Loading [MathJax]/extensions/tex2jax.js

1

0
2

文字

分享

1
0
2

讓武漢肺炎席捲人類的關鍵變異有哪些?和穿山甲有關嗎?

寒波_96
・2020/02/23 ・5719字 ・閱讀時間約 11 分鐘 ・SR值 579 ・九年級

-----廣告,請繼續往下閱讀-----

繼 SARS 和 MERS 之後,引發武漢肺炎(WHO 定名為 COVID-19),致死人數已經超過兩位前輩的第三種冠狀病毒,國際病毒研究社群日前命名為 SARS-CoV-2,突顯它類似 SARS 的特色,也就是「SARS二世」;為方便閱讀,接下來本文提及此病毒,亦以「SARS二世」稱呼。

SARS二世從何而來,為什麼能感染人類?最近分子演化學方面又有新的進展。1

相關分子演化分析可參考前文:

武漢肺炎(即 COVID-19)為一快速變化的議題。最早由 WHO 暫定名為 2019 novel coronavirus,簡稱 2019-nCoV,中文「2019新型冠狀病毒」,但使用上相當拗口。因此本系列前面文章提及此一疾病與其病原,內文均簡稱為「WARS」,將 SARS 的第一個字 Severe 替換為 Wuhan。

SARS二世其 S蛋白質的遺傳序列與立體結構。圖/取自 Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation

本文內容豐富,先提示重點在此:

-----廣告,請繼續往下閱讀-----
  • SARS二世至少有兩處關鍵的遺傳變異,使其能有效傳染人類,其中一個變異已知存在於自然界。
  • 沒有有力證據支持穿山甲為中間宿主。
  • SARS二世很適應人體,但是無法確定是在動物,或是人類體內完成適應過程。

影響感染能力的關鍵位置,不照牌理出牌?

絕大部分冠狀病毒都不會感染人類,至今只知道 7 種有這個能力。除了 SARS、MERS、以及 SARS二世外,還有另外 4 種:HKU1、NL63、OC43、229E,不過它們只會小打小鬧,疫情都沒有前三種嚴重。

這些病毒感染細胞時,spike 基因的產物「S蛋白質」非常關鍵。S蛋白質會和宿主細胞的 ACE2 受器(angiotensin converting enzyme 2 receptor)結合,兩者的親和度,深深影響病毒的感染對象以及能力。

SARS二世的 S蛋白質和親戚相比比較特殊。S蛋白質可分為 S1 和 S2 前後兩部分,S1 上頭有一段約 200 個胺基酸長的序列稱作 receptor binding domain,簡稱 RBD,會直接與受器互動,對病毒感染細胞相當重要。

冠狀病毒的 S蛋白質在基因組上的相對位置,與不同品系間差異的對照比較。圖/取自 ref 1

之前研究發現,SARS 這段序列上頭有 6 個位置的影響較大,分別是(字母是胺基酸、數字是 S蛋白質上的位置)Y442、L472、N479、D480、T487、Y491;而對應到 SARS二世的這 6 個胺基酸則是 L455、F486、Q493、S494、N501、Y505。

-----廣告,請繼續往下閱讀-----

可以看出,儘管 SARS一世與二世皆以人類為宿主,整個基因組的相似度為 79.5%,兩者 6 個關鍵位置中卻有 5 處不一樣。至今已知遺傳上最接近的冠狀病毒是取自雲南蝙蝠的 RaTG13,整個基因組有高達 96.2% 一樣;然而,兩者這 6 個胺基酸中仍有 5 處不一樣。

果子狸的 ACE2 受器和 SARS 病毒的 RBD,之間結構上的親和性。圖/取自 ref 2

根據模型預測,除了智人以外,還有紅毛猩猩、猴子、鼬獾、豬、貓的 ACE2 受器與 SARS二世的親和性都不錯;與 SARS 的宿主果子貍卻沒那麼好,而不會感染 SARS 的小鼠、大鼠,其親和性都不佳。不過這只是電腦作業,不見得符合現實;SARS二世對動物的感染力究竟如何,仍需要實際做實驗才能證明。2

果子狸的 ACE2 受器和 SARS二世的 RBD,之間結構上的親和性模擬。圖/取自 ref 2

已經超過 7 萬人受到感染,這件事實告訴我們:它感染智人細胞的能力非常好。但是很有意思,根據人類對結構化學的理解,SARS二世關鍵位置上的某些變異,其實並非最佳選擇。也就是說,假如根據智人現有的理論認知去設計病毒,應該不會製造出這支病毒,因為理論上這些變異並不理想。

顯而易見,沒學過分子生物學、病毒學、結構化學、生物化學等智人學問的冠狀病毒:

-----廣告,請繼續往下閱讀-----

在感染智人的演化適應之路上,沒有按照智人已知的牌理出牌,而闖出了一條自己的路。

武漢肺炎的傳播,和穿山甲有關嗎?

