0

0
0

文字

分享

0
0
0

為什麼氣象預報老是不準?

陳 慈忻
・2013/12/25 ・1987字 ・閱讀時間約 4 分鐘 ・SR值 555 ・八年級

日本氣象預報依照準確性(信心水準)高低,將每一預報日分為A、B、C三級,是一種機率預報的展現形式。(圖片來源:日本氣象廳)
日本氣象預報依照準確性(信心水準)高低,將每一預報日分為A、B、C三級,是一種機率預報的展現形式。(圖片來源:日本氣象廳)

2013年8月29日因康芮颱風環流影響,水淹台南,為什麼台南市卻沒有停班停課?台南市長賴清德認為應該歸咎於氣象局預報,因為預報中台南不會在康芮暴風圈範圍,但台南卻下了豪大雨,氣象局千萬則「不準」的歷史紀錄又添一樁,網友認為「報不準就下台,才有肩膀」,也有網友指出「全部交給氣象局提供的科學數據,幹嘛要人(地方首長)來判斷放不放」。每每出現預報不準確或是決策出現失誤時,總是會有些不同的聲音,到底是誰該負責?地方首長和老百姓又該如何理解氣象預報,使預報更具實用性?

氣象局早已承認氣象預報從來就不可能100%精準。事實上,當社會各界一次又一次的抱怨氣象預報不準時,早已突顯台灣的防災溝通不夠充分,民眾對於氣象預報的科學原理理解不足,以至於無法接受氣象預報測不準的事實。到底為什麼氣象預報會不準?我們可以從回顧氣象觀測技術的發展來理解:

人類觀測天象已有幾千年的歷史,透過經驗的累積,尋找氣象變化的蛛絲馬跡。但是氣象觀測技術的第一個轉捩點,卻是到19世紀中葉才出現,科學家研發儀器以蒐集各種氣象資料,可以繪製出天氣圖,甚至分析氣壓、鋒面等天氣系統;而1940年代是氣象觀測技術的第二個轉捩點,讓氣象學得以從「觀測」邁入「預測」,原因是科學家發現大氣流動的現象,可以用幾個基本的物理方程式來解釋,因此只要帶入幾個氣象變數,就可以估算出未來的氣象變化。

原本以為天地間的風雲因而可以預知,沒想到才二十一年,氣象學家的美夢便碎了。1961年,麻省理工學院(MIT)的勞侖次(Lorenz)教授在冬天的實驗室裡頭使用電腦程式,運算大氣中空氣流動的數學模型,當他在進行第二次的檢驗時,心想重新運算太花時間,逾時直接從上一次完成的實驗中,抽取一個運算中途的數據來繼續運算,結果居然與第一次的運算結果相去甚遠。

-----廣告,請繼續往下閱讀-----

起初,勞侖次還以為他的電腦程式出了問題,但最後發現,真正的問題是,他在第二次檢驗時只輸入到小數點後三位的數據,但是第一次連貫性完成運算的過程中,其實每一筆數據都儲存到小數點後六位。初始變數的誤差看似極為微小,但是隨著模式中的時間演進,運算結果的差異會越來越大,也就說明氣象觀測的微小誤差會造成氣象預測的不確定性,而且隨著預測時間愈遠,準確的難度就愈高,這是氣象學中著名的「渾沌理論」,也是人們耳熟能詳的「蝴蝶效應」。

儘管科學是有限的,我們依然可以搭配「機率預報」和「風險管理」等概念,來提升氣象預報的實用價值,可惜台灣目前的預報形式仍提供相對單一的預報結果,關鍵是氣象局沒有把握更改預報形式的時機已成熟,民眾能不能接受更科學(承認不準確)的預報模式呢?先來看看國外氣象預報如何報出不準確性:

美國某電視台的氣象預報在2005年Rita颶風前後是這樣子播報天氣預報的:在未來的五天,明後天會下雨、風會增強,但是第三、四天的天氣如何?圖示皆為「?」,下方註記著,要視颶風Rita的變化而定;第五天呢?待觀察。這樣的預報方式可說是「知之為知之,不知為不知,是知也。」的現代代言人!

