Loading [MathJax]/extensions/tex2jax.js

0

6
2

文字

分享

0
6
2

曾經有50億鳥口的「旅鴿」,遺傳多樣性卻低得嚇死人?

寒波_96
・2018/01/09 ・4207字 ・閱讀時間約 8 分鐘 ・SR值 555 ・八年級

-----廣告,請繼續往下閱讀-----

旅鴿:曾與智人一樣多的鳥類

住在北美洲的旅鴿(passenger pigeon,學名 Ectopistes migratorius)是種非常獨特的鳥,最特殊的是牠們的數量,毫無疑問排名美洲第一,或許也是世界冠軍——全盛時期估計有30到50億。然而,不久前仍如此龐大的族群,竟然已經步向滅亡的命運,1914年以後,世界上就再也沒有旅鴿了。

被獵人們追捕的旅鴿們。source:wikimedia

古代 DNA 近來成為研究滅絕生物的利器,而消失不久、目前仍有不少標本保存在博物館的旅鴿,它的基因組也在其滅絕的一百週年,也就是2014年時被定序發表。這項由台灣學者主導的研究,最驚人的發現是:旅鴿的遺傳多樣性與牠們龐大的鳥口數目,完全不相稱。[1]

通常我們會直覺地認為,某種生物的數目愈多,其遺傳多樣性應該也會愈大;旅鴿可能一度是世界上最多的鳥類,有如此多個體能累積遺傳差異,DNA 多樣性應該會大的嚇死人。可是由基因組看來,旅鴿的遺傳變異反而低的驚人,如果不考量旅鴿的個體數量、單純從他們的DNA序列來估計鳥口的話,估計值只有大約 33 萬左右……對,單位沒有寫錯,但旅鴿實際上至少有 30 億個體啊!

旅鴿的標本。source:wikimedia

為什麼旅鴿的族群很大,遺傳多樣性卻很低?

為什麼旅鴿數量的理論估計與實際情況的落差會這麼巨大呢?影響遺傳多樣性的因素除了個體數目以外,還有何方神秘力量?在2017年發表的論文,提出相當具有啓發性的解釋,讓旅鴿無法累積 DNA 變異的主要因素是:天擇!?[2]

-----廣告,請繼續往下閱讀-----

讓我們來從頭說起:新發表的論文獲得了更多旅鴿的 DNA 序列,包括 2 個新的基因組(加上之前發表的一共有 4 個),以及 41 個粒線體 DNA。除此之外,還定序了旅鴿的近親班尾鴿(band-tailed pigeon,學名 Patagioenas fasciata)的 2 個基因組,一同用於研究旅鴿的遺傳史。

左圖,紅色是旅鴿歷史上分佈的範圍,紫色是班尾鴿分佈的範圍。右圖,旅鴿樣本的取樣位置。圖/取自 ref 2

用 DNA 差異計算出的族群大小稱為「有效族群量(effective population size)」,採用粒線體 DNA 估計的結果是 1300 萬,比之前計算的 33 萬高出不少,不過仍遠遠低於實際上的 30 到 50 億。和班尾鴿比較,更能看出旅鴿反差的驚嚇程度,旅鴿的鳥口遠遠超過這種親戚,基因組的 DNA 多樣性卻只有班尾鴿 2 倍;假如以「有效族群量除以實際族群量」換算,也就是反差愈大、數值愈小,班尾鴿是 0.2,亦即實際鳥口是遺傳估計值的 5 倍,而旅鴿約為 0.0002,足足有 5000 倍之多!

