0

1
0

文字

分享

0
1
0

空間有限的情況下,怎樣才能堆疊最多的球體呢?——《數學的故事》

時報出版_96
・2019/10/08 ・5488字 ・閱讀時間約 11 分鐘 ・SR值 540 ・八年級

文/蔡天新,本文摘錄自《數學的故事》,2019年時報出版

有些數學證明如此美妙,只能是上帝的創造,數學家不過是幸運地發現了它們而已。

——艾狄胥

探險家和作家雷利

沃爾特.雷利(Sir Walter Raleigh)是十六世紀後期英國著名的探險家,算得上是當時的風雲人物。他本是女王伊莉沙白一世的寵臣,三十一歲受封為爵士,後來被女王的繼任者詹姆斯一世指控謀反並囚禁於倫敦塔,最終被處以極刑。

雷利的肖像畫。圖/wikimedia

雷利少年時即參加法國宗教戰爭,後就讀牛津大學,畢業後又參與鎮壓愛爾蘭人的起義。他坦率批評英國對愛爾蘭人的政策,引起了伊莉莎白女王的注意。女王欣賞雷利的才幹,也被他的個人魅力吸引。

伊莉莎白女王賜予雷利倫敦特勒姆旅館的部分租借權、各色絨呢的出口權,讓他擔任錫礦主管、海軍中將和議員,乃至王宮侍衛長、英吉利海峽的澤西島總督。後來雷利瞞著女王與她的侍女偷偷結婚生子。女王發現後,把他和妻子雙雙關入倫敦塔,雖然不久後就釋放了他們,但雷利從此失去了比他年長二十一歲、終身未嫁的女王的恩寵。

-----廣告,請繼續往下閱讀-----

雷利為了航海曾學習數學,也學過化學和醫術。與女王決裂之前,他曾遠距指揮在美國的北卡羅萊納和維吉尼亞建立殖民地。北卡羅萊納沿海的羅阿諾克島原本是英國人在新大陸最早的定居點,可惜一百一十六名移民某天卻突然人間蒸發,包括在新大陸誕生的第一名英國嬰孩維吉尼亞.戴爾(Virginia Dare),至今依然是未解之謎。那時距離「五月花」號駛往麻薩諸塞尚有半個多世紀。

被處死前的雷利。圖/時報出版提供

如今,北卡羅萊納州的首府羅利就是以雷利的名字命名,羅阿諾克島上也有羅利堡國家歷史遺址,該島隸屬的縣名叫戴爾,即以那位新生兒的名字命名。有趣的是,同屬戴爾縣的小鷹鎮是一九○三年十二月十七日萊特兄弟首次成功試飛飛機的地方,小鷹鎮的沙洲與羅阿諾克島相距不超過十公里,中間隔著羅阿諾克海峽。

寫到這裡我想順便說,人名、地名、物名的中文譯名各異相當常見,例如義大利汽車製造商費拉里和他生產的跑車、賽車法拉利其實源於同一個單詞 Ferrari。而叫費拉里的義大利人中,還有十六世紀的一位助理醫生,他因為率先提出四次方程的代數解,成了那個時代最偉大的數學家之一。

一五九四年,雷利聽說南美洲有金礦,決定再次出海。他懷疑上一次的殖民行動之所以失敗,是因為彈藥不足以致全軍覆沒,這次打算準備足夠的食物、淡水、火藥、槍彈和炮彈。

-----廣告,請繼續往下閱讀-----

那時的炮彈均為直徑相同的鐵球,雷利為此命令他的科學顧問、數學家哈里奧特(Thomas Harriot)找出在有限空間內盡可能堆放炮彈的方法,並計算船隊的彈艙能夠堆放多少發炮彈,由此產生了堆球問題和克卜勒猜想,我們將在後文中介紹。

奧利諾科河的全景。圖/wikimedia

雷利率領的遠征軍抵達蓋亞那以後,沿奧利諾科河航行到西班牙殖民地的腹地。奧利諾科河是南美洲四大河流之一,發源於委內瑞拉與巴西接壤處,上游是哥倫比亞與委內瑞拉的界河。

二○○○年我第一次去哥倫比亞時,搭乘的飛機便是從此河入海處進入南美大陸。西班牙人的文件和印第安的傳說使雷利相信,南美洲有一座「黃金之城」。他的確也找到了一些金礦,但沒有一處足以讓他殖民開發。

返回英國後,雷利出版了《蓋亞那的發現》一書。在他被處死(與他冒犯了英國國王不願得罪的西班牙人有關)以後,人們發現雷利還有許多文學著作,包括五百六十行遺詩。詩中他稱伊莉莎白女王為月亮女神,但也指責她絕情,很可能是影射她將他囚禁一事。此外他還寫了一些散文與一部《世界史》(從創世紀一直寫到西元前二世紀)。

-----廣告,請繼續往下閱讀-----

蓋亞那位於南美大陸東北部,西鄰委內瑞拉,南接巴西,東邊是說荷蘭語的蘇利南和說法語的法屬圭亞那,雖然人口只有七十多萬,國土面積卻幾乎與英國本土一樣大。如今,可能會讓雷利比較欣慰的是,蓋亞那不僅是英聯邦成員國,也是拉丁美洲二十個國家裡唯一以英語為官方語言的。而在日本著名漫畫《海賊王》裡,雷利變成了海盜,而且只是個副船長,後來還成了鍍膜匠。

家庭教師哈里奧特

掛在母校牛津大學的哈里奧特像。 圖/wikimedia

現在我們來說說隨雷利遠征蓋亞那的首席科學顧問哈里奧特。哈里奧特出生於牛津,就讀牛津大學的聖瑪麗學堂,在學生時代就展現出超凡的數學才能,畢業後不久就進入雷利家,成為一名家庭教師。