再以亞洲國家為例,日本則運用「統計機率的分級」來呈現氣象預報的真實性,將每一天的預報依照可預測的準確度,也就是統計學中的信心水準,由高至低分為A、B、C三級。譬如在一周當中,估計第三、四天有鋒面系統通過,會因為鋒面通過速度的變化,影響第二、五天的預報結果,因此距離鋒面通過最遠的第一、六、七天分為信心水準最高的A級;第三、四天因為鋒面通過而天氣波動較大,則分為B級;第二、五天剛好在鋒面過境與否的臨界點,不確定性最大,因此分為信心水準最低的C級。

-----廣告,請繼續往下閱讀-----

你接受以上的氣象預報形式嗎?同一份氣象預報對於學生、婚紗公司、地方首長有不同的意義,氣象局提供的單一預報結果不會全面適用,未來透過機率預報,讓人們作風險管理操作者,能夠找到更合適的解答,氣象專家應是災防溝通的教育者,而政府官員,乃至形形色色的社會大眾,也應該是災防知識的學習者。(本文由國科會補助「新媒體科普傳播實作計畫─重大天然災害之防救災科普知識教育推廣」執行團隊撰稿)

 

責任編輯:鄭國威│元智大學資訊社會研究所

本文原發表於行政院科技部-科技大觀園「科技新知」。歡迎大家到科技大觀園的網站看更多精彩又紮實的科學資訊,也有臉書喔!

延伸閱讀:
-----廣告,請繼續往下閱讀-----
文章難易度
陳 慈忻
55 篇文章 ・ 1 位粉絲
在丹麥的博士生,專長是用機器學習探索人類生活空間,正在研究都市環境變遷與人類健康的關係。曾擔任防災科普小組編輯、社會創新電子報主編。

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

5
5

文字

分享

1
5
5
萬物皆混沌?——族群演化、股市、氣候變遷背後的神秘公式
Castaly Fan (范欽淨)_96
・2023/12/01 ・4632字 ・閱讀時間約 9 分鐘

你知道有那麼一條公式——它不僅可以表述生態系中動物族群的數量變化、城市裡人口隨時間的變遷,還與金融市場的波動、甚至是氣候變遷有所關聯?更令人驚奇的是,這個式子並不是什麼複雜的偏微分方程,它只有短短一行、就連國小學生都能代入算出。

這個看似相當簡單的式子,能推演出極其複雜的圖像;而在看似錯綜複雜的圖像背後,卻又隱藏著某種未知的神秘規律。今天這篇文章,將帶領大家透過這個簡單的函數重新認識世界。

自然界潛藏的規律

且讓我們先從自然界談起。假設一片草原上有一群斑馬生活著,我們想要知道明年、後年、甚至數十年後的數量;我們知道,這一部分取決於斑馬的出生率,還有另一部分取決於環境的負載力——假設斑馬的族群總數超過了該草地所能負荷的程度,很可能在往後導致族群的縮減,因此,負載力有點類似於一個約束條件。有了以上的資訊,我們可以嘗試用數學來描述:

這邊,xn 代表的是「現存族群數量與最大可容納的族群數量」之比值,你可以想像成:假設這片草原此時此刻有 60 隻斑馬,而草原所能容納斑馬數量的最大值為 100 隻斑馬——一旦超過這個值,那麼便會面臨諸如饑荒等生態危機。因此,在此例子中,x0 = 60/100 = 0.6。而假設我們想知道明年的數量,也就是 x1,便可以帶進去推算。那麼,式子中的"r"又是什麼?你可以將它理解為「成長率」,但要注意的是,它的值一般是界定在 0 與 4 之間。

-----廣告,請繼續往下閱讀-----

如果單純只看 xn+1 = r xn,假設 r=2,今年有 60 隻斑馬、明年有 120 斑馬、後年便會是 240 隻,這樣只會無止盡地指數增長下去;因此,當我們設定了"(1 -  xn)"這個約束條件後,便可以解決這個問題——假如今年的 xn = 1,意味著該地斑馬數量已然達到環境可負荷的最大值,便會因為饑荒等因素滅絕,隔年得到的數量便將為零。這個看似簡單、卻又多少能給生態學家建構模型的公式,稱為「單峰映射」(logistic map),也是今天文章的主角。