然而,SARS二世的 S蛋白質上特殊的 RBD,事實上並非獨一無二,2 篇尚未正式發表的論文報告,在取自穿山甲的樣本中也見到它,這又是怎麼回事!?

穿山甲!圖/取自 Bart Wursten

疫情爆發以來,研究冠狀病毒成為最熱門的顯學。一群科學家以鍵盤辦案,從過去發表過的資料庫中尋找冠狀病毒的蹤影,結果在 2019 年發表論文的一項資料庫,取自走私到廣東的 2 個穿山甲樣本中(可能原產於東南亞),偵測到類似的目標。3, 4

將定序片段拼裝起來得到的「穿山甲冠狀病毒」,整個基因組與 SARS二世的相似度為 90.5%;但是光看 S蛋白質的 RBD 上,第 435 到 510 共 75 個胺基酸長,最關乎親和性的 receptor binding motif(簡稱 RBM)部分卻有高達 98% 的胺基酸相似度(以及 89% 的核苷酸相似度)。更重要的是,上述提到的 6 個關鍵位置,穿山甲冠狀病毒竟然與 SARS二世完全一致!

差不多同時問世,另一尚未正式發表的論文,則是從 2017 到 2018 年查獲,冰在冷凍庫的穿山甲,總共 9 個樣本中偵測到冠狀病毒,而且順利取得活的病毒(活病毒這部分研究尚未發表)。這批病毒與 SARS二世的整體相似性介於 85.5 到 92.4%,RBD 卻有高達 97.4% 的胺基酸一致,關鍵胺基酸則通通相同。5

-----廣告,請繼續往下閱讀-----
感染人類、蝙蝠、穿山甲的冠狀病毒建構的演化樹。除了雲南蝙蝠的 RaTG13 以外,穿山甲的冠狀病毒比其他蝙蝠的病毒,更接近 SARS二世。圖/取自 ref 5

綜合上述發現可以確定,可能原產於東南亞而被走私到中國南方的穿山甲,有多隻個體感染冠狀病毒,而且病毒彼此間的遺傳不太一樣。由此推論,穿山甲感染冠狀病毒也許是長期而普遍的現象,而且這群病毒與宿主受器互動的關鍵位置,和 SARS二世極端相似。可是該如何解釋這個情況?

關鍵位置相似是由於遺傳重組,還是趨同演化?

儘管雲南蝙蝠的 RaTG13 整體遺傳上更接近 SARS二世,影響致病力的關鍵變異處卻和穿山甲的病毒一模一樣,對於這一點,兩篇論文的作者分別提出同樣的論點:這段序列,可能是與感染穿山甲的病毒親戚遺傳重組而來。

但是除了「遺傳重組」以外,很可能發生的「趨同演化」也能解釋這個情況。

這類與感染能力高度相關的序列,深受天擇影響,假如某種冠狀病毒的感染對象,其受器結構與人類類似,那麼在選汰壓力下朝向類似的序列改變,也就是台灣高中生都知道的「趨同演化」,只是剛好而已。

-----廣告,請繼續往下閱讀-----
假如以核苷酸改變,胺基酸不變的同義變化位置建構演化樹,樹形和整個基因組建構的演化樹一模一樣,強烈支持 SARS二世和穿山甲冠狀病毒部分胺基酸序列高度相似,是趨同演化的結果。圖/取自 ref 5

鍵盤辦案的研究分析中,可以發現兩者這部份的胺基酸序列有 98% 相似,但在核苷酸序列只有 89% 的相似度,暗示此處面臨強大的選汰壓力,使得即使核苷酸改變,也要維持胺基酸不變,也就是淨化選汰(purifying selection)──很典型取決於功能,而非親緣關係的特徵。冷凍穿山甲研究的序列分析,也高度支持趨同演化的可能性。

總之,兩群獨立的作者,似乎經趨同演化提出「SARS二世的祖先與穿山甲冠狀病毒經過重組」之論點,沒有充足的證據支持,明顯還有更合理的可能性。現在看來,要認識冠狀病毒的多樣性,必須重視穿山甲,不過要追尋 SARS二世從前的宿主,暫時不用特別考慮穿山甲。

不論穿山甲的冠狀病毒跟 SARS二世是否有直接關係,有一件事倒是非常清楚:

冠狀病毒與人類受器親和性高的遺傳變異,其實原本就存在於自然環境!