與天擇利害糾葛,沒有中立空間

為何旅鴿的個體變多,卻無法累積相應的遺傳多樣性?我們常常聽到「多樣性大便是好的」,這背後的潛台詞是:多樣性小,代表個體數少,容易近親交配,導致不良後果。但是回頭思考,憑什麼族群個體變多,多樣性也要跟著變大?這是有前提的,那就是新的遺傳變異是中性的,亦即對個體沒有利、也沒有害;在沒有利害關係之下,新突變造成的 DNA 差異能保留在基因組中,因為每隻鳥的突變機率一樣,所以族群中有愈多個體、就會有愈多差異,使得族群整體的遺傳多樣性愈大。

可是實際上,個體間許多遺傳差異並非中性,而是會影響生存與繁殖。這又有兩個可能,一種是有利的,亦即有此變異與沒有此變異的個體相比,會比較有優勢;另一種是有害的,分配到這類變異的鳥比較倒霉,傳承後代的機率較低。以上是路邊過馬路的老爺爺老太太和扶他過馬路的我們都知道的天擇。

-----廣告,請繼續往下閱讀-----

以 DNA 差異來看,牽涉利害關係的天擇多半會降低多樣性:舉例來說,如果單一品牌的市占率上升、或是一個牌子長保穩定優勢,會讓新品牌不易進入,「品牌多樣性」便會下降;相對的,如果大家都不挑品牌、買東西都碼是隨機選擇,那麼當有新品牌進入市場時,我們就多了一個牌子可以挑選、讓品牌多樣性變大,而之後影響其興衰的就只是機率而已了。

在演化上,隨機影響力的正式名詞叫作「遺傳漂變(genetic drift)」,它和非隨機的天擇都會影響 DNA。演化理論預測,比較大的族群中天擇的作用較強;比較小的族群遺傳漂變則較有影響力。旅鴿和班尾鴿相較,兩者多數特徵都差不多,旅鴿族群卻大了很多倍,應該會更強烈被天擇影響。那麼天擇的強大,與旅鴿遺傳多樣性不如預期之間,有關係嗎?

同一條染色體上不同區域,遺傳多樣性竟然不一樣?

分析基因組後觀察到的狀況非常奇妙,不過要解釋起來也很複雜,希望以下文字能正確傳達論文的概念。旅鴿染色體不同的位置,遺傳多樣性有明顯的差別。在同一條染色體的中間,遺傳多樣性普遍較低,而邊緣區域則顯著較高。相比之下,班尾鴿染色體不同區域間,遺傳多樣性的差異程度遠遠不如旅鴿劇烈。

旅鴿基因組上不同區域的 DNA 多樣性卻不一樣,靠近染色體邊緣的範圍較高,中央較低。圖/取自 ref 2

論文指出此一分佈模式,與染色體重組率(recombination rate)的高低一致,鳥類 DNA 重組率低的區域,也就是染色體中央的多樣性也低,重組率高的邊緣,多樣性也比較高 [3]。重組的影響是什麼?根據論文的說法,要與天擇的作用一起看。一個遺傳變異若是有利益糾葛,受到天擇作用時,影響的往往不是只有本身,還包括周圍的 DNA 序列,也就是遺傳學上說的「連鎖」。本身為中性的 DNA 片段,若是鄰居有利也會跟著受益,更容易傳遞下去,反之亦然。

-----廣告,請繼續往下閱讀-----

天擇會消滅差異,除非被重組拯救

在強大天擇力量的影響下,由於遺傳連鎖之故,整段 DNA 都不容易累積差異;就像買 A 牌手機,連帶也會買整套 A 牌週邊配備,壓縮他牌的空間;假如重組率低,連鎖的範圍較大,天擇能影響的範圍也會跟著變大,正是旅鴿染色體中央的狀況。相對的,在基因組中重組率高的區域,比較不受天擇與連鎖的影響,中性變異的生還率高,也就能觀察到族群個體很多之下,遺傳多樣性應有的上升。

旅鴿基因組研究,上了當期《Science》封面。圖/取自《Science》封面

論文還做了一些細緻的分析,對相關議題有興趣的讀者請自行欣賞。跳到結論,不論是有害變異的清除(淨化選汰,purifying selection),或是有利變異的增加(正向選汰,positive selection),旅鴿整個基因組受天擇的影響都更勝班尾鴿。可見族群較大,的確也會有較強的天擇力量。

