Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

粉塵爆炸,老師講過有沒有在聽?

活躍星系核_96
・2015/07/04 ・4956字 ・閱讀時間約 10 分鐘 ・SR值 545 ・八年級

-----廣告,請繼續往下閱讀-----

文/葉宏仁(國立東華大學課程系科學教育碩博班碩士生)

民國104年6月27日,適逢金曲獎第26屆頒獎典禮。暫時放下手邊「死線(deadline)」在即的論文(老師對不起),跑到朋友家與好友們一同觀賞現場直播。當典禮進行到一半時,瞥見社群網站上,突然出現一則與金曲獎不同的訊息-八仙樂園驚傳爆炸意外。點開新聞連結後迅速瀏覽內文,發現可能是粉塵爆炸惹禍。

由於日前曾於教學現場教授過相關課程內容,初見此訊息,只是熟練的將其分享至自己的科學教育分享社團,與幾位好友隨意討論一下,便不以為意。隨著時間過去,愈來愈多現場影片在網路上披露,且聽聞鄰近分院即時啟動333大量傷病患機制,才驚覺這爆炸所造成的傷害非同小可。隨著典禮結束之後,大家的焦點開始轉到此一事件,更多的資訊在網路上瘋傳,人們才發現這是一樁需要啟動雙北市EOC(緊急醫療應變中心),並且讓國軍一同加入救災的大型公共安全災害。究竟粉塵爆炸是什麼樣的情形?看似不起眼的玉米粉,為何能瞬間造成如此重大的傷亡?

Dust explosion. source:Wiki
Dust explosion. source:Wiki

什麼是塵爆?

爆炸,是物質迅速的反應時,能量集中釋放的現象;常伴高熱、強光與噪音。甚至會造成周圍空氣,或反應本身所生的氣體因熱而急速膨脹,形成極大的壓力,擠壓周圍環境空氣而傷人。當物質濃度在其爆炸極限(Explosive limit)時,就有爆炸的可能。

-----廣告,請繼續往下閱讀-----

爆炸極限有所謂的爆炸下限LEL(Lower Explosive Limit)和爆炸上限UEL(Upper Explosive Limit),通常是以可燃性物質在空氣中所佔百分比表示。低於下限或高於上限均不易引發爆炸:氣體濃度太低,燃料不足以維持爆炸;而氣體濃度太高時,則是沒有足夠的氧氣供應燃燒。反之則可能引起爆炸。而爆炸範圍,就是能夠引起爆炸的區域大小,可以概括的想像成爆炸本身會造成殺傷的範圍大小。

粉塵爆炸,或稱「塵爆」,粉末狀的可燃性「固體」與空氣形成易燃混合物,當供給熱能時則起爆炸。消防單位至各級學校進行火災宣導時,都會再三強調「燃燒三要素[註1]」-可燃物、助燃物、熱。其實,木屑、澱粉(玉米粉是即是玉米澱粉)、加油站的油氣、甚至是鋁粉(金屬粉末,不要懷疑)等都是非常危險的可燃物。

當不易揮發的液體如重油等,霧化後與空氣混合,一樣能形成與粉塵相同的易爆狀態。此時空氣中的易燃物狀態,已經和瓦斯外洩時,那些瀰漫在空氣中的瓦斯無異。與油氣或瓦斯不同的是,人們常對這類固體物質掉以輕心。認為它們雖然燒得起來,但應該不致於迅速燃燒,甚至造成爆炸的結果。

但其實粉塵爆炸與氣體混合物爆炸相比,前者甚至更加危險。因為粉塵爆炸的過程中,爆炸所造成的壓力上升速度雖然較遲緩,也就是爆炸產生時的火球擴散的速度較慢,但可達到的最大壓力卻不輸給瓦斯氣爆,甚至有超越的可能;倘若粉塵中含有金屬或合金粒子時,一旦爆炸後其發熱量更高,造成的危害更大。

-----廣告,請繼續往下閱讀-----

而空氣中雖然氮氣佔了近八成,氧氣已經被稀釋到只剩下兩成,但當粉塵與空氣的混合比率達到其爆炸上下限之間時,不需要很大的火,只需要夠高的「溫度」-諸如火柴、煙蒂、甚至是靜電,就會引發爆炸發生;甚至造成燃燒物質飛散附著於周圍可燃物,引發另一場火災。