哈里奧特參與了雷利家族船隻的設計,並用自己的天文學知識為導航提供建議。一五八五年,雷利派他參加新大陸的羅阿諾克島探險,聘他為科學顧問,主要負責測量。

哈里奧特繪製了後來被稱為維吉尼亞州和北卡羅萊納州的地圖,考察報告出版後也多次重印。返回英國後,哈里奧特受雇於著名的珀西家族成員、諾森伯蘭九世伯爵,在伯爵家成為多產的數學家、天文學家和翻譯家,尤其擅長翻譯印第安人的阿爾岡昆語。

-----廣告,請繼續往下閱讀-----
哈里奧特繪製的月球地圖。圖/wikimedia

哈里奧特率先繪製出月球的地圖,日期標注為一六○九年七月,比伽利略早了四個月。一六○七年哈雷彗星的回歸也引起了哈里奧特對天文學的關注,他自製(另說購買)了一架望遠鏡,與伽利略各自獨立發現了太陽黑子和木星衛星。

他還率先發現了光的折射理論,只不過沒有發表。哈里奧特生前已是享有盛譽的天文學家和數學家,一九七○年,月球的一個隕石坑以他的名字命名。

身為數學家,哈里奧特被公認是英國代數學學派的奠基人,他在該領域的巨著《使用分析學》(Artis analyticaepraxis)在他去世十年後才出版。

書中改進了方程理論,注重根與係數的關係,詳細論述了如何由已知根建構方程式,並揭示出任何 n 次方程與 n 個線性方程之積是等價的,接近高斯在十九世紀證明的代數基本定理。特別的是,哈里奧特還創造了不等號「>」和「<」,這兩個符號也沿用至今。

-----廣告,請繼續往下閱讀-----

如何在最小空間內堆放最多炮彈?

前文提到,雷利要求哈里奧特找出在有限船艙內堆放最多炮彈的方法。哈里奧特很快就給出了答案:先以三角形狀排好最低一層,然後讓第二層的球心盡可能地低,依次增加層數,就能得到一個盡可能最高效率的堆疊法。

科學稱為最密集的排列,也就是所謂的砲彈堆疊。圖/wikimedia

我們從中可輕易看出,按照這樣的堆放方式,每個非邊緣的炮彈恰好與十二顆炮彈相切,即同層六顆,上一層和下一層各三顆。關於一顆球能否與十三個同樣大小的球相切,一個世紀以後,牛頓與蘇格蘭天文學家格雷果里(James Gregory)有過爭論,牛頓的否定答案無疑是正確的。

這十二個切點形成的十二面體包緊了一個球體,所有這些十二面體可以填滿整個空間。把十二面體分成十二個全等的錐體,可以求得它的體積為 \(4\sqrt{2}\)。再按照阿基米德的球體積計算公式,每一顆球的體積是 4π/3。兩者相除即得球堆的密度為 \( \frac{\pi}{\sqrt{18}}\)。德國人克卜勒則給了更簡潔的方法,我們將在下節介紹,現在先來看平面的情形。

假如我們考慮二維的問題,即在平面上填塞圓。首先,我們讓每一個圓與四個同樣大小的圓相切,那麼在 m 行 n 列個圓的長方形排列中,圓的面積總和為 mnπ,而長方形的面積為 4mn,於是兩者的比值為 π/4。不難看出,只要平面的範圍(相比小圓的半徑)夠大,那麼小圓的半徑大小不影響這一比值。

-----廣告,請繼續往下閱讀-----

其次,我們讓每一個圓與六個同樣大小的圓相切,由畢氏定理可知,每行圓的高度為 \(\sqrt{3}\),但每隔一行會減少一個圓,因此圓面積總和為 \(\frac{m\left ( 2n-1 \right )\pi }{\sqrt{3}} \),而長方形的面積仍為 4mn,於是兩者的比值趨近於 \( \frac{\pi}{\sqrt{12}}\),比第一種排列方式更緊密。當然,無論哪一種,都比空間球的堆積密度要大。

哈里奧特也是一位原子論愛好者,該學說源於古希臘哲學家德謨克利特(Demokritos)。德謨克利特相信,萬物的本原是原子,原子是一種不可分割的物質微粒,且毫無空隙。哈里奧特認為,研究球的堆放問題有助於理解物質的結構和組成。

一六○一年前後,他寫信把這個想法和堆球問題告訴了比他年輕十一歲、正在布拉格擔任羅馬帝國皇家天文學家的克卜勒,不巧那會兒克卜勒正埋頭研究天體理論,沒有太多興趣和時間考慮微觀世界。

克卜勒的雪花和猜想

前民主德國發行的克卜勒紀念郵票。圖/時報出版提供

一五七一年某個冬日,克卜勒出生於德國西南部的符騰堡公國(現巴登 – 符騰堡州的一部分),與愛因斯坦可謂正宗老鄉。他是一樁不幸婚姻的早產兒,父親是庸碌的傭兵,母親是一家小酒館老闆的愛吵架女兒。克卜勒身材矮小、體弱多病,但天資聰穎,幸運獲得了符騰堡公國領主專為貧困家庭的聰明孩子設立的豐厚獎學金,否則可能根本沒機會接受良好的教育。

-----廣告,請繼續往下閱讀-----

克卜勒十六歲時進入圖賓根大學,之後屢獲幸運女神眷顧。首先,他的天文學老師是德國唯一一位堅信哥白尼「日心說」的人。

其次,在他拿到文學學士和碩士學位,準備成為牧師時,奧地利格拉茨市某間中學剛好需要一位數學老師,他在學校的推薦下前往補缺。再次,隔年夏天二十三歲的克卜勒在幫學生上課時,腦袋裡忽然閃過一個奇妙的念頭。

如前文所言,古希臘人只知道有四面體、六面體、八面體、十二面體和二十面體這五種正多面體(柏拉圖多面體),從畢達哥拉斯到柏拉圖都信奉「數學和諧論」,這一點啟發了克卜勒,深信行星的運行軌跡也應該是完美的幾何圖形。