獨一無二的遺傳特徵,或許會讓致病力增強

SARS二世有一處變異倒是真的是獨一無二,沒有在已知病毒上見過(包括最近親 RaTG13 和穿山甲冠狀病毒),它位於 S蛋白質中央的 polybasic cleavage site(暫譯:多鹼基分割位點)。S蛋白質分為 S1 和 S2 兩個部分,在 SARS二世這中間多出了一小段「PRRA」的胺基酸,程式模擬指出,此一變化會明顯改變原本的蛋白質立體結構。值得一提,這也是之前被誤會為與 HIV 有關的 4 段序列中,SARS二世唯一真正與眾不同之處。

-----廣告,請繼續往下閱讀-----
位於 S1 和 S2 中間, SARS二世多出一段「PRRA」的插入。圖/取自 ref 1

之所以值得注意,是因為流感病毒在對等的位置上,倘若發生類似的變化,會讓本來感染力微弱的病毒大幅強化攻擊力;另外導致禽鳥傳染病「新城病(Newcastle disease)」的病毒,此一位置改變也會讓病毒變得更加凶險。不過此處變化對 SARS二世會有什麼實際影響,無法光靠鍵盤辦案釐清,還需要更多實驗分曉。

如此適應人類,到底是如何演化而來的?

所有 SARS二世的基因組都非常相似,表示它們都來自非常近期的共同祖先。由序列差異估計,共同祖先的生日約為 2019 年的 11 月底到 12 月初(不同估計方式的結果不太一樣,不過第一位已知病患至少能追溯到 12 月 1 日),顯示 SARS二世在這個階段已經相當適應人類。

兩位前輩 SARS 和 MERS 的祖先都是感染蝙蝠的病毒,但是傳染給智人以前,SARS 的宿主是果子狸、MERS 是駱駝。從蝙蝠到智人的路上, SARS二世是否也有過類似的中間宿主?現在如此適應智人,究竟是在其他動物、或是智人身上修煉成功的呢?

蝙蝠、駱駝、智人之間的跨物種病毒傳播。圖/取自 Outbreak of Middle East Respiratory Syndrome-Coronavirus Causes High Fatality After Cardiac Operations

可能一:透過(未知的)中間宿主演化

一種可能是, SARS二世的祖先先以某種動物為宿主,在這種不是蝙蝠的動物體內,漸漸變得適合感染智人,真正跳到智人身上後隨即能無縫接軌。

-----廣告,請繼續往下閱讀-----

這套劇本中,該動物宿主的細胞受器應該與智人相當相似,才能使之發展出對智人受器的高親和性。若是如此,族群數量較大的動物會是比較可能的中間宿主(例如鼬獾?),因為病毒能感染較多個體,更有利於天擇進行。

而數量稀少、瀕臨絕種的穿山甲,乍看不像適合病毒天擇作用的舞台。但是目前資訊非常侷限,沒有人知道真相。既然提到穿山甲,也順便請大家重視瀕危生物的保育 QQ

可能二:直接在智人體內完成升級?

另一種可能是, SARS二世早已能由動物傳染給人類,經歷一番掙扎以後才順利適應智人細胞,演化適應是直接在人類身上完成。

圖/取自 衛生福利部疾病管制署 2017 年 5 月 18 日教材(pdf)

8 年前出道的前輩 MERS 就是走這套劇本,至今累積約 2500 個病例,不過到現在仍尚未「破關」,一直不算真正適應智人。主因是原本以駱駝為宿主的這款病毒,人傳人的能力整體不強,致死率又超過 30%,導致傳播很容易中斷,阿拉伯半島的疫情每次都要從駱駝重新開局。

MERS 難以融入智人的社會,也令它對人類的危害遠不及這次源自武漢的 SARS二世(謎之聲:瘟疫公司新手嘛)。如果 SARS二世也是如此起源,它顯然已經突破這道關卡,開拓出冠狀病毒的全新天地。

