Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

SciStarter:參與科學,玩轉世界

cbug
・2012/07/24 ・1593字 ・閱讀時間約 3 分鐘 ・SR值 528 ・七年級

-----廣告,請繼續往下閱讀-----

SciStarter,或許會讓你立即聯想到國外知名的創意專案網路募資平台 Kickstarter,而且從字面上看來,大概就可以猜想到,這可能就是 Kickstarter 的「科學版」。近來像這樣的群眾集資(crowdfunding)網路平台越來越多,如國外獨立製片計畫募資平台 IndieGoGo、以及台灣甫成立不久的調查報導公眾委製平台 weReport,都是運用網路進行群眾集資來完成既定目標或計畫的實際案例。在這波新興浪潮之下,就算出現了一個科學版,好像也不太讓人意外,不過,蠻有意思的是,SciStarter 的主要功用不只在於徵募資金,它更是一個讓科學人與公眾連結、對話與互動的管道。而這對於科學與科技創新來說,又可能帶來什麼樣的幫助呢?

與科學與科技創新相關的這類國外平台還有 FundaGeekTechMoolaRocketHub,以及#SciFund Challenge,雖然在這些平台進行的計畫,有些是因應國家研發經費縮減,須從民間找經費來源,所以才出現在募資平台上,不過換個角度思考,募資只是其中一種可能的面向而已,對 SciStarter 而言,集結眾人之力所能做到的事情,其實可以有更多的想像。

圖片來源:截自 SciStarter

總的來說,SciStarter 的主要任務,是將全世界的公民科學家匯集起來,邀請各方研究者、研究機構或業界在上頭提出徵募計畫,提供相關資源、產品或服務資訊,鼓勵人們透過非正式的休閒活動或正式研究成果來學習、參與並協助科學發展。

科學家也能與有興趣協助運作研究計畫或從中學習的人們相互交流,了解更多人對自己計劃的想法,並思考如何讓自己的研究與訊息更具吸引力、與人們的生活更為切身相關。更重要的是,SciStarter 也希望藉此提升公眾對科學的關注與理解,用簡單、有趣的方式吸引大家跳進來「弄髒自己的雙手」。

-----廣告,請繼續往下閱讀-----

除此之外,SciStarter 也與重要的科學雜誌《發現》(DISCOVER)雜誌合作,希望讓這些訊息獲得更好的曝光,《發現》會定期報導 SciStarter 上頭的提案,邀請讀者關注或參與這些科學或科研計畫。《發現》雜誌主編 Corey S. Powell 指出,讀者常常告訴他們,自己對於學習與探索這個世界有很大的熱忱,但往往不知道該從何開始,SciStarter 這個平台便提供了一個很好的管道,讓有志者或愛好者直接接觸與參與這些計畫。

舉例來說,由康乃爾大學鳥類實驗室主導、NSF 資助的一項公民科學計畫 DEVISE,就在 SciStarter 上以問卷方式廣徵眾人從事科學活動的經驗,希望從這些回饋中,建構出評估公民科學活動成果的工具,協助確保、提升往後的成果品質。

DEVISE 計畫邀請公民科學家分享從事科學活動的經驗,希望從這些經驗中萃取出評估的工具或標準。圖片來源:截自 SciStarter

leafsnap.com 提出的 Leafsnap 計畫也很有趣,隨著行動裝置的風行,他們提供免費的行動 App,邀請大家用這款 App 拍下你生活周遭的樹葉,協助這些公民科學家們辨識、定位樹種的分布,進而描繪出完整圖像,促進對世界各地生物多樣性樣貌的理解。這與先前介紹過的諾亞計畫有些相似,一人一拍匯集起來的成果想必相當可觀。另一個 The Snake Count 計畫也是基於這樣的概念而來,雖然沒有提供特定的 App,但也是希望公民協助紀錄,藉以了解北美洲蛇類的分布狀況。

目前 SciStarter 網站上已經有許多有趣好玩的計畫,你可以針對自己有興趣的類型進行搜尋。SciStarter 已經粗略地為各式各樣的科學活動預設分類,像是「地點」(適合學校、家中或戶外)、主題(自然、海洋、天文、生物等)、「對象」(適合孩子或學生)等類目,或是依據所需費用進行分類,讓你自由選擇要參與免費或需支付小額報名費的活動,端看你的興趣與需求。當然,你也可以試試看直接下關鍵字來挖寶,或許會遇到你意想不到或尋覓已久的有趣計畫也說不定!