圖示遵守克卜勒行星運動定律的兩個行星軌道。圖/wikimedia

四年後,他發現了行星運動的第一定律和第二定律:所有行星分別在大小不同的橢圓軌道上運行;在同等的時間裡,行星的矢徑在軌道平面上掃過的面積相同。這兩個定律以及後來發現的第三定律,為克卜勒贏得了「天空立法者」美名。

一六一一年,也就是收到哈里奧特來信五年後,克卜勒出版了小冊子《六角雪花》(The Six-Cornered Snowflake)。

六角形的雪花。圖/時報出版提供

他不僅在書裡解釋了雪花為什麼是六角形,還探討了諸如蜂窩的結構、石榴果實為何是十二面體等現象,是最早從幾何出發研究自然的著作之一。克卜勒認為,雪花之所以呈六角形,是因為一個圓盤最多能與六個相同的圓盤相切,正六邊形可以平鋪整個平面。

尤其值得一提的是,正是在這本書裡,克卜勒提出了一個著名的猜想。

克卜勒猜想

在一個容器中堆放同樣的小球,所能得到的最大密度是 \( \frac{\pi}{\sqrt{18}}\)。

克卜勒是這樣敘述球體堆放方法的:考慮一個邊長為 2 的正方體,它的體積為 8。分別以它的全部八個頂點及全部六個面的中心為球心,以 \( \frac{\sqrt{2}}{2}\) 為半徑作十四個球體,由畢氏定理和每個面的對角線長為 \(2\sqrt{2}\)可知,每個面中心的球體與該面尖角上的四個球體剛好相切。

這樣一來,在這個正方體內,球體佔有的體積等於四個球體的體積(八個角,每個角有1/8個球體;六個面,每個面有1/2個球體)。故而密度是

\(\frac{4\left ( \frac{4}{3}\pi \left ( \frac{\sqrt{2}}{2} \right )^{3} \right )}{2}= \frac{\pi }{\sqrt{18}}= 0.740480…\)

雖然在上述方法中,正方體內沒有一個完整的球,但若換成一個大箱子,以這些正方體為基本單位來填滿箱子時,不完整球體的體積與中間那許多完整球體的體積相比就是微不足道的。同樣道理,箱子的形狀也不會影響密度。然而,克卜勒猜想的充分性卻難以證實。

面心立方(左)與六方最密堆積(右)示意圖。圖/wikimedia

一八三一年,「數學王子」高斯證明了克卜勒猜想在「格點型」的特殊情形下是成立的。所謂格點型是指用座標表示時,所有球心也落在座標和偶數整點上。

一九○○年,德國數學家希爾伯特(David Hilbert)在巴黎國際數學家大會上提出了二十三個有待解決的問題,其中第十八個問題的第三部分就涉及堆球問題。

從那以後,有許多數學家(包括美國華人數學家項武義)都曾宣布、發表或以為自己證明了克卜勒猜想,但都未能獲得一致的認可。

二○○五年,美國《數學年刊》發表了一篇長達一百二十頁的論文,宣布克卜勒猜想已經獲得證明。該篇論文的作者是美國數學家赫爾斯(Thomas Hales),他在著名的「朗蘭茲綱領」問題上有過重要貢獻。赫爾斯將堆球問題分為五千多種情況,考慮了十萬多個線性規劃問題,他的電腦程式運行了兩年,其複雜性超過一九七六年地圖四色問題的證明。

一個顯而易見的現象是,絕大多數幾何學家都不懂電腦程式,而電腦專家又難以理解深奧的幾何學。就連審稿小組的負責人都承認,他們對於這篇論文的正確性只有 99%的把握。鑑於此,我們繼續期待(如同期待費馬定理)將來會有更簡潔有效的證明方法。

——本文摘自《數學的故事》,2019 年 5 月,時報出版

 

 

-----廣告,請繼續往下閱讀-----
文章難易度
時報出版_96
174 篇文章 ・ 38 位粉絲
出版品包括文學、人文社科、商業、生活、科普、漫畫、趨勢、心理勵志等,活躍於書市中,累積出版品五千多種,獲得國內外專家讀者、各種獎項的肯定,打造出無數的暢銷傳奇及和重量級作者,在台灣引爆一波波的閱讀議題及風潮。

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
2

文字

分享

0
2
2
歐氏幾何學的啟示
賴昭正_96
・2025/12/09 ・4611字 ・閱讀時間約 9 分鐘

無需證據就能肯定的事情,同樣也可以無需證據就能否定。

-歐幾里德(Euclid)古希臘數學和邏輯學家

當筆者還是一位教書匠時,時常鼓勵學生應該多讀數學,不是因為數學的實用性,而是因為它是訓練邏輯的基礎。愛因斯坦(A. Einstein)曾經說過:「就其方式而言,純數學是邏輯思想的詩歌。」而26歲時就提出了反物質的存在、奠定了量子電動力學基礎的狄拉克(Paul Dirac)更認為數學幫助他了解物理定律(宇宙)。我們不是大物理學家,在這裡只能介紹一個簡單的、 2300年前的數學━幾何(geometry),看它如何能幫助我們了解我們日常生活中的邏輯。

歐幾里德

歐幾里德(Euclid)大約於西元前 300 年生於埃及亞歷山大。我們對歐幾里德的生平知之甚少,只有希臘哲學家普羅克洛斯(Proclus,410-485 年)在其《希臘著名數學家》總結中提到:歐幾里德在托勒密一世(Ptolemy I Soter,公元前 323 年至公元前 285 年)統治時期在亞歷山大任教。儘管如此,雖然歷史上有過更偉大的數學家,也有過更重要的數學家,但如果說數學界有家喻戶曉的名字,那非「歐幾里德」莫屬!歐幾里德對人類文明的長期影響可以說非常深遠:幾個世紀以來,數學和歐幾里德在整個西方世界幾乎是同義詞。