我們所知太少,需要更多資訊

根據現有證據,無法判斷哪套劇本才是對的,仍需要更多研究才有機會回答問題。例如可以從不同地區的各種動物與環境採樣,更全面認識冠狀病毒的多樣性;或是檢測人類血液對冠狀病毒的血清反應(seroreactivity),了解是否早已有人感染過冠狀病毒。

釐清 SARS二世的來歷與適應過程,不只有學術價值,也能提供我們相當實際的指引。畢竟這已經是本世紀第三起冠狀病毒暴走事件,而動物傳人的跨物種傳染病,一直都是人類的強大威脅,假如能及早預防,價值不遜於研發出新藥或疫苗。

人畜共通傳染病,例如可以到處ㄈㄈ尺的 E型肝炎病毒。圖/取自 Transmission of Hepatitis E Virus in Developing Countries.

SARS二世的適應過程若是在動物體內完成,意謂控制住這次疫情後,未來類似的傳染病將很有機會再度出現,需要更全面的監測。如果病毒是在人類體內才升級成功,那麼即使時常發生動物傳人,在病原獲得適應人體的關鍵變異以前,都不需要太過擔心。

不論如何,一連串疾病帶來的教訓是:

我們必須更積極認識野生動物與生態環境,主動尋找潛在的風險。

另一方面,疫情蔓延時,也有許多 SARS二世經歷過人為操縱之類的陰謀論流傳,還有人懷疑武漢的病毒研究單位與疫情脫不了關係。對於 SARS二世是否經過人為變造這點,以斯克里普斯研究所(Scripps Research)的 Kristian Andersen 為首的研究團隊,抱持強烈否定態度,認為從遺傳序列上看不出人為介入的跡象。至於中國研究人員是否導致病毒外洩,沒有直接證據,當然無從證實或是推翻,說穿惹,這不是科學問題,無法以科學解答。

劃重點:

  •  SARS二世至少有兩處關鍵遺傳變異,讓它們能席捲人類。
  • 其中一個變異本來就存在野外,穿山甲身上的病毒也有。
  • 可是穿山甲和武漢肺炎多半沒有直接關係。
  • 另外一個變異為 SARS二世獨有,具體作用不明。
  •  SARS二世很適應人體,但是不確定是在動物或人類體內升級完成。
  • 未來要更積極注意野生動物,及早認識可能的威脅。
  • 有陰謀嗎?隨便啦大家高興就好。

延伸閱讀

  1. The Proximal Origin of SARS-CoV-2
  2. Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li, F. (2020). Receptor recognition by novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS. Journal of virology.
  3. Evidence of recombination in coronaviruses implicating pangolin origins of nCoV-2019
  4. Liu, P., Chen, W., & Chen, J. P. (2019). Viral Metagenomics Revealed Sendai Virus and Coronavirus Infection of Malayan Pangolins (Manis javanica). Viruses, 11(11), 979.
  5. Identification of 2019-nCoV related coronaviruses in Malayan pangolins in southern China

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
寒波_96
193 篇文章 ・ 1089 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
1

文字

分享

0
1
1
貓咪也會學鳥叫?揭秘貓貓發出「喀喀聲」背後的可能原因
F 編_96
・2024/12/24 ・2480字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

貓是一種神秘而又引人注目的動物,牠們看似深居簡出,但擁有多元的聲音表達:從吸引人類注意的「喵喵叫」,到面對威脅時的「嘶嘶聲」與低沉的「咆哮」。

延伸閱讀:貓咪為什麼總愛對人喵喵叫?看貓如何用聲音征服人類的心

然而,細心的貓奴們可能會注意到,貓有時會對著窗外的鳥兒或屋內小動物玩具,發出一種獨特的「卡卡聲」或「咯咯聲」。這種聲音既像牙齒打顫,又好似一陣陣輕微的顫鳴,卻很難歸類到常見的喵叫或咆哮裡。這種名為「chatter」的行為,究竟在貓的生活中扮演什麼角色?目前科學界尚未對此有定論,但有幾種廣為討論的假說,或許能為我們提供一些思考方向。

卡卡叫:情緒的釋放或表達?