天擇兩個方向中,吻合淨化選汰特徵的 DNA 變異,比較旅鴿基因組中,重組率不同的區域,不管高低皆有明顯差異,意謂掃蕩有害變異的能力都比較強;但是重組率高的區域內,儘管序列乍看之下符合正向選汰的特徵,論文卻警告,這可能只是染色體重組時 DNA 突變的傾向所致(AT 突變為 GC 的機率更高,影響序列判斷),而非讓有利變異更容易留下的演化力量作用。總之,旅鴿基因組受天擇作用時,顯然也受到重組機率影響。

比較具體的基因方面,旅鴿有 32 個基因疑似受到正向選汰影響,有些基因與免疫、壓力、吃飯消化有關。想來十分合理,鳥口多,大家住在一起也容易得到傳染病,需要較強的免疫力;另外,有人會因為人多而壓力大、感到恐懼,鳥也一樣。

-----廣告,請繼續往下閱讀-----

所以一度繁盛的旅鴿,為何會滅絕?

旅鴿標本。圖/取自本研究新聞稿〈 Passenger pigeon genome shows effects of natural selection in a huge population

個人答案是:不知道,不過應該不單純。已經發表的 2 個論文,對這問題的見解不同。2014 年論文的論點是,旅鴿並非一直這麼多,牠們經歷過多次劇烈的鳥口波動,是導致其滅絕的重要因素。然而新的論文分析指出,過去幾萬年來旅鴿的族群量不斷增加,到 2 萬年前達到高峰,之後就一直保持穩定,直到滅絕,所以波動不像是主因。

用旅鴿粒線體 DNA 推估的遺傳族群數目,近幾萬年來不斷上升,距今 2 萬年前達到高峰。圖/取自 ref 2

新論文的見解是,一度有利的天擇,讓旅鴿族群大增,卻也付出遺傳多樣性嚴重損失的代價,反倒使得環境轉變時,難以適應人類獵捕的壓力而短時間內徹底滅團。不過這個解釋……看起來也就只是另一個解釋,沒有進一步證據。

旅鴿的遺產

曾經能跟智人數目相提並論的旅鴿,消失一百多年。但是藉由研究牠們的 DNA 遺產,我們仍然能得到許多非常有價值的收獲。

一般認知中,族群大,遺傳多樣性也會跟著變高,然而旅鴿卻是極端的反例。對遺傳演化學家而言,即使都學過理論,知道大族群中天擇的作用力量也強,大概也難以想像現實世界中天擇的影響力,在極端龐大的鳥類族群中能如此驚人,強大到甚至會把正常累積的遺傳多樣性,大半排擠掉的境界。

-----廣告,請繼續往下閱讀-----
在論文的附錄中還有許多分析,附錄的圖 S25 修正一些參數後,重新計算 2014 年論文的歷年族群大小變化,與新的分析對照,兩者明顯有異。圖/取自 ref 2

重組率高低會導致基因組不同區域的 DNA 多樣性差異明顯,也告訴我們,探討抽象的演化力量作用時,不可忽略具體分子機制的影響。假如把旅鴿基因組視為一個整體,將無法釐清天擇的影響,而會把大部分區域錯誤地假設為中性演化,造成各種估計結果的偏差。

看完旅鴿的研究,雖然一些舊有認知受到挑戰,大家先別驚慌;也許旅鴿驚人的鳥口,讓牠們成為極端的特例,並非常態。可是回頭想想,遺傳學上大家研究最多,最在意的智人,不也是動物世界中,實際人口遠遠超過遺傳估計值的特例嗎?誰知道研究旅鴿獲得的知識,未來能有多少用於人類?