歐幾里德的《幾何原本》(The Element of Geometry,通常縮寫為 Elements)是有史以來最著名數學著作之一。印刷術發明後,這部著作是最早以印刷形式出現的書籍之一:它出版了超過一千種不同的版本,只有《聖經》比它多。《幾何原本》通常被描述為一本幾何書,但它事實上也涉及數論和一種以幾何形式呈現的原型代數。

歐氏幾何

歐幾里德有兩大創新。其一是「證明」的概念:除非是從已知為真的命題中推導出來,歐幾里德拒絕接受任何數學命題為真。第二項創新是認識到任何事物都要始於無法被證明的某些「假設」。因此,歐幾里德預先提出了五個基本假設作為其所有推論的基礎:兩點可以用一條線連接;任何有限的線都可以延伸;可以以任意圓心和任意半徑畫一個圓;所有直角都相等;及兩條直線可以平行永不相交。

-----廣告,請繼續往下閱讀-----

對歐幾里德來說,邏輯證明是幾何學的本質特徵,而「證明」至今仍是數學事業的基石。缺乏證明的命題無論有多少間接證據支持它、或蘊含意義多麼重要,都會被(合理地)懷疑。歐幾里德公理━他精心挑選的邏輯推論鏈━的影響極為深遠。例如,他用當時被認為無可挑剔的邏輯證明了:一旦同意他的公理,你就必然得出不能理解之「無理數」存在的結論!

嚴格的邏輯證明

「無理數」是不能用兩個整數相除來精確表達的實數。所以要證明x不是一個無理數,我們只要能找出兩個實數來表達它即可。例如利用高速電腦或人腦,我們發現可以用 40/99 表達 1.212121……,所以 1.212121…… 不是無理數。可是如果我們也同樣地想利用高速電腦來證明 \(\sqrt{2}\) = 1.4142135……呢?我們可以在一秒鐘內完成成千上萬的嘗試;但如果在數年後,我們還是找不到一組整數來表達\(\sqrt{2}\) 時,我們能下結論說 \(\sqrt{2}\) 是無理數嗎?不能,因為對歐幾里德來說,這不是嚴格的邏輯證明(註一)!

同樣地,費馬(Fermat)大定理於 1637 年提出,謂若 n 大於 2(n>2),則沒有任何三個整數 a,b,c 可滿足 an+bn=cn 方程式。隨著時間的推移,這個簡單的定理成為數學界最著名的未證命題之一。許多數學家和業餘愛好者要麼適用於所有 n>2 的值,要麼針對特定情況,試圖證明這一命題,推動了數論領域全新的發展。最初是手工證明,後來是計算機證明,找到了最高可達 400 萬的所有 n 值;儘管如此,因為不是嚴格的邏輯證明,數學家還是不能肯定該定律的正確性。

英國數學家懷爾斯爵士(Sir Andrew Wiles)於 1993 年 6 月 23 日首次公佈了他的證明,不幸地該證明在三個月後被發現含一個錯誤。一年後的 1994 年 9 月 19 日,懷爾斯在其自謂為「職業生涯中最重要的時刻」時偶然發現了一個啟示,使他能夠修正該錯誤,於 1995 年令歐幾里德、數學界滿意地嚴格證明了費馬大定理的正確性。

-----廣告,請繼續往下閱讀-----

又雖然早在公元五百年左右就有印度數學家懷疑圓周率 π 是無理數;但兩千年過去了,雖然還是找不到一組整數來表達它,還是沒有任何數學家敢說π是無理數。1761 年法國數學家蘭伯特 (Johann Heinrich Lambert) 終於首次嚴格地證明了π 為一無理數!

歐幾里德幾何學

歐幾里德之五個初始、無法被證明的命題似乎都是大家很容易認定或接受的日常生活經驗。但事實上,歐幾里德的第五公設「兩條直線可以平行永不相交」遠非那麼合理明顯。因此許多數學家一直在懷疑可以從其它四個假設中推導出來(刪除它),或者能用更簡單、與其它一樣明顯的東西代替。但到了十九世紀,數學家們終於證明了它不能從其它四個假設中推導出來,明白了歐幾里德加入第五個公設是絕對正確的!

我們之所以認為「兩條直線可以永不相交」是合理的是因為我們生活在平面宇宙中:例如如果宇宙是二維空間,那我們就是生活在一張無限大的平面白紙上。但如果我們是生活在一個圓球的表面上呢?事實上我們不正是生活在一個圓球的地球表面上嗎?!但因我們的生活圈太小了,故整個周圍看起來好像一平面上而已。如果在地球表面上我們將兩「平行線」(註二)往同一方向延長不到一萬公里,它們是會相交於一點的(如果該兩點是在赤道上,那麼垂直於赤道的兩「平行線」將相交於北極或南極)。所以「兩條直線可以永不相交」在地球上不但不合理,根本完全是錯誤的假設━它只適用於日常生活中。

這些合理的懷疑歐幾里德之第五公設並沒有付諸流水。1854年,黎曼(Bernhard Riemann)在一次著名的演講中建構了無限多的非歐幾里德幾何族,為非歐幾里德幾何學邁出了決定性的一步。其中最簡單的一族缺乏平行線的公設,被稱為「非歐幾何」(non-Euclidean Geometry)。

-----廣告,請繼續往下閱讀-----

在歐幾里德幾何裡,兩點之間的最短距離是一條直線;在非歐幾里德幾何球體表面上,兩點之間的最短距離則是沿著球體表面的大圓弧路徑(稱為測地線,註三)。在歐幾里德幾何裡,三角形內角總和為180度;但在非歐幾里德幾何球體表面上,由三個大圓弧組成的球體表面三角形內角總和則大於180度。