這個式子不僅可套用在生態系,也可以套用在人口學:舉個例子,某城市今年有 60 萬人,該城市所能負載的最大人口為 100 萬人,而每年的成長率大概是 r = 1.5,那麼,套進公式會發現:明年的人口將為 36 萬、第三年人口將為 34.6 萬……,從而漸漸達到平衡點。如果一開始我們假定有 30 萬人,明年將會成長為 31 萬、後年成長為 32 萬,然後趨近於和前者相近的平衡點。最後,如果這個城市一開始就有 90 萬人,第二年便會因為環境負載力而銳減至 13.5 萬人,但後年、大後年之後將會隨著成長率升高而回升至約莫 33 萬人的平衡點。

而這些資訊並非憑空構思的,因為它們本身就含括在單峰映射的公式裡,用圖表呈現便一目了然,你會發現無論前幾年如何變化、最終都會回歸一個平衡點:

給定該地區成長率為 r = 1.5,假設一開始族群總數為 30 萬(左)、60 萬(中)、90 萬(右)人,無論哪一例子,後幾年所呈現的數量將會趨於一個穩定值、約在x = 0.33(33 萬人)左右。

而這個穩定值是取決於"r"的,也就是說,只要 r = 1.5,無論人口數目如何變化,最終的平衡點都不會有所差異。

-----廣告,請繼續往下閱讀-----

規律的瓦解、未知的開端

因此,我們何不來看看"r"會如何變化?這時,我們回到原本的假設:一個城市裡有 60 萬人口,如果改動不同的 r,演化曲線將會如何改變?

這裡呈示了 r=0 到 2.8 之間的圖表,可以看出在 r 超過 2.5 時,振盪發生,即使如此、依舊回歸平衡值。

當我們將 r 值逐步增加,一切看似並無異常;當 r=2.8 時,我們發現圖形出現了週期性的振盪,但最後依舊回歸平穩。順帶一提,我們可以藉由「分枝圖」(bifurcation diagram) 來觀察 x 的穩定值與 r 的關係,在 r=0 至 2.8 之間,x 穩定值有攀升趨勢;在 r=1.5 時,根據前述的例子,x 的穩定值落在 0.33 左右,從下圖也可以直接看出:

呈現 x 穩定值與 r 之間的分枝圖,r=0 與 r=2.8 之間,穩定值有攀升趨勢;在前述例子中,r=1.5 對應到的穩態相當於 x=0.33 上下。

我們繼續調大 r 值。正當一切看似正常發展時,詭異的事情發生了:

當 r 大於 3 時,週期性的振盪發生,且不再回歸平穩值。由左至右分別是 r=3.1、r=3.45、與 r=3.55 的圖表。

在此之前,一切族群的數量都是平穩的,但在 r 超過 3 左右,持續的振盪出現了,且自此「平衡點」不復存在;不僅如此,當 r 值不斷調升,顯示出來的圖像從原本 2 個值、4 個值、到更多值之間來回振盪。值得一提的是,這種「週期性振盪」的現象在生態圈與人口變化中是確實存在的,很有可能前一年數量減少、今年數量增加、明年數量又再減少。讓我們來看看對應的分枝圖:

-----廣告,請繼續往下閱讀-----
圖為 r=2.8 至 3.55 之間的分枝圖,可以發現數目振盪導致的「分岔」。

這對應於原本從 2 個值之間的擺盪、分岔成 4 個值之間的擺盪、再分岔成 8 個值之間的擺盪……如此往復。此外,如果你留意橫軸 r 之間的間隔,會發現:當 r 愈大時,分岔的速度也愈快!