延伸閱讀:

參考文獻:

-----廣告,請繼續往下閱讀-----

1. Hung, C. M., Shaner, P. J. L., Zink, R. M., Liu, W. C., Chu, T. C., Huang, W. S., & Li, S. H. (2014). Drastic population fluctuations explain the rapid extinction of the passenger pigeon. Proceedings of the National Academy of Sciences, 111(29), 10636-10641.

2. Murray, G. G., Soares, A. E., Novak, B. J., Schaefer, N. K., Cahill, J. A., Baker, A. J., … & Gilbert, M. T. P. (2017). Natural selection shaped the rise and fall of passenger pigeon genomic diversity. Science, 358(6365), 951-954.

3. Ellegren, H. (2010). Evolutionary stasis: the stable chromosomes of birds. Trends in ecology & evolution, 25(5), 283-291.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
寒波_96
193 篇文章 ・ 1090 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
一年有幾週?背後竟隱藏著宗教、政治與天文觀測的紛爭?為何決定一年有幾週如此大費周章?
F 編_96
・2025/01/06 ・3256字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

每到歲末或年初時,大家常會打開新的行事曆,做新一年的計畫。從直覺來看,我們常以「一年有 365 天」或「閏年 366 天」的概念衡量時間。如果將 365 天除以 7(每週 7 天),得到的答案約是 52 週又 1 天;若遇到閏年(366 天),則是 52 週又 2 天。換句話說,無論是一般年還是閏年,一年都不可能整除,剛好 52 週,總要多出 1 或 2 天。

對多數人而言,這種「約 52 週加 1 天」似乎是再自然不過的事。然而,實際上人類在訂定「一年幾天」與「多久閏一次」的規則上,一路走來經歷了漫長探索與爭議。自古以來,不同文明先後採用依太陽或月亮運行週期為基準的曆法;儘管最終各國大多轉而採行以太陽週期為主的格里高利曆(Gregorian calendar),但並非一蹴可幾,而是一段包含宗教、政治、天文觀測的故事。

一年感覺很長,其實也就 52 週(+1 或 +2 天)。 圖/unsplash

從洪荒到曆法:人類如何決定時間單位

追溯人類對時間的測量,可遠至一萬多年前:考古發現顯示,澳洲原住民或新石器時代的部落,便會根據太陽、星象的移動,來推算季節變遷與祭典進行。後來,隨著農業興起,區分一年四季並掌握耕作節氣成了首要需求,日曆的概念亦逐漸成型。

  • 宗教推力:古埃及與蘇美等文明常需要在特定時刻進行祭祀或儀式,故對晝夜長短、月相週期乃至每年太陽位置頗為講究。
  • 日月曆法之爭:有些文明依月亮週期(約 29.5 天)為月數基礎,稱「陰曆」;也有採納太陽年度(約 365 日)稱「陽曆」,或折衷稱「陰陽合曆」。

就週數而言,古人或許更關注「每個月有幾天」與「一年有幾個月」,而非「一年到底可以分成幾週」。然而,週的概念在很多宗教與文化裡同樣重要,如猶太教及後來的基督宗教都強調「七天」一週之體系,用於安息日或祈禱輪替。因此,當今的一年分成「52 週多幾天」,也綜合了宗教傳統與太陽年的計算。

-----廣告,請繼續往下閱讀-----

朱利安曆失準?教宗格里高利的關鍵校正

現行國際普及的格里高利曆,最早源自於古羅馬朱利安曆(Julian calendar)。公元前 46 年,凱撒大帝(Julius Caesar)在天文學家蘇西根尼斯(Sosigenes)建議下,設定一年 365.25 天,並每四年加一天作閏年。看似精妙,但實際上太陽年長度約是 365.2422 天,每年多出的 0.0078 天、也就是大約 11 分鐘,雖然聽來微乎其微,卻在一段世紀之後累積成巨大的誤差。