幾何與物理

非歐幾何的發展對數學和物理學產生了深遠的影響。它顯示歐幾里德幾何並非唯一邏輯一致的體系,為愛因斯坦的相對論鋪平了道路。

牛頓物理學從根本上來說是使用平坦的歐幾里德空間和通用時間的概念來描述運動,因此當地球不沿著直線運動時,牛頓必須用重力來解釋。愛因斯坦的相對論運用非歐幾何來描述彎曲時空,謂重力並非一種力,而是時空曲率的表現:巨大的太陽彎曲了其附近時空,地球只是沿著這一彎曲時空中之「最直」的路徑(測地線)運動而已。

同樣地,牛頓物理學假設重力只對有質量的物體施加力,而光是無質量的,因此光應該永遠沿著直線傳播。但愛因斯坦廣義相對論將重力描述為時空的彎曲(不是力),光將在這彎曲的時空沿著「直線」(測地線)傳播,但我們觀察到的將是「光不沿著直線傳播」!愛因斯坦的這一成功預測使他「瞬間」成為家喻戶曉的科學家(「延伸閱讀1」)。

歐幾里德幾何社會邏輯

人類可能是唯一知道死是怎麼一回事的動物,因此很早就在尋找生命的目的,很難接受霹靂一聲、無中生有地出現了時間、空間、及能量的近代宇宙觀(「延伸閱讀2」)。因此許多人認為我們來到這個世界是有目的的,我們是「上帝」(註四)創造出來的。因此「上帝」存在成了一個大家能接受、不需要證明的合理「公設」。對信教的人來說,它解釋了日常生活中的所有現象。對愛因斯坦及一些科學家來說:如果不是超人的「上帝」,為什麼我們看到的宇宙能不可思議地依循某些定律井然有序地運轉,但我們只是朦朧地了解這些定律?

-----廣告,請繼續往下閱讀-----

在「延伸閱讀3」裡,筆者提到了要證明上帝的存在是很困難的,但要證明上帝不存在更加困難!因此「上帝不存在」也是屬於「不能證明、不需要回答的合理假設」,所以在民主國家裡人人有宗教信仰或不信仰的自由。

在社會上要證明某人沒有博士學位很困難甚或不可能(註五),因此能被接受、不需要證明之唯一合理假設應該是「人人沒有博士學位」。在這前提下,如果你說你有博士學位,則證明有博士學位的責任應該落在你身上,而不是檢察官或具告人!

同樣地,因為證明我們沒有犯罪很困難甚或不可能,所以「我們沒有犯罪」應該是唯一的不需要證明之合理假設;如果你控告我犯罪,那法庭應該要你(告訴人或檢察官)提出不被懷疑及合理質疑的證據。這事實上正是民主國家所採取的法律制度。

結論

歐幾里德的專著《幾何原本》為幾何學提供了一個系統而公理化的方法:他從一組不證自明的真理(公理和公設)出發,運用演繹推理推導出定理和證明,為數學的嚴謹性和邏輯推理確立了標準,塑造了數學家和科學家解決問題和建構理論的方式,甚至影響了數學以外的各個領域如法律和政治思想,在人類社會發展中發揮了基礎性作用。例如美國傑斐遜(Thomas Jefferson)和其他開國元勳們就是運用歐幾里德演繹法構建了《獨立宣言》:他們從類似於歐幾里德幾何的「不證自明」的真理━公理━入手,建立邏輯論證,以證明革命和建立新政府的必要性。因為這些基本原則被普遍接受,無需進一步證明,因此賦予了《獨立宣言》強大而不可否認的力量。

-----廣告,請繼續往下閱讀-----

我們在這裡探討了日常生活中所碰到的宗教信仰、學位真假、與犯罪判決的爭論與判斷,得到結論:人人有宗教信仰或不信仰的自由,確定犯罪的責任在檢察官身上,證明有學位的義務則落在當事人身上!

註釋

  • (註一)嚴格地證明 \(\sqrt{2}\) 是無理數很簡單,有興趣的讀者可參考「延伸閱讀3」。
  • (註二)原則上必須是趨近於零的短線。
  • (註三)大圓弧是球體上任何圓心與球心重合的圓(例如赤道)。但是因為天氣、急流和空域限制等因素,航班並不沿著大圓弧路徑飛行,例如台北到舊金山的實際航線比大圓弧長了約10%。
  • (註四)這裡指的「上帝」是抽象的、廣泛的超人造物主。
  • (註五)在「延伸閱讀4」一文裡,筆者提到了要證明有博士學位應該是非常簡單的,如拿出正式的畢業證書或學校出證明;但要外人證明你沒有博士學位,則將與證明上帝不存在一樣更加困難:因為即使我們找遍全世界所有的地方,都沒發現你的論文或證書,我們還是不能說你沒有博士學位的博士學位━因為這不是「嚴格的邏輯證明」!

延伸閱讀

  1. 抱歉了愛因斯坦,但我真的沒辦法給那個酷理論——為何相對論與諾貝爾獎擦身而過?」,泛科學,2021/07/28。
  2. 思考的極限:宇宙創造出「空間」與「時間」? ——宇宙觀的發展史(下篇)|20 世紀後」,泛科學,2023/05/17。
  3. 愛因斯坦相信的上帝,是你以為的那位上帝嗎?」,泛科學,2018/03/30。
  4. 要被接受,需有不被合理質疑的證據–從科學與蔡博士學位事件討論起」,科技報導,2020/02/01。
  5. 從圓周率與無理數,談數學也有其無法理解、不精確、與不確定性」,泛科學,2019/06/03。
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
50 篇文章 ・ 61 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此獲有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲它轉載我的科學月刊上的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」。

0

12
2

文字

分享

0
12
2
宇宙到底是什麼樣子?——宇宙觀的發展史(上篇)| 20 世紀前
賴昭正_96
・2023/04/19 ・6261字 ・閱讀時間約 13 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

根本沒有理由假設世界有一個開始。認為事物必須有開始的想法實際上是由於我們思想的貧乏。
—— Bertrand Russell(1950 年諾貝爾文學獎)