有些貓行為專家推測,貓咪在看到獵物(如窗外的鳥、老鼠)卻無法接近時,會因「欲捕無法」的挫折感或興奮感,發出這種「卡卡聲」。就像人類遇到障礙時,可能會發出抱怨的咕噥聲或乾著急的嘆息聲一樣,貓咪的「喀喀聲」也可能只是把當下的情緒外顯,並非有特別針對人或其他動物的溝通目的。

  • 情緒假說
    • 挫折:當貓看見鳥兒在窗外飛舞卻無法撲殺,內心焦躁,遂用聲音抒發。
    • 興奮:或許貓在準備捕獵時也感到高度亢奮,因此嘴部不自覺抖動並出聲。
貓咪的「喀喀聲」可能源於挫折或興奮情緒,表達捕獵受阻的內在反應。圖/envato

要在科學上驗證「情緒假說」並不容易,因為需要同時測量貓咪行為和生理指標。例如,研究人員可能需要測量貓咪在卡卡叫時的壓力荷爾蒙變化,才能確認牠們究竟是帶著正面興奮,或是負面挫折的情緒。不過,由於貓的獨立特質,實驗設計往往困難重重,樣本量要足夠也不容易,所以至今沒有定論。

-----廣告,請繼續往下閱讀-----

增強嗅覺?貓咪的「第二鼻子」

另一種說法則認為,貓咪發出「卡卡聲」時,可能同時開啟了其位於口腔上顎的「犁鼻器」(vomeronasal organ),也稱作「賈氏器官(Jacobson’s organ)」。這個感知器官能捕捉一般鼻腔聞不到的化學分子,如費洛蒙或特定氣味分子,因此對貓的求偶、社交和獵捕行為都非常重要。

  • 嗅覺假說
    • 張口呼吸:如果貓咪一邊「咯咯咯」地開合上下顎,可能在嘗試讓空氣(及其中所含的氣味分子)進入犁鼻器。
    • 蒐集更多環境資訊:在確定下手前,更完整的嗅覺分析或能提高牠們獵捕成功率,或是幫助判斷環境中是否有其他潛在威脅或機會。

然而,要科學驗證「增強嗅覺假說」同樣不簡單。研究人員不僅要觀察貓咪在卡卡叫時的行為,也需要測量牠們是否真的打開了更大的氣道,並在那個同時有效使用犁鼻器。這些行為與生理測量都必須在相對可控卻又不影響貓自由行動的實驗環境中進行,實務上難度頗高。

聲音模仿:貓咪的「偽鳥叫」?

貓咪的「卡卡聲」或許是為了模仿獵物的聲音,讓獵物降低警戒。圖/envato

第三種最有趣也最具「野性色彩」的假說,是「模仿獵物聲音」。在野外,一些中南美洲的小型貓科動物(例如:長尾虎貓,又稱美洲豹貓或瑪家貓,Margay)曾被觀察到,在捕獵小猴群時,發出類似猴子叫聲的音調;有些當地原住民族群也傳說,叢林裡的某些捕食者會模仿目標獵物的聲音來誘捕。由此推測,家貓看到鳥兒時發出的「卡卡聲」,可能包含些微模仿鳥兒啁啾的元素,試圖降低獵物警戒或甚至吸引獵物靠近。

  • 模仿假說
    • 案例參考:野生貓科動物曾出現學習或偽裝聲音的紀錄。
    • 家貓可能繼承的行為:家貓的祖先——北非野貓(African wildcat)及其他小型貓科物種,是否具備聲音模仿能力?這在生物演化研究上仍是未解之謎。
    • 缺乏大規模觀察:由於小型野生貓科動物研究資料有限,且家貓實驗更不易做大樣本長期追蹤,最終導致此理論尚未獲得廣泛實證。

貓咪行為研究的挑戰:野性祖先的重要性

探討貓咪行為,常常需要回溯至野生祖先的棲地環境。家貓(Felis catus)普遍被認為源自北非野貓(Felis lybica),然而,野貓習性的研究本就不多,尤其是關於聲音與捕獵策略更是資料有限。我們想知道「為什麼家貓會卡卡叫」,首先要確定:「牠們的野性祖先或其他小型貓科,也有同樣的行為嗎?」若有,家貓則可能繼承自古老基因;若無,則可能是家貓在與人類共處的環境中演化出的新行為。

-----廣告,請繼續往下閱讀-----
如果要探查家貓「卡卡叫」的原因,還需要了解其祖先或其他小型貓科是否具有類似行為。圖/envato

再者,貓在實驗室中的「不可控」因素相當多。貓不像狗般樂於服從人類指令,常有自己的規律與個性。要在實驗情境下穩定地誘發貓的「卡卡叫」行為、同時檢測牠們的生理和心理反應,並確保每隻貓的個體差異都被考慮到,這些都對研究團隊是極大考驗。