在美國就曾發生過,存放玉米或小麥的穀倉,無故發生大爆炸。麵粉工廠、肥料工廠等會利用管線輸送粉末的工業,其輸送過程都必須做好防靜電措施;煤礦礦坑,加油站,木材或金屬加工廠,甚或是國內高職的金屬工廠等,之所以要「嚴禁煙火」,都是這些道理(筆者大學時代在加油站打工時,曾遇過叼著香菸騎車進來加油的顧客,當下狂抖)。

但看現在,「安全」的重要性,似乎比不上「潮流」。只要夠潮,一切煩惱均能拋在腦後。於是,主辦單位「宣稱」不同於國外「化學染劑(看到這個就有氣,好像任何物品跟化學掛勾就都有害似的)」所製造的色粉,是屬於食用級的安全色粉,被大量的噴灑在空氣中。不論是本次在水上樂園主辦的「Color Play Asia」-參加者身著泳衣,暴露在高度易燃風險的環境中;或是風靡全球,在臺灣也造成大跟風的路跑活動「Color Run」-跑者們邊咳嗽邊路跑,掩住口鼻的毛巾沾滿了七彩的粉末,臉上的墨鏡滿是厚厚的粉塵;善後的過程總是讓人詬病。

關於塵爆,學校真的教過嗎?

此次的意外,緊急送醫者超過百人,二到三級灼傷者眾多,其中不乏許多吸入性灼傷患者。而活動總監卻只是說「疑似是風太大而起火」,完全沒有預料到活動過程中具備的危險性,也就不難想像現場根本不會有任何預防措施,如滅火器或防火毯等消防設備。看著網路上流傳活動會場中火舌蔓延的影片,除了痛心疾首之外,也再次慚愧地反省,自己在教學現場中所教的東西,到底有多少孩子聽了進去?還是他們只當我上課的內容是一場「秀」而已?

-----廣告,請繼續往下閱讀-----

九年一貫自然與生活領域課綱中,課程目標有提到:「學習科學與技術的探究方法和基本知能,並能應用所學於當前和未來的生活」,有關學習領域要點中亦說明「……(前略)自然與生活科技學習領域主要內涵包含物質與能……等科學與技術認知學習,並著重科學與科學研究知能及態度……,同時應能將此能力轉化、實踐於日常生活中,終身學習……(後略)」。在這樣的想法下,國中化學反應次主題中提到,有關反應速率的教學內容:「知道能影響化學反應快慢的因素,及催化劑(或觸媒)改變化學反應速率的功能」。

所以,在國中自然與生活科技,八年級下學期第二次段考內容,「反應速率與平衡」的章節中提到「反應速率與接觸面積」的關係,並舉例如同質量灰石,粉末狀較塊狀反應劇烈;肉塊較肉絲不易熟,火媒棒的製作等。過去課本教材內容雖未直接說明粉塵爆炸,但現今版本略已修正,粉塵爆炸的名詞已出現在若干版本課本中。

IMG_1123 (1)

普通高級中學必修科目「基礎化學」課程綱要中,應修內容及其說明,亦明確寫出「影響反應速率的因素,為濃度、壓力、接觸面積、溫度與催化劑」等字樣。過往國立編譯館版本中提到「非勻相反應中,反應速率和反應物間接觸面積有很大的關係。將同樣大的木塊,一塊刨成木屑,則與空氣接觸面積增加,燃燒速率加快」。而小學高年級的自然科教材內容,也有提到燃燒三要素,以及火災發生時的處理方法、應變措施及常見滅火原理。

IMG_1119

真的是老師在教,學生沒在聽嗎?