現在讓我們繼續將 r 值調升,來看看會發生什麼事:

隨著 r 不斷提升,系統呈現隨機的跡象,在 r 超過 4 時系統發散。上圖分別演示了 r=3.56、r=3.58、r=3.65、r=3.8、r=4 與 r=4.01 的情景。

話不多說,我們直接來看看分枝圖:

在 r=3.55 至 r=4 之間的分枝圖,分岔不斷衍生、並進入隨機的模式。

令人毛骨悚然的結果出現了!前面我們觀察到,當r提升時,系統會出現週期性的振盪,對應於分枝圖中的「分岔」,且分岔的速率會不斷增快、再增快;而在 r 超過 3.5699 時,規律的振盪、分岔將不復存在,取而代之的是一團無法預測的隨機——這就是所謂的「混沌」(chaos)。

-----廣告,請繼續往下閱讀-----

混沌、股票市場、以及蝴蝶效應

現在讓我們看一下完整的分枝圖長什麼樣子:

單峰映射的分枝圖,從 r=1 至 r=4,可以看出系統在 r 超過一定值後進入混沌狀態。

換而言之,當系統的變量到一定程度時,將會變成隨機且無法預測的。以人口為例,一開始我們假設的情況很簡單,就是 60 萬人口與 r=1.5 的成長率;接著我們發現,無論人口基數如何,只要 r 維持原狀,數年、乃至於數十年後的平衡點都是相近的。然而,當r值提升後,平衡點的值便會浮動了,r=3 之後週期性的振盪便出現了、且分岔點不斷加速倍增;緊接著,我們赫然發現:

當 r 值大於 3.5699 時,系統將全然處於混沌狀態。

也就是說,即便給定初始條件,最後的人口演化將會是無法預測的。事實上,這種「混沌」、「隨機」的現象並不僅僅侷限於自然界的族群或者人口數量,它其實是隨處可見的。比如:家中水龍頭關不太緊時,水滴很自然地會落下,按理來說,鬆緊程度與水壓毫無變化的情況下,滴水的規律應該也是不變的;但如果你花一段時間觀察,會發現水滴可能一下子連續落下兩滴、一下子又只落下一滴——我們根本無法預測每一次的滴落模式。

-----廣告,請繼續往下閱讀-----

另一個例子就是金融市場:當我們投資了固定金額的股票後,市場的波動將導致金額的浮動,就算有再好的分析師與預測模型,我們也不可能精準預測明天的投資金額會變多少。順帶一提,在金融學中描述期權的模型是「布萊克-休斯模型」(Black-Scholes model),它便是從微觀粒子的「布朗運動」(Brownian motion) 所推導而來,其中粒子碰撞隨時間演化的隨機過程被稱為「維納過程」(Wiener process)。布萊克-休斯模型的假設之一,便是將隨時間演化的「股票價格」描述成維納過程,從而預測、消弭潛在的風險。事實上,休斯本身大學時就是主修物理學的。

而提到「混沌現象」,最經典的例子當然還是氣象學家愛德華.洛倫茲(Edward Lorenz)的那句名言:

「一隻海鷗拍動翅膀,將導致永久性的氣候變化。」

“One flap of a sea gull’s wings would be enough to alter the course of the weather forever.”

-----廣告,請繼續往下閱讀-----

爾後,這個現象被稱為「蝴蝶效應」(Butterfly effect),也就是說,縱然系統初始條件只有微不足道的變化,也會導致最後產生的結果大相徑庭;即使是一隻在巴西的蝴蝶拍動翅翼,周邊的氣流變化會連帶影響、擴散至大氣系統,甚至能致使一個月後的德州發生龍捲風。

這些非線性、隨機的現象在自然界無處不在,許多科學家也嘗試研究,締造了「混沌理論」(chaos theory) 的研究熱潮。一旦我們能從中梳理出一些規律,那麼,也許便能更精確地掌握「混沌」之中的資訊,這將有助於我們更精確地預測投資股票的風險、也有助於人們更準確地預測天氣的變化。

混沌背後的神秘常數

從描述族群、人口的簡單函數推演到「混沌狀態」的存在已經夠令人驚豔了,然而,不知你是否曾留意過分枝圖中、每一段分岔點之間的間隔?

