」也是屬於「不能證明、不需要回答的合理假設」,所以在民主國家裡人人有宗教信仰或不信仰的自由。

在社會上要證明某人沒有博士學位很困難甚或不可能(註五),因此能被接受、不需要證明之唯一合理假設應該是「人人沒有博士學位」。在這前提下,如果你說你有博士學位,則證明有博士學位的責任應該落在你身上,而不是檢察官或具告人!

同樣地,因為證明我們沒有犯罪很困難甚或不可能,所以「我們沒有犯罪」應該是唯一的不需要證明之合理假設;如果你控告我犯罪,那法庭應該要你(告訴人或檢察官)提出不被懷疑及合理質疑的證據。這事實上正是民主國家所採取的法律制度。

結論

歐幾里德的專著《幾何原本》為幾何學提供了一個系統而公理化的方法:他從一組不證自明的真理(公理和公設)出發,運用演繹推理推導出定理和證明,為數學的嚴謹性和邏輯推理確立了標準,塑造了數學家和科學家解決問題和建構理論的方式,甚至影響了數學以外的各個領域如法律和政治思想,在人類社會發展中發揮了基礎性作用。例如美國傑斐遜(Thomas Jefferson)和其他開國元勳們就是運用歐幾里德演繹法構建了《獨立宣言》:他們從類似於歐幾里德幾何的「不證自明」的真理━公理━入手,建立邏輯論證,以證明革命和建立新政府的必要性。因為這些基本原則被普遍接受,無需進一步證明,因此賦予了《獨立宣言》強大而不可否認的力量。

-----廣告,請繼續往下閱讀-----

我們在這裡探討了日常生活中所碰到的宗教信仰、學位真假、與犯罪判決的爭論與判斷,得到結論:人人有宗教信仰或不信仰的自由,確定犯罪的責任在檢察官身上,證明有學位的義務則落在當事人身上!

註釋

  • (註一)嚴格地證明 \(\sqrt{2}\) 是無理數很簡單,有興趣的讀者可參考「延伸閱讀3」。
  • (註二)原則上必須是趨近於零的短線。
  • (註三)大圓弧是球體上任何圓心與球心重合的圓(例如赤道)。但是因為天氣、急流和空域限制等因素,航班並不沿著大圓弧路徑飛行,例如台北到舊金山的實際航線比大圓弧長了約10%。
  • (註四)這裡指的「上帝」是抽象的、廣泛的超人造物主。
  • (註五)在「延伸閱讀4」一文裡,筆者提到了要證明有博士學位應該是非常簡單的,如拿出正式的畢業證書或學校出證明;但要外人證明你沒有博士學位,則將與證明上帝不存在一樣更加困難:因為即使我們找遍全世界所有的地方,都沒發現你的論文或證書,我們還是不能說你沒有博士學位的博士學位━因為這不是「嚴格的邏輯證明」!

延伸閱讀

  1. 抱歉了愛因斯坦,但我真的沒辦法給那個酷理論——為何相對論與諾貝爾獎擦身而過?」,泛科學,2021/07/28。
  2. 思考的極限:宇宙創造出「空間」與「時間」? ——宇宙觀的發展史(下篇)|20 世紀後」,泛科學,2023/05/17。
  3. 愛因斯坦相信的上帝,是你以為的那位上帝嗎?」,泛科學,2018/03/30。
  4. 要被接受,需有不被合理質疑的證據–從科學與蔡博士學位事件討論起」,科技報導,2020/02/01。
  5. 從圓周率與無理數,談數學也有其無法理解、不精確、與不確定性」,泛科學,2019/06/03。
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
50 篇文章 ・ 61 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此獲有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲它轉載我的科學月刊上的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」。

0

1
1

文字

分享

0
1
1
替晶片打造數學工具的喬治.布爾(George Boole)
數感實驗室_96
・2024/06/01 ・561字 ・閱讀時間約 1 分鐘

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

煮湯時看到調理包背面寫著「加水且加入鹽巴或味精,就大功告成了」。

這句話該怎麼解讀呢?邏輯思維好的人可能很快就能反應過來,意思是加水是必須的,鹽巴和味精至少要加一個。當然,兩者都加也行,但似乎不太健康。

你可能會說:「煮湯時誰會想那麼多?這太哲學了!」其實,19 世紀有位數學家將邏輯建立在數學而非哲學之上,他的貢獻深深影響了現代電腦的運算。他就是我們今天的主角——喬治.布爾(George Boole)。

-----廣告,請繼續往下閱讀-----

在工作會議中,清晰的邏輯思維能幫助我們有條理地表達觀點,並迅速理解他人的意見;程式設計中,邏輯是核心,透過布林代數和邏輯運算,電腦能根據條件執行不同的任務,在智慧家電中利用邏輯閘判斷多個輸入條件來控制輸出結果。

因此,布爾提出的這一套邏輯思維與布林代數,不僅在學術領域至關重要,更是日常生活中不可或缺的工具。

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 youtube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

數感實驗室_96
76 篇文章 ・ 55 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/