對於許多貓奴來說,貓咪坐在窗邊,一邊盯著外頭的鳥兒或松鼠,一邊發出獨特的「卡卡聲」,是一幕既可愛又神祕的風景。究竟牠們是在抒發情緒、強化嗅覺、抑或真的在「假扮鳥叫」以誘捕獵物?目前沒有確切的答案。然而,也正因為這層未知,貓貓才更顯得迷人。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
22 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃

0

3
2

文字

分享

0
3
2
誠實面對人類參與的「自然」——太田欽也專訪
顯微觀點_96
・2024/07/11 ・3235字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

斑馬魚是最知名的模式生物之一,其基因、型態與發育深受了解,並用於探討深度同源等重要演化生物學問題。但也有科學家提出,演化生物學該持續隨環境演進,並嘗試以新的實驗物種——金魚——探討人類世(Anthropocene)環境下的生物演化。

育種歷史與基因巧合 奠定金魚的演化生物學價值

例如有千年馴化歷史、型態千變萬化的金魚,就相當適合探討人類因素與生物型態演化的關聯。

中研院細生所派駐臨海研究站的演化與發育生物學家太田欽也指出,斑馬魚與金魚兩者的胚胎都可以透過顯微鏡仔細觀察,相對於受精一年後才成熟的金魚,斑馬魚有成熟較快,基因組較為單純等優點,也具備許多現成基因研究工具。

-----廣告,請繼續往下閱讀-----

但斑馬品系間仍以其生理機能與基因為主要差別,對型態差異的演化並未那麼明顯。因為,科學家為了操作基因與細胞特徵而培育斑馬魚,使不同品系的差異大多來自目標明確的基因工程。

金魚型態演化圖。Courtesy of Kinya Ota and Gembu Abe

而金魚的型態變異,則完全來自飼養者對型態的偏好和育種,蘊藏更多元的型態變化與發育差異。其悠長的馴養歷史以及更古老的基因重複(Gene Duplication)機遇,使其值得成為演化發育生物學的新模式生物。研究器材和方法上的調整,則是生物學家展現才智的機會。

太田欽也舉例,「一般的解剖顯微鏡工作距離適合觀察和操作斑馬魚,但是經過我們自己的創意,也改裝出可以對金魚進行顯微手術的器具和適合拍攝的大型解剖顯微鏡。設備上的差異並不難克服。」

金魚胚胎的發育生物學優勢

太田欽也說,現代生物學家以果蠅和微生物育種進行遺傳與演化實驗,擴大時間維度來看,千年來金魚愛好者挑選、強化金魚外觀特徵的過程,可以比擬長時間的人擇實驗。

金魚不僅適合用來觀察人擇壓力如何影響成年生物的型態。太田欽也更想進一步探索,從胚胎階段的差異進行選擇,是否可能改變生物的型態。

-----廣告,請繼續往下閱讀-----

太田欽也提到,人工育種對發育與型態的影響力也展現在其他物種上,例如家犬與鴿子也被培育出許多特殊表型。但是哺乳動物和鳥類的胚胎觀察不易,需要相當高的技術與成本。

相對於動物子宮與鳥類蛋殼內的胚胎,在透明卵囊中發育的半透明金魚胚胎,就是非常容易觀察的研究對象。只要有恰當的複式顯微鏡、解剖顯微鏡和顯微手術能力,金魚的胚胎從受精到孵化都可以全程順利紀錄,而且每次繁殖可以蒐集到上百筆資料。

現代顯微攝影技術搭配容易觀察的金魚胚胎,讓太田欽也可以拍攝清晰影片,在網路上生動地分享發育生物學知識。攝影:楊雅棠

自製影片 盼演化生物學跨過學院圍牆

除了將金魚研究成果發表在 Nature 等科學期刊,太田欽也同時努力當起「Youtuber」。他希望能將演化發育生物學、金魚飼育經驗、臨海研究站的學術特色,甚至是宜蘭的風光,透過網路傳達給大眾。

武漢肺炎導致的漫長隔離,是他學習影音製作的契機。最初他在百無聊賴之下看了大量影片,後來逐漸萌發「我也要拍自己的題材!」的企圖心。開始搜尋拍攝、後製、配樂等網路教學,在隔離的單人房中逐漸進步。