如果你把我們最後得到的分岔圖放大來看,會發現在混沌狀態之前、分岔點出現的速率不斷增快;而如果你對每一個分岔點之間的間隔取比值,你會發現——每一次得到的值都會是同一個數字,這個數字大致為 4.669,它被稱為「費根鮑姆常數」(Feigenbaum constants)。

-----廣告,請繼續往下閱讀-----
對於分枝圖上的每個分岔間隔取比例,最終發現比例皆為同一個值:4.669。圖源:https://blogs.sw.siemens.com/simulating-the-real-world/2021/01/04/chaotic-fluid-dynamics-part-4-finding-feigenbaum/

更令人細思極恐的是,這個「常數」並非只存在於單峰映射,所有混沌理論中有這種分岔性質的圖像,它們之間的比例都是這個常數!而目前數學界尚未能明確理解這個常數的性質,唯一可以推測的是:

費根鮑姆常數(4.669…)與混沌理論有密不可分的聯繫;該常數的出現意味著混沌現象即將發生。

在前述單峰映射的例子中,費根鮑姆常數主宰了 r=3.5699 之前的分岔規律;在 r 超過 3.5699 後,系統便徹底進入混沌狀態了。

除此之外,你或許也發現了,每個分岔的形狀都超乎尋常地相似,後一個分岔根本上就是前一個分岔的縮小版。這種特徵令人聯想到數學上的「碎形」(fractal),也就是某些形狀放大後會是自己的本體、從而無窮延伸下去。最著名的例子就是複數平面上二次多項式迭代出來的「曼德博集合」(Mandelbrot set)。信不信由你——當我們將單峰映射的分枝圖與曼德博集合比照來看,會發現分岔點之間是有所對應關係的;也就是說,單峰映射可以視為曼德博集合的一部分!

單峰映射其實是曼德博集合的一部分。圖源:https://www.sci-pi.org.uk/mandel/mandel_vs_log.html

從簡單的單峰映射公式,我們推導出了自然界族群、人口的演化模式,進一步發現了「混沌」狀態的存在;而在看似極其複雜的混沌狀態中,似乎又發現了隱藏在隨機背後的神秘規律。

混沌理論在生活中是無所不在的,時至今日,仍有不少未知的特性等著人們發掘與驗證。從生物的競爭、人口的演化、股市的浮動、亂流的成因、到氣候的變遷……這些日常事物都被混沌現象主宰著,從而使我們無法精準預測到未來的走向。然而,費根鮑姆常數的發現與幾何碎形的聯繫卻也指出了隨機背後潛藏著某些規律,這也不禁令人讚嘆自然界的美麗與神秘。

-----廣告,請繼續往下閱讀-----
所有討論 1
Castaly Fan (范欽淨)_96
6 篇文章 ・ 4 位粉絲
科學研究者,1999年生於台北,目前於美國佛羅里達大學(University of Florida)攻讀物理學博士,並於費米國家實驗室(Fermilab)從事高能物理相關研究。2022年於美國羅格斯大學(Rutgers University)取得物理學學士學位,當前則致力於學術研究、以及科學知識的傳播發展。 同時也是網路作家、《隨筆天下》網誌創辦人,筆名辰風,業餘發表網誌文章,從事詩詞、小說、以及音樂創作。

0

4
1

文字

分享

0
4
1
走高山只為預測颱風,臺灣氣象學開拓者——近藤久次郎
PanSci_96
・2023/02/10 ・3396字 ・閱讀時間約 7 分鐘

  • 作者/廖子萱

蕞爾臺灣島,地跨熱帶與副熱帶季風氣候區、四面環海,縱貫的百岳更加深了氣候的複雜程度。

在這樣的地理條件下,即便當今借助氣象衛星進行天氣分析,預報仍偶見差之毫釐、失之千里。一百年前,人們對於山岳、海洋與其相生的自然現象往往常處於未知,而至今日手機隨手可得及時的氣象預報,在短短一百年間,臺灣氣象科學從無到有,蓬勃發展。這背後的功臣包括了中央氣象局、高山氣象站、地震觀測站,這些單位的前身與發展,皆與近藤久次郎有關。

圖1. 1897 年臺北測候所。圖/交通部中央氣象局〈台灣氣象憶往之ㄧ〉

近藤久次郎(Kondo Kyujiro ,1858 – 1926)是臺灣首任總督府測候所技手兼所長,也是臺北測候所所長(現中央氣象局)。 1896 至 1924 年在臺期間,近藤引領總督府測候所設立了七座地方測候所,並協調地方基層治理單位,建構氣象觀測方法和資料搜集的網絡。他更推動高山觀測方法,以進行颱風預測、推動高山與地震觀測系統的建置,為臺灣氣象科學翻開了嶄新的一頁。