「天上的星星千萬顆,世上的妞兒比星多,啊,傻孩子,想一想,為什麼失眠只為⋯⋯」(註一)不!世上的妞兒不會比星多,為什麼失眠也不是只為「她一個」,而是遐想著天空這麼多的星星是哪裡來的?為什麼不停地對著我咪咪地微笑?⋯⋯沉靜晴朗的夜晚,仰望著天空,有多少人不會為閃耀的星空沈思著迷呢?因此相信人類很早就在思考這個問題:在中國有盤古開天闢地,其身形化為日月星辰、山川河流,逝世時將精靈魂魄變成了人類之傳說。

而古希臘人(公元前 750-650 年) 則認為起初世界處於一種虛無混沌狀態,突然從光中誕生了蓋亞(Gaia,地球母親)以及其「他」具有人性的諸神,在沒有男性幫助的情況下,蓋亞生下了烏拉諾斯(Ouranos,天空),後者使她受精,生出了第一批泰坦(Titan)。泰坦後代普羅米修斯(Prometheus) 用泥塑人,雅典娜(Athena)為泥人注入了生命,宙斯(Zeus) 創造出一個擁有驚人美貌、財富、欺騙心、和撒謊舌頭的女人潘多拉(Pandora),給了她一個盒子,令永遠不要打開,但好奇心最後戰勝了,她終於打開盒子釋放出各種邪惡、瘟疫、悲傷、不幸、和在盒子底部的希望——現今打開「潘多拉盒子」的來源。

1881年,英國畫家勞倫斯.阿爾瑪-塔德瑪爵士(Sir Lawrence Alma-Tadema)的《矛盾的潘朵拉》。圖/Wikipedia

除了神話和傳說外,宗教在宇宙觀的發展上也佔了重要的地位。西方的宗教如基督教主要認為宇宙是一個由超自然力量之神創造出來的,人死後會上永生天堂。而東方的宗教如佛教則認為宇宙是無始無終的,沒有起點或終點,因此無所謂宇宙的起源與創造,人會以不同的面貌和形式,不斷生死輪迴。歐洲宗教在十六世紀前一直認為人與地球在這宇宙中佔了一個特殊的中心地位,因此深深影響了基於證據、推理、和辯論的宇宙觀發展。

中國古代的天文學

中國古代的宇宙觀有蓋天說、宣夜說、渾天說三學派,蓋天說認為「天圓地方」,天覆蓋著地,但由於地是方的,故而有四個角是無法覆蓋的,因此這四個角上有八根柱子支撐著整個天空。宣夜說則認為「日月眾星,自然浮生於虛空之中,其行其止,皆須氣焉」,即整個天體漂浮於氣體之中。渾天說雖然也認為「天圓地方」,但天是一個圓球,而不是蓋天說中的半圓,地球在天之中,類似於雞蛋黃在雞蛋內部一樣。東漢張衡(78-139 年)將「渾天說」發展成為一套系統的理論,並透過其所製作的「渾天儀」來加以演示,使渾天說成了中國宇宙結構的權威理論。渾天說的基本觀點認為日月星辰都佈於一個「天球」之上,不停地運轉著。

-----廣告,請繼續往下閱讀-----
清代的渾天儀。圖/Wikipedia

中國帝王自稱為「天子」,因此天文觀測的目的是為了帝王預測天下的禍福,用以指導治國理政、風水地理、農業民生、中醫人文的;天命如果有所改變,就會通過天象昭示天下。因此雖然中國是世界上最早發明曆法的國家之一,也為我們留下了許多寶貴的觀測資料,如記錄了 1054 年 7 月 4 日金牛座超新星的爆發,但古代的天文是皇權統治的一種工具而已,因此中國的天文學難以在民間發展,也不可能出現以科學為目的的天文研究。

地球中心模型

反觀西方世界,天文學在古典希臘則早已經是數學的一個分支。柏拉圖(Plato,公元前 427-347 年)鼓勵年輕的數學家蛇床子(Eudoxus of Cnidus,公元前 410-347 年)發展天文學體系,於公元前 380 年左右提出第一個以地球為中心的宇宙模型,認為一系列包含恆星、太陽、和月亮的宇宙球體都圍繞地球旋轉。

亞里士多德(Aristotle,公元前 384-322 年)識這些宇宙球體為物理實體,裡面充滿了導致球體移動之神聖和永恆的「以太」(ether)。他將這些球體分為陸地(terrestrial) 和天界 (celestial) 兩個領域。陸地領域包括地球、月球、及它們之間的月下區域,以變化和不完美為其標誌。天界是月球上方的領域,在這裡秩序井然,完美無缺。恆星固定在一個天球上,該天球每 24 小時圍繞地球旋轉一次。

最裡面的球體是地球的「陸地」,最外面的球體是「以太」構成的,包含「天界」。圖/Wikipedia

這個模型在接下來的幾個世紀裡得到了進一步的發展:希臘裔埃及天文學家、數學家、和地理學家托勒密(Claudius Ptolemy, 85-165)仔細研究以前所有天文學家的工作,了解到用肉眼觀察夜空中物體的方法後,透過他出色的數學技能開發出自己的天體運動模型,於公元 150 年出版了一本現在稱為《Almagest》(最偉大)的書籍來闡述其論點。

-----廣告,請繼續往下閱讀-----

他認為地球是一個靜止的球體,位於一個大得多的天球的中心;這個天球攜帶著恆星、行星、太陽、和月亮以完全均勻的速度圍繞地球旋轉,從而導致它們每天的升起和落下。完美的運動應該是圓周運動,因此托勒密認為這些表面上不規則的天體運動實際上是由規則的、均勻的圓周運動組合成的:運動的中心不但偏離了地球,而且還沿著主要圓形軌道上的點依較小的「本輪」圓圈(epicenter)移動。托勒密在該書目錄後留言謂:

我知道我天生必死,轉瞬即逝; 但當我隨心所欲地描繪天體的曲折軌跡時,我的腳不再接觸大地,而是站在宙斯面前,盡情享受神的美味。

此後的 1500 年,托勒密書中的表常被用來預測天體在夜空中的位置;而其以地球為中心的宇宙觀也幾乎統領了以後 2000 年的天文物理發展!