-----廣告,請繼續往下閱讀-----

太田欽也說,拍攝影片最重要的動機是「分享」。他解釋,「科學的頻道不管累積再多追蹤者,例如數十萬人追蹤的 Nature, Science, 觀眾也以科學領域工作者為主。現代知識逐漸朝向『專家』與『外人』的兩極化狀態發展,我不喜歡這樣的社會。」

如同他推進學術研究的方法,他也透過自學、自己組裝基礎設備如空拍機、手機等,在節省開支的情況下拍出了中研院同僚為之驚艷的影片。

太田欽也為臨海研究站拍攝的簡介影片,基本款空拍機呈現了頭城的舒暢美景。

在早已開始的人類世 何謂自然?

太田欽也熱衷以空拍影片介紹宜蘭的郊野與人文,但他對主流輿論的「自然環境」內涵存疑,他認為「自然」早已被人類行為大幅改變。自從農業擴張、工業革命發生,人類對環境與生物的改變程度早已無法恢復「自然原貌」。

他以金魚的馴化過程為例,從宋朝開始的愛好者,透過育種極力凸顯特殊形態,從沒有背鰭的「蛋種」,到眼周水泡足以遮蔽視線的「水泡眼」。都不是基於適應「自然」而進行的育種。

-----廣告,請繼續往下閱讀-----

太田欽也強調,「如果是宋朝或明朝人有今天的生物學工具,以他們的追求珍奇的育種態度,一定會用 CRISPR 編輯金魚基因,製造出更奇特的變異型態。」

他說,這樣的行為會在現代科學圈與社會輿論上遭到反對,「認為動物被修改基因、型態變異很可憐」,但人類採用動物進行藥物實驗或經濟用途時,也並未優先考慮「自然原則」。

太田欽也反問,「若是透過基因編輯技術將金魚修改回類似野生鯽魚的型態,更適應野外環境,這樣算是自然或不自然呢?」

建立科技倫理 而非堅守「自然」想像

他指出,金魚的馴化與育種反映著東亞社會的自然觀念,不同於西方基督教倫理的「人統御、保護自然」意識形態。可以促進人們反思,人類也身在其中的「自然」的標準是什麼?而非執著於保護想像中的自然「原狀」。

太田欽也強調,「本質化『自然』、建構一個保守不變的形象,不會幫助人們了解生物學。」

他認為,宋朝人、明朝人的自然觀念與今日不同;甚至現代人常引用的「道法自然」倡議者老子,他所提倡的自然,與現代許多人想像、意圖恢復的也是不同的自然。

背鰭退化、尾鰭倍增的蛋種雙尾金魚,是古代貴族最青眼有加的奇特型態之一。作者:清 馬文麟 來源:國立故宮博物院

太田欽也建言,科學地面對人類因素影響世界各地生態的現實、建立基因科技的社會倫理與規範,都是比恢復建構出的「自然」意象更重要的生物學議題。

-----廣告,請繼續往下閱讀-----

來自日本和歌山縣鄉間的太田欽也說,長期駐守宜蘭頭城的臨海研究站不僅是因為設施與職位,也是因為此處環境與故鄉有幾分神似。

「但我不會說這兩個地方都很『自然』,在人們對我說『這裡很自然!』的時候。」太田欽也無奈地笑說,「想到周遭可以釣起吳郭魚的溪流、被整治疏濬成田園的原洪氾濕地,反而會讓我很疑惑彼此對『自然』的共識。」

1995 年諾貝爾化學獎得主克魯岑(Paul Crutzen)指出,現代已是由人類行為影響地質特性的人類世。此概念引起地質科學界激烈討論,從新石器時代、工業革命到核彈試爆頻繁的 1960 年代都有學者認為是人類世的開端。

最後由國際地層委員會的人類世工作小組投票決定,視第二次世界大戰後、人口與人類活動高速成長的20世紀中葉為人類世起點。

查看原始文章

  1. Li IJ, Lee SH, Abe G, Ota KG. Embryonic and postembryonic development of the ornamental twin-tail goldfish. Dev Dyn. 2019 Apr;248(4):251-283.
  2. Abe G, Lee SH, Chang M, Liu SC, Tsai HY, Ota KG. The origin of the bifurcated axial skeletal system in the twin-tail goldfish. Nat Commun. 2014 Feb 25;5:3360.
  3. 太田欽也實驗室
-----廣告,請繼續往下閱讀-----

討論功能關閉中。