在提倡多媒體融入教學的現在,很多自然科老師早已開始大量使用各類影片,做為教學示範輔助。更別提 Youtube 上隨手可得國內外網路謠言澄清類節目,以及消防弟兄的宣導影片,均對此一議題做過探究。可是不少社群網站上,很多人還是不知道「粉塵爆炸」的危險性;媒體甚至以「閃燃」來報導本次事件,殊不知這兩者完全不同啊。或許重點不是「老師在說有沒有在聽」,而是聽了以後有沒有了解和意識到與自身的關係。

-----廣告,請繼續往下閱讀-----

國內科學教育學者認為,臺灣社會普遍充斥迷信而不理性的行為,不利於國民科學素養的提升;尤其是國內媒體對不理性事物總是大加渲染,但符合科學理性的內容卻不做報導。且我國通識教育雖然提供包羅萬象的知識,卻沒有機會讓學生思考知識的本質及其如何產生。臺灣學校教育普遍為升學考試而準備,以致學習多為片段知識,缺乏過程技能及情意目標之養成,致使知識與日常生活脫節。一如以下這些例子:

  • 一公克的物質可轉換出1014J數量級的能量,而粉塵爆炸約需10-2~10-3J的能量[註2]
  • 職棒球員用的木棒平均重約850-950公克之間,而一顆以每秒41.7公尺行進的速球,只需要0.44秒就會從投手手中直達本壘板[註3]
  • 當地震發生時,會同時放出P波與S波,在地殼中傳遞[註4]

看完這些內容,你感受到了什麼?你會覺得他和自身有什麼關聯嗎?

source:wikimedia
source:wikimedia

筆者在國中理化與高中化學科教學現場,以課本教材內容搭配自編教材,以及自以為「精彩」的說學逗唱,載浮載沉也近十年。最深刻的感受,莫過於每屆總有可愛的學生,拿著考了八、九十分的理化段考考卷問我:「老師,這些東西到底要幹嘛?我每一題都會算,可是我對它沒有感覺!我算它做什麼啊?」。班上成績相對較優秀的同學都無法體會老師自編教材的內涵。那其他同學呢?雖說考試成績與科學素養不一定呈現正相關,但是我想這樣的疑慮,應該很多自然科老師心有戚戚焉。

於是,總是被學生們用這種問題考倒的我,下定決心要做個「天橋底下說書人」。用「說故事」的方式,將知識內容包裝在生活現象中,希望讓他們體會,當課本內容到了現實生活,會是什麼樣子。我天真的以為,學完國中自然與生活科技的內容,生活中絕大部分自然現象,人們均能了然於胸;甚至可以提出「雖不中,但亦不遠已」的解釋,但事實好像事與願違。上完課之後,學生只當它是一場「秀」,甚至常聽學生說「老師你唬爛,況且哪有那麼衰的啦?」是啊,不出事的時候就是唬爛,一出事就是大事。

-----廣告,請繼續往下閱讀-----

我們的學生很勤勞,但勤於讀書疏於動手操作;長於理論,卻不善於設計。2006年臺灣參加PISA成果報告中提到,臺灣學生在受測的OECD國家中科學素養平均表現高居第四名,僅次於芬蘭、香港與加拿大;而我們的孩子對環境議題覺知的百分比,更是世界第一[註5]。當年的受測學生,如今正是25歲左右的年齡層。但他們現在依然有當時那樣驚人的表現嗎?

一直以來,培養學生對科學的興趣是很多教育現場的自然科老師最在意的事情。我們很害怕加強了攸關計算的知識內容時,學生都會跑光光,大家不再喜歡自然科:這是很可惜的一件事情。我們真的很期望,學生能透過我們的引導,看到自然的「美」,進而學會謙卑,學會尊敬自然,尊敬彼此,尊重不同人文精神與價值觀。期望未來,畢業多年的學生回來找我聊天時,能夠告訴我說「老師,我能瞭解你的明白」。

最後,願傷者能得到最好的照顧,願悲者能平安走出傷痛。

~記於104年,盛夏之夜~

-----廣告,請繼續往下閱讀-----

備註:

  • 註1:近來燃燒三要素的概念,漸由「火三角」轉變成「火四面體」。前者即人們熟悉的燃料、氧氣與熱量;後者則多了「鏈式反應(chain reaction,與核反應不同)」觀念。有興趣者請自行上網參閱。
  •  註2:這是E=mc2的內容。
  • 註3:此例其實是時速150公里的速球,從投手丘到本壘板的速度。打者在看到球之後到決定如何揮棒,只剩下0.25秒揮棒擊中球的反應時間;必須要揮動一根近1公斤重,頭重腳輕的木棒,以棒頭下方15公分的圓形木棒中心,準確的擊中球心。
  • 註4:地震時會有「先上下再左右」,或「先左右再上下」的感受,就是P波與S波在地殼中的傳遞。P波較快,S波較慢,也就是物理學的縱波與橫波。
  • 註5:2006年PISA的科學環境議題是「濫伐森林、酸雨、全球暖化、核廢料、基因改造生物之使用(GMO)」。
  • 註6:衛福部健保署表示,八仙塵爆傷者病情時常變化,就醫有495人,病危人數有184人、非病危287人,死亡已有2人,目前傷者在全國41家醫院中,有241人住在加護病房或燒燙傷病房。請民眾目前如無急症需求盡量無前往台北、新北、桃園、基隆等縣市之大醫院求診,以俾利醫院醫護人員集中能量處置傷患。
  • 註7:臺灣從來沒有「同時」有這麼多的燒燙傷病患,就算是上次的高雄氣爆也不曾經歷到。而臺灣健保有登記的燒燙傷病床,僅不到90床。

特別感謝花蓮縣宜昌國中,自然科全體教師群;以及陳必榮老師、林建毅老師、黃克理學長,還有催生這篇文章的朋友們,感謝各位。

參考資料及文獻:

  1. 粉塵爆炸:國立臺灣師範大學化學系 粉塵爆炸介紹網頁
  2. 爆炸(Explosion):科學online-科技部高瞻自然科學教學資源平台
  3. 火三角與火四面體-燃燒三要素:維基百科
  4. Color Play官方聲明-粉塵爆炸之可能性:西子灣彩色節音樂派對Color Play Party 臉書官方粉絲頁
  5. 靳知勤(2007)。科學教育應如何提升學生的科學素養-台灣學術菁英的看法。科學教育學刊,2007,第十五卷第六期,627-646
  6. 國民中小學九年一貫自然與生活科技課程綱要,教育部,2008
  7. 國民中小學九年一貫健康與體育課程綱要,教育部,2008
  8. 普通高級中學必修科目「基礎化學」課程綱要,教育部,2010
  9. 普通高級中學必修科目「健康與護理」課程綱要,教育部,2010
  10. 高中物理課本,第一冊,龍騰版,2010
-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

2
0

文字

分享

0
2
0
從門得列夫到 118 種元素:元素週期表是怎麼出現的?
F 編_96
・2025/01/04 ・2302字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

「氫鋰鈉鉀銣銫砝、铍鎂鈣鍶鋇镭…」相信很多人離開高中很多年,都還朗朗上口。

列著 118 種已知化學元素的「元素週期表」(Periodic Table),雖然唸起來像咒文,但有了它之後便能夠快速查詢原子序(proton number)、價電子(valence electrons)數量,以及元素可能的化學性質,成為各領域科學家與工程師設計實驗、預測物質反應必不可少的工具。

有趣的是,元素週期表並非一蹴可及。縱觀歷史,化學家們歷經數世紀的摸索、爭論與資料整理,才在 19 世紀後半葉逐漸確立。

我們現在看到的元素週期表,是在 19 世紀後半才逐漸確定。 圖/unsplash

週期表之父:門得列夫的突破

19 世紀中葉,已知的化學元素約有 63 種,許多化學家嘗試找出元素間的共同點,卻苦無系統性整理。當時能區分「金屬」與「非金屬」,或利用價電子概念將一些元素歸類,但要涵蓋大多數元素仍顯不足。俄國化學家門得列夫在撰寫《化學原理》教科書時,因接觸各元素的資料而產生新思路。他索性把已知元素各種性質寫在紙卡上,再一一比對它們的原子量(類似當今的原子量或原子序概念)與化學性質。

-----廣告,請繼續往下閱讀-----

確切的靈光乍現時刻,如今已無從完全重現,但我們知道門得列夫最後觀察到:「如果按照原子量(或後來的原子序)由小到大排列,某些化學性質就會呈週期性重複。」進一步來看,元素的價電子數量通常也會對應到表格的「欄位」或「族群」。於是,在 1869 年,他將研究結果發表,提出了第一版週期表的雛形,更大膽預言了尚未被發現的元素「eka-aluminium」(後來證實即鎵 gallium)及其他四種元素的性質。

讀懂週期表:原子序、符號與原子量

今日的週期表之所以能快速讓人獲得豐富資訊,關鍵在於三個核心欄位:

  1. 原子序(Atomic Number)
    代表該元素核內所含質子數。如果一原子核有 6 顆質子,就必定是碳(C),無論其他中子或電子數如何。此序號由上而下、由左而右遞增,貫穿整張表格。
  2. 元素符號(Atomic Symbol)
    多為一至兩字母縮寫,如碳(C)、氫(H)、氧(O)。但也有如鎢(W,因「Wolfram」得名)或金(Au,取自拉丁文「Aurum」)等較不直覺的符號。
  3. 原子量(Atomic Mass)
    表示該元素在自然界中各同位素的加權平均值,故通常是帶小數的數字。對合成元素則標示最常見或最穩定同位素的質量,但由於這些元素壽命極短,數值往往會被不斷修正。

舉例來說,硒(Se)在週期表中顯示原子序 34,屬於第 4 週期、第 6A 族,表示它有四層電子軌域,其中最外層(價電子層)有 6 顆電子。有了這些資訊,科學家可快速判斷硒的化學傾向、可形成何種化合物,乃至於在生物或工業應用中可能扮演的角色。

週期表的內部結構:週期、族與軌域

門得列夫最初按照原子量遞增排列元素,現代則依靠原子序(即質子數)來分類。橫向稱為「週期」(Period),從第 1 週期到第 7 週期;縱向稱為「族」(Group),目前總共有 18 組。週期數量在於顯示該元素電子軌域有幾層;而同一族則代表外層價電子數相同,故有相似化學性質。

-----廣告,請繼續往下閱讀-----

例如,第 18 族常被稱作「貴氣體」或「惰性氣體」,如氦(He)、氖(Ne)、氬(Ar)等皆不易與其他元素起反應。另一個顯著群體是位於第一族的鹼金屬(Alkali Metals),如鋰(Li)、鈉(Na)等,因外層只有 1 顆電子,極容易失去該電子而形成帶 +1 價的陽離子,故與水猛烈反應。

此外,在表格中央有一塊「過渡元素」(Transition Metals)區域,包括鐵(Fe)、銅(Cu)、鎳(Ni)、金(Au)、銀(Ag)等。它們具有部分填充的 d 軌域,使得該區域的元素呈現多樣性質,例如具有金屬光澤、可塑性或導電性等,被廣泛應用於工業及工程領域。

同一族的外層價電子數相同,因此大多有著相似化學性質。圖/unsplash

再進化:從 63 種到 118 種

當門得列夫在 1869 年發表週期表時,已知元素只有 63 種,表格中甚至留有空白以預留「未來或存在尚未發現的元素」。他果然預測到了鎵(Ga)以及日後證實的日耳曼ium(Ge)等新元素性質,贏得舉世矚目。隨後,有越來越多元素透過科學發展,尤其是光譜分析與放射性研究而被發現,例如鐳(Ra)和氡(Rn)等。

到 20 世紀後期,隨著粒子加速器的誕生,人類可以合成更重的超鈾元素(Atomic Number > 92)。這些人工合成元素往往極度不穩定,壽命僅能以毫秒或微秒計,但仍證實存在、並填補週期表後段空白。如今,週期表已收錄到第 118 號元素「鿆(Og,Oganesson)」,但科學家預測或許還能繼續向上延伸;只要能合成更重、更穩定的原子核,我們就能拓展週期表的新邊境。

-----廣告,請繼續往下閱讀-----

一般認為,隨原子序遞增,原子核內部的質子數目激增,原子愈趨不穩,往往在極短時間內衰變成較輕元素。然而,一些理論物理學家提出「島狀穩定性」(Island of Stability)的概念:也許在某特定質子與中子數量組合下,能出現意外長壽的「穩定」重元素。

是否真能在表格上方再增添「第八週期」甚至更高週期的列,仍有待更多實驗來驗證。但無法否認的是,週期表一直是科學家檢驗自然規律的試驗場,也見證了人類探索未知的無盡熱情。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
22 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

1
0

文字

分享

0
1
0
人類的「長跑」很厲害?靠「跑」在荒野中脫穎而出
F 編_96
・2024/12/26 ・3048字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

在美國加州死亡谷(Death Valley)「魔鬼鍋爐」般的炙熱溫度下,每年夏天都舉行一場被稱為「世上最極端越野賽」的經典賽事:Badwater 135。選手需在攝氏 49 度、下方為北美洲海拔最低的地帶上,跑步或走完 217 公里的山路,一路衝向位於美國本土最高峰(聖女峰)附近的終點。這聽來猶如天方夜譚,但每年仍有近百人勇敢挑戰。許多四足動物在此高溫下可能早已中暑倒地,為何人類卻能憑藉一雙腳在此環境中堅持下去?