-----廣告,請繼續往下閱讀-----

參考資料

SciStarter – science we can do together
Crowdfunding: A New Opportunity for Science and Innovation—todaysengineer.org [2012-06-12]

-----廣告,請繼續往下閱讀-----
文章難易度
cbug
22 篇文章 ・ 0 位粉絲
各位先進大家好,很高興加入PanSci。希望專欄 Nutrition Buiscuits 能如其名,跟大家分享小份量卻高營養的文章。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

7
1

文字

分享

0
7
1
審議民主線上會議,讓公民參與不再是未來式
鳥苷三磷酸 (PanSci Promo)_96
・2021/03/29 ・714字 ・閱讀時間約 1 分鐘 ・SR值 582 ・九年級

-----廣告,請繼續往下閱讀-----

本特輯由 教育部青年發展署 委託,泛科學企劃執行

「審議民主」目的是促成公眾對政策進行知情而理性的討論,而為因應疫情發展,線上審議被認為更加切合時代趨勢,教育部青年發展署透過優化線上審議民主的過程,期望未來參與公共事務不再受到疫情或地域的影響與限制。

自疫情開始以來,促使人們生活型態轉變,更凸顯數位治理、網路社會、創新應用的重要性,然而線上審議之相關研究不足仍需深入探討。因此,以線上審議之可行性及具體操作模式為背景,透過「109 年 Let’s Talk 討論議題」及「如何透過數位方式(「小校聯盟」、「數位學伴」)改善偏鄉教育資源?」為主題,共辦理 5 場,每場 2 小時的審議民主線上會議,邀集審議公民及主持人共 14 至 16 位,另安排 5 位審議觀察員,總共 88 位民眾參與,運用數位會議工具、即時通訊軟體,不僅帶動民眾參與線上審議的風氣,也為線上審議增添寶貴的研究成果,形塑青年公共參與文化並實踐數位民主。有關研究結果將在 4 月底前,於青年署官方網站公開,歡迎有興趣的民眾點閱。

此外,為因應線上審議推展,青年署以電玩、打怪等元素,策劃「青年打通關!審議來闖關」免費線上課程,讓學習可以不受時間、空間的限制,輕鬆累積知識,課程教材已於「e 等公務園+學習平臺」、青年署「超牆青年 E 學院」、YouTube 頻道以及泛科學院等網路平臺上架。

-----廣告,請繼續往下閱讀-----

除了線上課程,審議民主實體培訓也即將於 5 月 1 日至 2 日在臺北舉辦,有興趣的青年夥伴,只要符合報名資格(18 至 35 歲),趕緊在 4 月 18 日前至報名網頁報名。

-----廣告,請繼續往下閱讀-----

0

0
0

文字

分享

0
0
0
燒毀基地台防堵新冠疫情?科學素養當道下的省思
科學月刊_96
・2020/07/08 ・2619字 ・閱讀時間約 5 分鐘 ・SR值 605 ・十年級

-----廣告,請繼續往下閱讀-----

  • 廖英凱/非典型的不務正業者、興致使然地從事科普工作、科學教育與科技政策研究。對資訊與真相有詭異的渴望與執著,夢想能做出鋼鐵人或心理史學。

2019 冠狀病毒疾病和 5G基地台等新興科學與技術議題,除涉及知識鴻溝和價值差異外,也涉及當代科學的不確定性,不確定性既可來自科學發展中與事實有關的未知謎題,也可涉及與價值有關的選擇與判斷。

圖/af.mil

今(2020)年初始,2019 冠狀病毒疾病(Coronavirus disease 2019, COVID-19)自中國武漢往世界蔓延。

面對來得又急又快的新型病毒,世界各地也因不同的文化與教育程度,催生出了各種謠言或假訊息。而在各種真假訊息之中,令人匪夷所思的是隨著 5G 網路(5th generation mobile networks)的陸續商轉,4 月初在英格蘭與荷蘭,即發生民眾誤信 5G 網路會散布新冠病毒(SARS-CoV-2),或認為 5G 網路會損害免疫系統,而聚眾焚毀基地台。

-----廣告,請繼續往下閱讀-----

若將時間拉回到 16~17 世紀,歐洲各地正處於「獵巫」審判的最高峰,彼時人們認為巫術信仰與厄運、疾病和死亡有關,相信與巫術信仰有關的巫師或女巫及其屍首會帶來災禍,必須要以火刑淨化。事證的檢視與刑罰的判定,多在世俗法庭而非宗教審判所,也欠缺神學與法律的嚴謹基礎。

歷經 4、500 年後,人們已不再將疾病導因於巫術與巫師,但對於新興疾病的未知特性,卻歸咎給了基地台、電磁波和當代新興科技。荒誕的燒毀基地台辟瘟,似乎也頗有千年傳統再次感受的味道。啟蒙時代(Age of Enlightenment)至今三百載,人類自詡進步之路上,似乎還出了點什麼問題……。

電磁恐慌?主流科學難以撼動的經典傳言

恐懼電磁波、電場和磁場對身體帶來危害一直是部份環境和公衛等倡議人士關注的焦點。在臺灣十餘年來,舉凡如行動通訊基地台、雷達站、變電所、高鐵車廂與電子產品等,都曾遭遇過抗議或要求電磁強度標示或管制等倡議。

許多環境倡議者強調新興科技對健康的疑慮。圖/pixnio

-----廣告,請繼續往下閱讀-----

這類議題也不斷重演著少數環境倡議者與科學家的論戰。此類論戰大致可化約理解為環境倡議者多強調新興科技對健康的疑慮、主張環境電磁波的總量管制和警語標示,可視為一種持守「預警性原則」的保守心態。但科學社群則多強調電磁場的物理性質、人造電磁場與地球環境電磁場的相比、大規模公衛研究的成果及原分子尺度的因果研究,可說是一種基於「科學實證」的進取態度。