對天主教而言,耶穌受難與復活日期影響了整年眾多教會節日。若曆法逐漸偏移,像復活節等慶典便逐年脫節了季節原意。至 16 世紀末時,朱利安曆已誤差累積多達 10 天。教宗格里高利十三世遂在 1582 年宣佈大刀闊斧改革:10 月 4 日的次日直接跳到 10 月 15 日,並規定「百年年份如若非 400 整除,則不列為閏年」。如此,將一年的平均時長微調至更貼近 365.2422 天。

一些國家如法國、西班牙和義大利等迅速採納「新曆」,但英國則因宗教立場等因素拖延至 1752 年才肯切換。中國雖在 1912 年起算是「正式認可」,但廣泛實施延至 1929 年。這樣因曆制修整所產生的「失落日子」,在各國各時期都曾引發不小民眾抗議與混亂,但如今我們所熟知的「一年 365(或 366)天、每週 7 天」全球大體一致,正是拜此改革所賜。

教宗格里高利十三世的改革,成了日後我們熟知的「一年 365(或 366)天、每週 7 天」。圖/unsplash

一年是 52 週又幾天?

回到主題:基於現在格里高利曆的「年」長度,一般年 365 天,閏年 366 天。因此只要把 365 ÷ 7 = 52 餘 1,或 366 ÷ 7 = 52 餘 2。這樣看來,52 週是某種近似值,再加上 1 或 2 天則填補了週數的縫隙。有趣的是,人們日常生活中往往不深究這些「多一天」會落在哪裡,反而透過各國法定假期、節日分布或企業排班,來靈活因應。

-----廣告,請繼續往下閱讀-----

不管日曆如何安排,七天一週與太陽一年的 365.2422 天本質上不會整除。因而實際執行層面,才衍生「一月有 4 週多幾天」或「一年 52 週多幾天」。而根據格里高利曆規範,每 4 年遇到 2、6 結尾者時通常加閏日;再以百年刪除閏日,唯獨 400 年倍數的百年不刪。如此 400 年中有 97 個閏年,非 100 次,年均值約 365.2425 天,與真實太陽年極為貼近。

再度修正:米蘭科維奇曆與東正教的調整

與此同時,一些東正教教會或科學家,仍曾嘗試做更精準的校調。例如 1923 年出現的「米蘭科維奇曆」,由塞爾維亞天文學家米蘭科維奇(Milutin Milanković)提出:

  • 改進閏年規則:如果該年不是 100 的倍數,則正常計算;若是 100 的倍數,就得看除以 900 所餘下的數是否為 200 或 600,若是,則跳過閏年。
  • 應用範圍:此一方案被視為更貼近天文年,但只有部分東正教教會接納實施,對全球世俗時間並未產生重大影響。

有趣的是,若米蘭科維奇曆被大規模推廣,平均一年長度會更符合真實太陽年,但世界各國基礎已扎根於格里高利曆,也不太可能再冒然重新改革。畢竟,每次曆改都會使官方紀錄、民間活動和宗教節慶產生協調難題,且大眾的社會慣性早已落實在現行制度裡。

時間計算背後宗教、政治與科學的糾纏

我們眼中的「一年 52 週又 1~2 天」其實是長期政治、宗教、科學交互影響的產物。數世紀以來,不同文明為祭祀、政令或貿易往來而反覆調整曆制;伴隨天文觀測與數學演算的精進,人們才一步步從古老的朱利安曆轉到格里高利曆,避免每年多出一些看似微不足道的分鐘數量,卻逐漸累積成整天的時差。在這些爭論、改革中,週數雖非爭議焦點,但它一同被帶入今日世界,最終定型為「一年 = 52 週 +1(或 2)天」。

-----廣告,請繼續往下閱讀-----
儘管目前的曆法存在些許時差,但已是目前全球通用的計日方式。圖/unsplash

另一方面,有些文化或地區在現代仍維持傳統的陰曆、陰陽曆搭配格里高利曆,如中國農曆可見節氣和月相紀錄;穆斯林世界則使用純陰曆,並以其方法計算齋戒月、開齋節等。全球一體化雖使格里高利曆成為主流,但不代表其他紀年方式就此消失。在各種曆法交錯下,「一週幾天,一年多少週」或許並非普世絕對,卻是人類根植於宗教、科學與經濟行為下逐漸形成的共識。