事實上,速度上我們遠不及同等體型的動物,例如豹或馬,然而要比拼耐力,人類卻常能大放異彩。我們能在大草原中與野生動物「天荒地老」地消耗,即使我們在短程衝刺中會被輕易超越,仍可以憑藉馬拉松般的堅韌一路追趕,最終讓速度更快的對手因高溫與疲勞而甘拜下風。究竟人類為何會進化出這般特殊的耐久力?。

在跑步上,人類以耐力著稱,可透過拉長距離讓速度更快的動物因高溫與疲勞而屈服。圖/envato

人類長程奔跑的演化起源

人類的體質在遠古時期並非天生就能輕鬆長跑。據一種假說推測,大約 700 萬年前,類人猿的祖先於非洲開始「離開樹梢」,轉而在地面上覓食、移動。早期的兩足行走雖然看似笨拙,卻逐漸在持續的氣候變遷與草原化過程中展現優勢:

  1. 更廣闊視野:直立行走時,頭部位置提高,有利於觀察周遭環境,提早發現危險或獵物。
  2. 省力遷徙:兩足步態下,移動同樣距離所需能量相對降低,足以在開闊平原上長距離跋涉。

隨著數百萬年的進化,人科動物(hominids)在骨骼、肌肉與生理機制上更趨於適應長時間行走和奔跑。他們在廣袤的非洲大地上,並非以速度壓倒對手,而是依靠「耐力與持久追蹤」取得優勢。考古學家曾提出「持久狩獵」(Persistence Hunting) 的假設:古人類可能利用高溫時段在大草原上追趕羚羊或其他動物,待獵物體溫過熱而力竭之際,人類再上前制伏。一方面依靠長距離奔跑耐力,另一方面倚仗強大的散熱能力。

-----廣告,請繼續往下閱讀-----

足部與下肢結構:為奔跑而生的細節

哈佛大學的人類演化生物學家丹尼爾‧李伯曼(Daniel Lieberman)指出,人類的奔跑能力「從腳趾到頭頂」都有演化專門化的痕跡,稍加留意便能發現許多奧祕。

  1. 短腳趾與足弓結構
    • 人類的腳趾較短,是為了減少長距離奔跑時的折損機率。若腳趾過長,每次著地都更容易造成骨折或扭傷。
    • 足弓(包括足底肌腱與韌帶)則具備彈簧般的功能,可在踩踏地面時儲存彈性能量,接著釋放推力,減少肌肉能量消耗。
  2. 強力肌腱與韌帶
    • 跟腱(Achilles tendon)和髂脛束(IT band)都能吸收並釋放大量彈力,在跑步時有效節省體力。
    • 透過肌腱的彈性能量回饋,跑者在每一步落地與蹬地之間,都能減少額外的肌肉耗損。
  3. 臀部肌群的角色
    • 人類相較於猿類擁有更發達的臀大肌(gluteus maximus),能夠穩定軀幹,使身體不致向前傾斜或晃動得過於劇烈。
    • 這種「穩定性」非常關鍵,它能支撐直立姿勢,維持跑步時的協調和平衡。
人類發達的臀大肌穩定軀幹,得以支撐直立姿勢,提升跑步時協調與平衡的能力。圖/envato

軀幹與上肢:不容忽視的穩定器

奔跑並不只是腿部的事。上半身及頭部在跑動中也扮演著不可或缺的穩定與協調角色。

  1. 擺臂對頭部穩定的影響
    • 當我們在跑步時,雙臂自然擺動,有助於平衡腿部擺動帶來的轉動力矩;換言之,手臂的擺動能對沖下肢動量,讓我們在快速移動時仍保持穩定,頭部不至於過度搖晃。
    • 猿類上肢肌肉發達,卻沒有像人類一樣的大範圍肩關節「解耦」特性(能讓肩膀與骨盆分開晃動、頭部保持前方視線),這使得牠們在直立奔跑時更顯笨拙。
  2. 脊椎靈活度與呼吸節奏
    • 人類的脊椎與骨盆並非僵直連接,跑步時,骨盆能與肩部做出相對扭轉運動,使軀幹整體更靈活。
    • 這種結構也幫助人類在奔跑過程中匹配呼吸節奏:腳步落地的頻率能自然與肺部換氣形成同步節拍。