這兩類迥異態度的拉鋸,是有助於科技政策制定中的事實認定和價值判斷釐清的必要爭論,政策制定與溝通正是在兩種態度的權衡中尋求符合在地情境的最佳解。然而,兩種態度的爭論,呈現於一般傳媒、利害關係民眾所接受到的訊息時,往往僅存片面、造成恐慌與偽科學的資訊。最終演變成倡議者對抗科學霸權的血淚控訴,與科學社群對民眾科學素養低落的失落無策。

走向科學?先天不足後天失調的崎嶇路

對於追求前沿知識的科學社群,當中的科學研究體制成熟且穩定發展。但對於不屬研究者的一般公眾,科學知識在日常生活的取得、理解與應用,仍屬陌生且艱難。特別是對於涉及科學的社會議題,受到科學知識發展高度分化的影響,一般公眾幾無餘力充分理解議題中所蘊含的科學知識,難以在專業知識層次上與該領域專家平等對談,而往往仰賴受信賴的專家論點與指引。科學議題也可能受到來自利益和不當理念驅動的惡意倡議,使科學內容受到誤解、扭曲或偽造。

此外,如 2019 冠狀病毒疾病和 5G 基地台等新興科學與技術議題,除涉及知識鴻溝和價值差異外,也涉及當代科學的不確定性,不確定性既可來自科學發展中與事實有關的未知謎題,也可涉及與價值有關的選擇與判斷。這使得從公眾的角度看待科學時,科學並非也不該總是呈現對錯分明的樣貌,而是具有多元解讀、結論模糊的特色,而仰賴眾研究者勇踏前人未知之境的恆常努力。

-----廣告,請繼續往下閱讀-----

人們自覺關乎自己時,才會有所行動。圖/giphy

當科學議題與風險有關,而仰賴公眾權衡輕重時,內在於公眾的心智機制,也不利於科學議題的判斷。舉凡疫苗、基改、公共衛生、能源與環保等諸多涉及科學的社會議題中,人類對風險判斷過程的損益權衡,常有不一致或矛盾的判斷標準,甚至可受到修辭的影響。例如特維爾斯基(Amos Tversky) 和卡尼曼(Daniel Kahneman)在 1981 年提出的研究發現,當一個議題被描述為 30% 人死亡或描述為 70% 人存活,對於公眾就會產生迥異的情緒感知進而得到不同的決策或判斷。

這種認知上的特色,使得人類感受到的風險與實際帶來的風險並沒有正相關。而當風險事件引發情緒時,人類容易讓情緒感覺驅動行為決策,例如使人過度害怕愛滋病毒卻輕忽肥胖,過度害怕焚化爐空汙卻輕忽菸害,更有甚者,會傾向於詆毀新科技的問世。

因此,若要細究焚毀基地台防疫民眾的動機,可能並非單純的科學知識缺乏或誤信錯假訊息。還跟外在於公眾──科學發展的複雜與不確定性,及內在於公眾──風險判斷的心智認知有關。

-----廣告,請繼續往下閱讀-----

內化科學?知識傳遞的百年窠臼

科學議題判斷的困難,促使廣義的科學界肩負起「撥亂反正」的責任。然而,時至今日,無論體制外的科學傳播或體制內的科學教育,既難堪稱知識傳播的主流於回應真實世界的科學議題,也常有相當距離。儘管近年科學傳播理論已開始轉向具有雙向溝通、參與真實社會議題的「公眾參與科學」,或導入宏觀「科學素養」的科學教育理念。

但多數科學傳播文本或形式,仍屬將科技新知、艱難知識轉化並報導給目標受眾,多維持單方向知識傳遞的「公眾理解科學」階段,較少理解公眾因應科學議題的脈絡,而略難呼應真實社會的科學爭議。科學傳播者雖作為科學知識和公眾之間的「中介者」,但如《科學月刊》前總編輯林基興博士等,直接涉入爭議科學議題的溝通或決策場域也屬罕見。

林基興博士在泛科學的專欄文章。圖/截圖自泛科學

回首臺灣的情境,雖然沒有誇張到燒毀基地台,但也曾有抗議氣象雷達站與阻擋海底電纜的社會爭議,迄今也有現任立委因顧慮電磁波危害,在選前提出反對雷達站、各式基地台和海底電纜等主張。

-----廣告,請繼續往下閱讀-----

形塑科學文化的使命,不僅止於教化與啟迪,更在爭議科學議題的辯證之間。

延伸閱讀

  • Gawande, A., The mistrust of science, The New Yorker, 2016/6/10.

 

 

〈本文選自《科學月刊》2020年7月號〉

科學月刊∕在一個資訊不值錢的時代中,試圖緊握那知識餘溫外,也不忘科學事實和自由價值至上的科普雜誌。

-----廣告,請繼續往下閱讀-----
科學月刊_96
249 篇文章 ・ 3737 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。