太陽中心模型

1543 年,波蘭哥白尼(Nicolas Copernicus,1473-1543)在德國紐倫堡出版《De revolutionibus orbium coelestium》 (論天體運轉,註二) 一書,提出日心系統,謂地球不在宇宙中心之特別位置,而是與其他行星一起在圍繞太陽的圓形軌道上運動。不幸的是它表面上不規則的天體運動之複雜並不亞於托勒密地心系統;還有,如果地球在動,為什麼星星總是在同一個地方出現——除非它們離地球很遠(註三)?因此該書出版後從未獲得廣泛支持。儘管如此,在日心系統裡,行星繞日具有地心系統所沒有的周期性

哥白尼的宇宙觀,中心為太陽。圖/Wikipedia

十七世紀初,在新發明之望遠鏡的幫助下,意大利天文、數學、哲學家伽利略(Galileo Galilei,1564-1642)發現了圍繞木星運行的衛星,終於對地球位於宇宙中心的觀念造成致命的打擊:如果衛星可以繞另一顆行星運行,為什麼行星不能繞太陽運行?伽利略因之慢慢地深相地球繞日說,但被羅馬教會禁止「堅持或捍衛」哥白尼理論。晚年於 1630 年出版《Dialogo sopra i due massimi sistemi del mondo, tolemaico e copernicano》(關於兩大世界體系——托勒密和哥白尼——的對話), 在最後一章裡用潮汐現象來證明地球是在動,不是靜止地在宇宙中心(註四)。

-----廣告,請繼續往下閱讀-----

大約就在那個時候,德國數學、天文學家開普勒(Johannes Kepler 1571-1630)「盜取」導師丹麥天文學家布拉赫(Tycho Brahe,1546-1601)的豐富實驗資料構建了日心的定量模型,在 1618 年至 1621 年期間出版(立刻成為天主教會禁書的)《Epitome Astronomiae Copernicanae》(哥白尼天文學概要),提出描述行星體如何繞太陽運行的(開普勒)三定律:(1)行星以太陽為焦點在橢圓軌道上運動,(2)無論它在其軌道上的哪個位置,行星在相同的時間內覆蓋相同的空間區域,及(3)行星的軌道周期與其軌道的大小(半長軸)成正比。

開普勒終於解開行星之謎:行星以橢圓形——不是完美的圓形——圍繞太陽運轉。開普勒第三定律謂:行星與太陽的距離與其繞太陽公轉所需的時間存在精確的數學關係。這條定律激發了牛頓(Isaac Newton,1643-1727)的靈感,證明橢圓運動可以用引力與距離的平方反比定律來解釋。

平方反比定律

人類事實上好像很早就注意到了所有物質都互相作用,例如亞里士多德認為物體由於其內在的引力(沉重)而趨向一個點,伽利略則注意到物體被「拉」向地球中心。英國博學士胡克(Robert Hooke,1635-1703)在 1670 年的格雷沙姆演講 (Gresham lecture) 中謂萬有引力適用於「所有天體」,並添加了萬有引力隨距離減小的原理,及在沒有任何這種動力的情況下,物體會直線運動。到 1679 年,胡克認為萬有引力具有「距離平方反比」依賴性(註五),並在給牛頓的一封信中傳達了這一點:「我(胡克)的假設是引力總是與距中心距離成雙倍比例。」

牛頓因為害怕其他科學家和數學家竊取了他的想法,喜歡把他的工作隱藏起來、不發表;因此直到 44 歲才在英國天文學家哈雷(Edmond Halley)說服下,寫了一篇關於他的新物理學及應用在天文學的完整論述;一年多後(1687 年),發表了後來成為物理經典的《Philosophiae Naturalis Principia Mathematica》(自然哲學數學原理)或簡稱為《Principia》(原理)。

-----廣告,請繼續往下閱讀-----

儘管牛頓在《原理》中承認胡克曾經提出太陽系中的平方反比定律,但胡克仍然對牛頓聲稱「發明」了這一定律感到不滿。胡克是一位才華橫溢、但是又駝背又矮的科學家:發現彈性定律(胡克定律)、發現有機體基本單位的「細胞」、發明顯微鏡(使他成為細胞理論的早期支持者)。 當胡克要求牛頓承認他已經預料到後者在陽光中顏色的一些研究結果時,牛頓寫了一封諷刺的拒絕信,影射了胡克的小身材謂:「如果我看得更遠,那是因為站在巨人的肩膀上」(事實上,牛頓的許多創見都不是站在巨人之肩膀上的——被譽為是有史以來最偉大的物理學家,不是沒有道理的)。

胡克透過顯微鏡觀察、繪製的細胞壁。圖/Wikipedia

自然哲學數學原理

牛頓在《自然哲學數學原理》裡用同一個定律解釋了一系列以前不相關的現象:太陽-行星運動、行星-衛星運動、軌道物體、拋射體、鐘擺、地球附近的自由落體、彗星的偏心軌道、潮汐變化、以及地球軸的進動等等,具體地證明了「萬有引力」定律:「⋯⋯所有物質吸引所有其它物質的力與它們質量的乘積成正比,與它們之間距離的平方成反比」。這項工作使牛頓成為科學研究的國際領導者,「自然哲學數學原理」被公認為有史以來最偉大的科學著作。

但除了受過幾何學訓練的數學家外,《原理》事實上是一本非常難以理解的書,更糟的是:裡面充滿了矛盾和不一致,而且還點綴著一些令人毛骨悚然的錯誤(一些錯誤是計算和演示中的徹底錯誤,其它則是邏輯上的空白:沒有證明、只是猜測)。在牛頓時代,很少有人能讀懂它,而今天幾乎沒有人嘗試過。牛頓任教之劍橋大學的學生曾這樣諷刺:「有一個人寫了一本他和任何人都無法理解的書」。