臺灣近代氣象觀測的發展

臺灣近代氣象觀測發展可追溯於清朝,光緒年間的1883年,清廷聘請杜伯克博士(Dr. William Doberck)赴香港擔任首任天文司(天文台台長),並在沿海稅關和燈塔裝置觀測設備,進行氣象觀察。臺灣基隆、淡水、安平、打狗四港的稅關,以及漁翁島(澎湖)、南岬(鵝鑾鼻)也陸續在 1885 年前後,展開十餘年的氣象記錄。然而,1895 年清廷與日本簽訂馬關條約割讓臺灣,氣象觀測工作就此停擺,多數的觀測儀器與記錄更在政權交替期間散失。

日本統治臺灣之後,由於當時國際航海安全多仰賴氣象資料,在英法強權的施壓下,臺灣總督府於1896年發布第 97 號敕令,以「台灣總督府測候所官制」編制氣象觀測單位,而日本中央氣象台則選派本文主角,技手(技士)近藤久次郎來臺勘查、策劃氣象觀測站。同年,總督府也在民政局通信部海事課增設「氣象掛」一單位,統理全島氣象事務,如氣象觀測、天氣調查、颱風警報、地震檢測等工作。

-----廣告,請繼續往下閱讀-----

1896 年四月至六月間,近藤久次郎與民政局通信部海事課課長遠藤可一翻山越嶺、走訪各地,行跡遠至鵝鑾鼻。根據兩人的調查基礎,臺灣總督府先後於臺北、臺中、臺南、恆春和澎湖設置測候所(後三為 1987 年設立),近藤也在日本中央氣象台台長中村精男(Nakamura Kiyoo)的任命下擔任臺北測候所所長,開始逐步搭建全島的氣象觀測網絡。

在各地氣候觀測所選址的條件上,近藤久次郎配合日本政府在農業、工業、航海與公共衛生等發展項目的資料需求,為詳實觀測各區域氣候根據相對距離由北至南畫設臺北、臺中、臺南、恆春測候所 。此外,還參考了夏季與秋季的颱風路徑設立澎湖測候所,用以觀察自香港與馬尼拉而來的颱風。

除了本島的氣象觀測,近藤還曾於1897年,帶著晴雨計、寒暖針遠赴火燒嶼(綠島)、紅頭嶼(蘭嶼)進行氣象觀測、測量山頂高度,策劃設立觀測站。而後隨著總督府逐步克服東部地區交通和電信的限制, 1900 年、1910 年臺東和花蓮測候所分別建設完成,時至 1924 年近藤久次郎卸任前,全臺共設有七座「一般測候所」。

十九世紀末的觀測所主要沿用清朝遺留的官廳或民房,屋頂簡單設有的風力與風向儀,室內則作為辦公之用。一般測候所以風力塔為主要的觀測設施、可測量風向、風速、風壓、日照和日射;辦公室外設置氣象觀測坪以測量氣溫、雨量、地面溫度等;測候所外另設有提供執勤人員進駐的官舍。

-----廣告,請繼續往下閱讀-----

而在時間方面,位於政治中心的臺北觀測所實施 24 小時氣象觀測;其他測候則每四個小時實施觀測、每日六次,用於地區性天氣預報,並將資料匯報予臺北測候所以利發布臨時颱風警報、氣候月報和年報,進一步進行總體性的氣象分析。

擴大氣象觀測網路,發佈氣象預報歷史頁面

為了擴大氣象觀測網絡,總督府會同官廳、派出所、郵局等單位協助蒐集雨量和氣溫資料,並於 1896 年 7 月以「民通 151 號」公報始建立暴風警報通報流程,命令各官廳、海關、郵局、燈塔,將通信部海事課所轉發的暴風警報公布予地方民眾,九座燈塔更奉「總督府訓」兼任氣象觀測的任務,協助測量氣溫、氣壓、風、雲與雨量。