冷卻系統:靠「排汗」征服烈日

人類藉遍布全身的汗腺大量排汗散熱,透過蒸發有效降低體溫。人類藉遍布全身的汗腺大量排汗散熱,透過蒸發有效降低體溫。圖/envato

在非洲大草原上奔跑,面臨的最大挑戰之一便是高溫。人類為何可承受長時間高溫壓力,甚至能在午後與動物「耐力大戰」?

  1. 排汗與體溫調節
    • 大多數動物主要依賴氣喘(如狗的哈氣)或有限的汗腺冷卻。人類則擁有遍布全身、數量龐大的汗腺;這使我們可藉由大量流汗帶走熱量,再透過汗液蒸發達到降溫效果。
    • 雖然我們也會因此流失水分與電解質,但只要能適度補充,便能持續散熱。而某些大型哺乳動物,在持續奔跑一段時間後,往往因過熱而只能停下休息。
  2. 無毛皮膚與蒸發效率
    • 相較於其他哺乳類,人體毛髮主要集中在頭部與部分身體區域,大片皮膚裸露,有助於排汗時的蒸發散熱。
    • 這種「裸皮」極可能是長距離奔跑與日間活動的選擇性演化結果,確保人類能在炎熱的白天進行移動或狩獵,而不因過熱而必須在陰涼處長時間停留。

呼吸方式:維持長距離的關鍵

另外值得注意的是人類高效率的呼吸節奏。四足動物在奔跑時,呼吸通常與四肢步態高度耦合,比如馬或犬類在衝刺中必須配合四肢的震動節奏吸氣和吐氣,較難隨意變換節拍。而人類因直立姿態,使得呼吸與跑步步伐能保持更大程度的自主調控。

-----廣告,請繼續往下閱讀-----
  • 獨立呼吸調節
    • 能依跑者自主需求來決定吸氣與吐氣的頻率,不一定要剛好配合腿部的落地次數。
    • 這讓人類在長時間奔跑或耐力賽中,能以相對節能的方式調節氧氣和二氧化碳的交換量。
  • 嘴巴與鼻子的雙重進氣
    • 為支撐長時間有氧運動,跑者多半會同時用鼻子與嘴巴呼吸,以便快速補充氧氣並排出二氧化碳。
    • 相較之下,某些動物在喘氣散熱時犧牲了進氣效率,一旦體溫飆升,便難以同時維持高強度奔跑。

即使進入現代社會,大多數人不必再於烈日下持久追蹤獵物,我們仍可在馬拉松、越野超馬等各式比賽中看見古老遺傳「跑步基因」所迸發出的潛力。從波士頓馬拉松、超級鐵人三項,到極端氣候下的 Badwater 135,人類透過持續的鍛鍊與後勤補給,一次又一次突破極限。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
22 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

1
1

文字

分享

0
1
1
運動員的大腦跟一般人不一樣?從腦科學看體力之外的奪冠秘笈
F 編_96
・2024/12/17 ・2098字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

是不是常聽人家講「運動天賦」?這種天賦到底是什麼?運動員哪裡跟我們不一樣?這個問題現在科學家或許可以給你一個答案。近年透過腦科學研究發現,運動員的大腦與普通人的大腦存在顯著差異,這些差異塑造了他們在比賽中的敏捷反應、精確動作及卓越判斷能力。

所以現在運動選手不只比體力,還要比腦力了嗎?這些差異具體差在哪裡?