《原理》在那個時代還有一個很大的邏輯問題:那時的物理學家認為世界是一部大機械,作用是必須透過物質撞擊或擠壓物質的接觸來達成的;從遠處發出穿過虛空的無形作用力量是魔法、神秘的、非科學的!為了阻止不可避免的批評和挑釁,牛頓先下手為強,在《原理》一書謂:

-----廣告,請繼續往下閱讀-----

「我已經用重力解釋了天空和海洋的現象,但我還沒有為重力提出一個原因。 ⋯⋯我還不能推斷⋯⋯這些重力特性的原因。我不需要假設,因為任何不是從現像中推導出來的東西都必須被稱為假設;而假設——無論是形而上學的、還是物理的、基於神秘特性的、或機械的⎯在實驗哲學中都沒有地位⋯⋯。在本哲學中,特定的命題是從現像中推斷出來的,然後通過歸納來概括。」

所以重力不是機械的、不是神秘的、不是假設;牛頓用數學及結果證明了這一點:「重力確實存在,並根據我們制定的定律起了作用,足以解釋天體和海洋的所有運動」,因此即使它的本質不能被理解,但我們不能否認它。牛頓認為這就「夠了」。

牛頓的著作《原理》被其任教之劍橋大學的學生諷刺為一本「任何人都無法理解的書」。圖/Wikipedia

靜態的宇宙

當牛頓抬頭仰望月亮、太陽、和行星以外的天空時,他沒有發現任何物體的運動,因此宇宙應該是靜止的。而如果萬有引力可以用在所有的天體上,科學家再沒有任何理由認為人類很特別,我們所處在的地方在宇宙中佔了一個很獨特的地位。這在現代物理宇宙學中被稱為「宇宙學原理(Cosmology principle)」的概念,認為這些力會在整個宇宙中均勻地作用,因此從足夠大的尺度上觀察時,宇宙中物質的空間分佈應該是均勻的、沒有方向性的。同樣地,我們現在所處在的時刻也沒理由是個很特殊的時刻。顯然地,宇宙永遠就是那樣地存在,它沒有開始,也不會有終結—因為如果有開始,那顯然就應有創造者,這不是太宗教了嗎?

牛頓的引力理論實際上需要一個持續的奇蹟來防止太陽和恆星被拉到一起。在 1666 年至 1668 年之間之手稿《De Gravitatione》 (引力)中,牛頓闡述對空間和宇宙的看法:一種「無限而永恆」的神力與空間共存,它「向各個方向無限延伸」。牛頓設想了一個無限大的宇宙,上帝在其中將星星放置在正確的距離上,因此它們的吸引力抵消了,就像平衡針在它們的點上一樣精確。所以宇宙可以保持靜態,不會崩潰到無任何一點(無限大的宇宙沒有中心點)。

有限的宇宙

但是此一充滿著星球的無限宇宙在羅輯上是有幾個很嚴重的問題。例如雖然兩物體間的作用力與距離的平方成反比(收斂系列),但作用的星球數卻是與距離的平方成正比,正好抵消了前者的效應;因此,

-----廣告,請繼續往下閱讀-----

(1)宇宙中的任何一點均應感受到無限大、往四面八方外拉的重力,所以物體不可能存在的!

(2)宇宙中的任何一點均應看到無限多的星光,所以夜晚的天空不應是黑暗的(註六)。

在你心中宇宙長什麼樣子呢? 圖/Pixabay

事實上亞里士多德早就回答了這個問題:物質宇宙在空間上一定是有限的,因為如果恆星延伸到無限遠,它們就無法在 24 小時內繞地球旋轉一圈。1610 年,開普勒也提出既然夜晚的天空是黑暗的,所以宇宙中的恆星數量必須是有限的!這有限宇宙的觀點一直到二十世紀初期還是被歐洲宗教及大部分科學家所接受(註三),造成了愛因斯坦犯下他一生最大的錯誤(詳見愛因斯坦的最大錯誤——宇宙論常數)。

如何解決牛頓之無限宇宙論與宗教之有限宇宙論間的衝突呢?請待下回分解吧。

註解

  • 註一:高山(作曲沈炳光之夫人黄任芳?):《牧童情歌》。
  • 註二:該書非常複雜難懂,科學歷史學家稱它為一本沒有人讀的書。
  • 註三:Giodano Bruno(1548-1600),意大利哲學家、天文學家、數學家、和神秘學家;因為堅持非正統的想法——包括宇宙是無邊緣的,恆星是離地球很遠的太陽、有它們自己在上面可能存在生命的行星,而付出被羅馬天主教酷刑,在火刑柱上燒死的代價——為一有名的宗教迫害案件例。
  • 註四:晚年被羅馬天主教強迫收回(在審判庭上寫了悔過書),因此不像註三的 Bruno,只被軟禁在家到逝世。說來有點可笑,伽利略之「證明」地球在動的理論完全是錯誤的:例如潮汐每天應該出現兩次,但他的證明只出現一次而已。但伽利略發現相對論原理,正確地解釋了為什麼我們沒感覺地球在動。
  • 註五:引力與距離的平方反比定律最早由布利亞爾杜斯(Ismael Bullialdus)於 1645 年提出;但他不但不接受開普勒的第二和第三定律,也認為太陽的力量在近日點是排斥的。
  • 註六:為紀念十九世紀的德國天文學家歐博耳(Heinrich Olbers, 1758-1840) 在這方面的深入研究,現在被稱為「歐博耳悖論(Olbers paradox)」 。
-----廣告,請繼續往下閱讀-----
賴昭正_96
50 篇文章 ・ 61 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此獲有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲它轉載我的科學月刊上的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」。