踏入 21 世紀,隨著全球高度互聯與商業活動頻繁,幾乎所有國際公約、金融市場、交通規劃都以格里高利曆為基準。此種高度一致有利經貿往來與跨國協作,但究其根源,私底下仍有一種「不完美但通用」的妥協性質。時至今日,要再度大規模推行新的曆制(比如米蘭科維奇曆)的機率微乎其微。

也許未來某天?

不管你是否每天翻開行事曆查看日期,或是習慣智慧型手機提醒,在全球主流價值裡,「一年 52 週又 1 或 2 天」已成幾乎不容置疑的常識。

也許未來仍有理論家建議以更精準的曆法取代格里高利曆,讓一年日數更貼合天文常數。然而,歷史經驗告訴我們,此種改革勢必付出巨大社會成本,還要面對全球龐雜的政治協調。最終,我們大概仍會安於現在這個略有瑕疵卻普及度最高的制度,繼續說著「一年有 52 週」,並在每年最後那 1 或 2 天裡,慶祝跨年、增添慶典。

-----廣告,請繼續往下閱讀-----

不論如何,時間的運行永不止息;地球仍舊繞著太陽旋轉,帶給我們四季遞嬗與新的挑戰。或許最重要的並非究竟一年「整除」了多少週,而是我們如何在這既定框架下規劃生活,在有限的時間裡,拓展出新的生活軌跡。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

2
0

文字

分享

0
2
0
從門得列夫到 118 種元素:元素週期表是怎麼出現的?
F 編_96
・2025/01/04 ・2302字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

「氫鋰鈉鉀銣銫砝、铍鎂鈣鍶鋇镭…」相信很多人離開高中很多年,都還朗朗上口。

列著 118 種已知化學元素的「元素週期表」(Periodic Table),雖然唸起來像咒文,但有了它之後便能夠快速查詢原子序(proton number)、價電子(valence electrons)數量,以及元素可能的化學性質,成為各領域科學家與工程師設計實驗、預測物質反應必不可少的工具。

有趣的是,元素週期表並非一蹴可及。縱觀歷史,化學家們歷經數世紀的摸索、爭論與資料整理,才在 19 世紀後半葉逐漸確立。

我們現在看到的元素週期表,是在 19 世紀後半才逐漸確定。 圖/unsplash

週期表之父:門得列夫的突破

19 世紀中葉,已知的化學元素約有 63 種,許多化學家嘗試找出元素間的共同點,卻苦無系統性整理。當時能區分「金屬」與「非金屬」,或利用價電子概念將一些元素歸類,但要涵蓋大多數元素仍顯不足。俄國化學家門得列夫在撰寫《化學原理》教科書時,因接觸各元素的資料而產生新思路。他索性把已知元素各種性質寫在紙卡上,再一一比對它們的原子量(類似當今的原子量或原子序概念)與化學性質。

-----廣告,請繼續往下閱讀-----

確切的靈光乍現時刻,如今已無從完全重現,但我們知道門得列夫最後觀察到:「如果按照原子量(或後來的原子序)由小到大排列,某些化學性質就會呈週期性重複。」進一步來看,元素的價電子數量通常也會對應到表格的「欄位」或「族群」。於是,在 1869 年,他將研究結果發表,提出了第一版週期表的雛形,更大膽預言了尚未被發現的元素「eka-aluminium」(後來證實即鎵 gallium)及其他四種元素的性質。

讀懂週期表:原子序、符號與原子量

今日的週期表之所以能快速讓人獲得豐富資訊,關鍵在於三個核心欄位:

  1. 原子序(Atomic Number)
    代表該元素核內所含質子數。如果一原子核有 6 顆質子,就必定是碳(C),無論其他中子或電子數如何。此序號由上而下、由左而右遞增,貫穿整張表格。
  2. 元素符號(Atomic Symbol)
    多為一至兩字母縮寫,如碳(C)、氫(H)、氧(O)。但也有如鎢(W,因「Wolfram」得名)或金(Au,取自拉丁文「Aurum」)等較不直覺的符號。
  3. 原子量(Atomic Mass)
    表示該元素在自然界中各同位素的加權平均值,故通常是帶小數的數字。對合成元素則標示最常見或最穩定同位素的質量,但由於這些元素壽命極短,數值往往會被不斷修正。

舉例來說,硒(Se)在週期表中顯示原子序 34,屬於第 4 週期、第 6A 族,表示它有四層電子軌域,其中最外層(價電子層)有 6 顆電子。有了這些資訊,科學家可快速判斷硒的化學傾向、可形成何種化合物,乃至於在生物或工業應用中可能扮演的角色。

週期表的內部結構:週期、族與軌域

門得列夫最初按照原子量遞增排列元素,現代則依靠原子序(即質子數)來分類。橫向稱為「週期」(Period),從第 1 週期到第 7 週期;縱向稱為「族」(Group),目前總共有 18 組。週期數量在於顯示該元素電子軌域有幾層;而同一族則代表外層價電子數相同,故有相似化學性質。

-----廣告,請繼續往下閱讀-----

例如,第 18 族常被稱作「貴氣體」或「惰性氣體」,如氦(He)、氖(Ne)、氬(Ar)等皆不易與其他元素起反應。另一個顯著群體是位於第一族的鹼金屬(Alkali Metals),如鋰(Li)、鈉(Na)等,因外層只有 1 顆電子,極容易失去該電子而形成帶 +1 價的陽離子,故與水猛烈反應。

此外,在表格中央有一塊「過渡元素」(Transition Metals)區域,包括鐵(Fe)、銅(Cu)、鎳(Ni)、金(Au)、銀(Ag)等。它們具有部分填充的 d 軌域,使得該區域的元素呈現多樣性質,例如具有金屬光澤、可塑性或導電性等,被廣泛應用於工業及工程領域。

同一族的外層價電子數相同,因此大多有著相似化學性質。圖/unsplash

再進化:從 63 種到 118 種

當門得列夫在 1869 年發表週期表時,已知元素只有 63 種,表格中甚至留有空白以預留「未來或存在尚未發現的元素」。他果然預測到了鎵(Ga)以及日後證實的日耳曼ium(Ge)等新元素性質,贏得舉世矚目。隨後,有越來越多元素透過科學發展,尤其是光譜分析與放射性研究而被發現,例如鐳(Ra)和氡(Rn)等。

到 20 世紀後期,隨著粒子加速器的誕生,人類可以合成更重的超鈾元素(Atomic Number > 92)。這些人工合成元素往往極度不穩定,壽命僅能以毫秒或微秒計,但仍證實存在、並填補週期表後段空白。如今,週期表已收錄到第 118 號元素「鿆(Og,Oganesson)」,但科學家預測或許還能繼續向上延伸;只要能合成更重、更穩定的原子核,我們就能拓展週期表的新邊境。

-----廣告,請繼續往下閱讀-----

一般認為,隨原子序遞增,原子核內部的質子數目激增,原子愈趨不穩,往往在極短時間內衰變成較輕元素。然而,一些理論物理學家提出「島狀穩定性」(Island of Stability)的概念:也許在某特定質子與中子數量組合下,能出現意外長壽的「穩定」重元素。

是否真能在表格上方再增添「第八週期」甚至更高週期的列,仍有待更多實驗來驗證。但無法否認的是,週期表一直是科學家檢驗自然規律的試驗場,也見證了人類探索未知的無盡熱情。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
20 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