快速反應:視覺處理能力

在團隊運動如足球或籃球中,快速處理視覺資訊並作出決策對勝負至關重要。一項 2013 年發表於《Scientific Reports》的研究發現,職業運動員比起業餘運動員或一般人更擅長處理動態視覺場景,例如追蹤快速移動的物體。這種能力能夠幫助運動員在瞬間解讀賽場上的複雜資訊,並迅速做出反應。

擁有快速的視覺處理能力,對團體運動來說至關重要。圖/envato

視覺處理能力的測試還可用於判斷運動員是否適合回歸賽場,例如在傷後復健階段,確保運動員在完全恢復判斷能力之前不會貿然上場。

-----廣告,請繼續往下閱讀-----

肌肉記憶:動作的自動化編程

對於體操選手或跳水運動員而言,肌肉記憶是完成複雜動作的關鍵。2023 年《Journal of Neuroscience》的一項研究表示,大腦如何通過訓練快速「壓縮」和「解壓縮」動作資訊,最終將動作序列整合成一個流暢的過程。這種訓練過程使運動員能夠無需刻意思考,便能完美執行複雜動作。

肌肉記憶的形成依賴於大腦皮層神經元的網絡活動,這種神經編程能力也同樣適用於訓練有素的音樂家或舞蹈家。

預測能力:球場上的決策利器

運動員擁有卓越的預測能力,例如棒球擊球手能根據投手的動作,快速判斷球的速度與方向。2022 年發表於《Cerebral Cortex》的研究發現,當擊球手預測投手的投球軌跡時,大腦左腹側顳葉皮質的神經元活動會根據預測結果而改變。

這種高效的預測能力源來於運動員在比賽中,學會透過關聯視覺線索與物體運動軌跡的技能。研究還發現,潛水選手等專業運動員的大腦中與動態運動解讀相關的區域,如上顳溝(STS),比普通人更厚,這也反映了運動訓練對大腦結構的塑造。

-----廣告,請繼續往下閱讀-----

平衡與空間感:身體控制的高峰

對體操選手來說,擁有非凡的平衡感與空間感知能力,兩者缺一不可,而這在科學上被稱為「本體感覺」(proprioception)。位於小腦的神經網絡讓運動員能迅速調整身體姿態,即使在空中失誤也能及時修正動作。

對體操選手來說,平衡感與空間感知能力非常重要。圖/envato

然而,當這套「安全網」失靈時,可能導致嚴重後果。如 2020 年東京奧運中,體操選手西蒙·拜爾斯(Simone Biles)因「扭轉失靈」而一度無法控制動作,凸顯了平衡能力在高風險運動中的重要性。

注意力與認知靈活性:多任務處理的關鍵

團隊運動要求運動員能快速在不同思維模式間切換,例如足球選手需在控球時預測對手動作並調整策略。2022 年《國際運動與運動心理學期刊》的一項研究顯示,運動員,特別是參與高強度間歇訓練的選手,擁有更強的認知靈活性和注意力分配能力。

研究也指出,這些能力的提升可能與長期訓練相關,但確切機制仍需進一步研究。

-----廣告,請繼續往下閱讀-----

抗衰老的秘密:運動對老年大腦的保護

這些運動訓練對大腦的影響,可不是只有相關區域的提升。運動對大腦健康的影響,可能會持續一生。一個典型例子是加拿大田徑選手奧爾加·科特爾科(Olga Kotelko),她在 95 歲時仍保持驚人的腦部健康,其白質結構完好程度甚至接近比她年輕三十多歲的普通人。科學家認為,持續的運動訓練可能是她保持記憶力與認知敏銳的原因之一。

運動不只是對身體的鍛鍊,對維持大腦健康也有影響。圖/envato

下一代的訓練策略:腦力與體力並重

隨著運動科學的不斷進步,科學家也開始呼籲教練更注重對年輕運動員的腦部訓練,例如提升記憶力與決策能力。西悉尼大學的運動科學家凱莉·斯蒂爾(Kylie Steel)指出,運動員的身體或許會訓練至極限,但在認知能力上仍擁有巨大的潛力提升。例如,足球訓練中可以鼓勵球員使用非慣用腳進行射門,以提升大腦靈活性,幫助他們在成年後更加出色地應對比賽挑戰。

近年研究讓我們重新認識了體育訓練對人體的深遠影響,運動改變的不僅是肌肉,還包括大腦。從視覺處理到肌肉記憶,再到抗衰老的腦部結構,透過運動與科學的結合,將為未來的運動員開啟全新可能性,也提醒我們,持續鍛煉不僅益於身體,也有助於大腦的健康。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
22 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