1897 年 9 月,近藤領導的臺北測候所開始發佈每日三次的氣象預報,並與琉球、九州南部測候所,以及徐家匯、香港、馬尼拉等地的氣象台交換氣象報告。 依循著新展開的天氣觀測模式,總督府府報開設「觀象」專欄,刊登臺北測候所撰寫的天氣預報(「本島氣象天氣豫報び天氣概況及暴風警報等」),開啟了臺灣天氣預報歷史性的一頁。直到1905年,全臺各地的雨量觀測網絡已達78處,涵蓋燈塔、支廳、派岀所、學校、郵局、農業試驗所、自來水廠等單位,各處配備簡易的氣溫觀測工具以協助記錄天候狀況。

很快地,日本在臺短短10年內,近藤久次郎已為氣象觀測網打下綿密的基礎。

不只是天氣預報,開啟高山觀測與地震研究先河

1900 年,近藤久次郎附議天文學者一戶直藏提出的新高山(今玉山北峰)報告(新高山ニ關スル研究報告),近藤提到:「新高山山頂是天然絕佳的天文觀測與氣象學研究位置」,他認為高山觀測有助於天文和氣象研究,可藉由研究大氣動力上升的過程進行天氣預測,尤其臺灣每逢夏季,颱風挾帶滂沱大雨常引發災情,若能在台灣百岳中設置幾處高山觀測所,定有助於颱風警戒和天候預設。

-----廣告,請繼續往下閱讀-----

於是, 1911 年近藤久次郎與一戶直藏率先提出「新高山觀測所設置計畫」,向總督府倡議在玉山、阿里山興建高山觀測所和天文台,間接促成玉山觀測站(1943 年始建造)與阿里山觀測站(1932年建造)的設置。

近藤久次郎除了推動高山氣象、天文與航空研究,也曾與臺北測候所同仁積極推動與地震和火山相關的研究: 1896 年,臺北臨時測候所首次藉由人體感受進行地震觀測; 1897 年正式落成的臺北測候所,引進格雷-米爾恩型地震儀(Gray-Milne Seismograph); 1900 年,由被譽為日本地震之父的大森房吉所改良的大森式水平地震儀(Omori horizontal pendulum seismograph)以及強震儀(Strong motion seismograph)裝設於臺北測候所。

這些地震觀測儀也在 1906 年 3 月 17 日的「嘉義梅山地震」發揮了記錄地震波形與餘震數據的作用,獲得的數據使大森房吉找出梅山地震與斷層的關係,並將之命名為「梅仔坑斷層」(後更名梅山斷層)。而後,大森房吉還將研究與近藤所著的說明書刊登於報紙,傳遞地震成因與餘震的科學知識,緩解民間傳說帶來的社會不安。時至1907年,在近藤的協助推動下,全臺共有七所測候所兼做地震觀測,當時的紀錄,也成為現代地震研究珍貴的早期觀測資料。

1924 年,近藤久次郎因病去職返回日本,1926年因胃癌而逝世。 1896 至 1924 年,近藤來臺近將三十年,他在擔任總督府測候所與臺北測候所所長期間,建制氣候所與觀測網絡、編輯並彙整氣象資料;開啟暴風雨警報、颱風預測等重要的氣象預報機制;也協助推動高山氣候觀測、天文觀測與地震研究,著實是臺灣近代氣象科學研究的先河。

-----廣告,請繼續往下閱讀-----

註解

  • 註 1:然而,由於當時日本與臺灣之間並無定期班船和通訊設備可供交通和信息的傳遞,使得測候所無法如期配備氣象觀測儀器並興建正式氣候站,故先以既有房舍作為臨時氣候所。而後各地氣候所材陸續興建並增添觀測設備:臺北測候所於 1897 年 12 月 19 日遷入臺北城內南門街三丁目;臺中測候所於 1901 年 5 月 20 日遷入臺中城內藍興堡台中街;台南測候所於 1898 年 3 月 1 日遷入台南城內太平境街第 216 號官有家敷地;恆春測候所於 1901 年 11 月 24 日遷入恆春縣前街四番地;澎湖測候所於 1898 年 3 月 1 日遷入澎湖島媽公城內西町。(資料來源:中央氣象局委由財團法人成大研究發展基金會、國立成功大學單位研究之《台灣氣象建築史料調查研究》, 2001 年 2 月出版。)
  • 註 2:資料參考徐明同〈台灣氣象業務簡史〉
-----廣告,請繼續往下閱讀-----