0

0
0

文字

分享

0
0
0

什麼是重力波?又該如何觀測與計算呢?——《科學月刊》

科學月刊_96
・2016/02/11 ・5887字 ・閱讀時間約 12 分鐘 ・SR值 592 ・九年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

林俊鈺/國研院高速網路與計算中心副研究員,協助推廣產學界的高速計算應用。研究興趣為平行計算與天文物理。

1
Source: shutterstock

重力,是生活中最熟悉的基本作用力,也是科學革命的起源之一。自16 世紀以來,科學家如哥白尼、布拉赫、伽利略、克卜勒等人,從天體軌道的觀測歸納出行星運動的規律與太陽系的樣貌,並且在牛頓的《自然哲學的數學原理》中精簡成三大運動定律與萬有引力定律,影響了往後約兩百年的科學思想。

2
《自然哲學的數學原理》Source: Wiki

1915 年,愛因斯坦的廣義相對論,對強重力下的牛頓理論做了修正,並成功解釋水星軌道偏移(進動)(參考動畫)與牛頓理論所預測的差異。這每一世紀僅僅43 角秒的微小偏移,代表兩個理論對時空本質截然不同的解釋。重力被重新詮釋成質量彎曲時空的結果,所造成的現象如時間延遲、光線偏折或是重力造成的頻率偏移等,已在過去一個世紀中太陽系內的各種精密實驗得到證實。我們日常生活中所依賴的全球定位系統,也利用廣義相對論進行修正,以抵銷高度約兩萬公里的衛星與地面的時間差。

何謂重力波?

廣義相對論發表的隔年,愛因斯坦發現弱重力場近似下的場方程式具有波動特性:就如同電荷的加速會輻射出電磁波,質量的加速也會輻射出重力波,並以光速傳遞重力場的能量、動量與角動量。

所謂的重力波,即是「時空曲率」以波的形式向外傳播的擾動。時空曲率是引力的來源,當光線經過質量較大的星球時,會造成光線路徑的彎曲。質量越大,所造成的曲率也越大。時空曲率也會影響長度或角度等幾何性質的變化,而長度變化比率正比於重力波的振幅。任何非對稱的質量分布變化(精確地說,是質量的四極矩變化:以橄欖球為例,沿著長軸轉動並不會產生重力波,但沿著其他軸轉動則會)都會產生重力波,例如旋轉的中子星、或其他緻密星體如黑洞的互繞與碰撞、超新星爆炸、甚至是宇宙誕生的大爆炸,都會產生如漣漪般的時空曲率波動,並傳遞至地球造成微小的長度變化。

重力效應無法藉由單顆粒子的運動來測量,因為我們無法區分局部重力與加速下的慣性力兩者間的差別,如:電梯上升瞬間的加速度,就像重力一般會使人感覺變重(即等效原理)。真正可觀測的效應是潮汐力,即物體因重力,而感受到垂直兩方向的收縮及擴張,就好像地表海水受月球影響在不同處形成的漲潮與退潮。

3

假設有一平面重力波穿出紙面以z 軸傳遞,潮汐力會使下圖環形排列的測試質量分別在垂直與水平方向擴張與壓縮,兩個偏振方向差別45 度。但它的效應實際上十分微弱,比如在室女座星系團的雙中子星碰撞產生的重力波,經過四千五百萬光年傳遞到地球的振幅──僅10-20 量級,也就是每公里的長度改變只有原子核尺度的百分之一。而人為造成的重力波更小了,愛因斯坦方程式的非線性性質也讓近距離的重力波定義不那麼明確。

環形排列的測試質量受不同偏振方向之重力波下的影響。 (Wm. Robert Johnston)
環形排列的測試質量受不同偏振方向之重力波下的影響。 (Wm. Robert Johnston)

如何觀測重力波?

重力波是否只是單純的座標變換假象?愛因斯坦也曾懷疑重力波是否可能被觀測到。重力波存在的間接證據,在80 年代以後才逐漸明朗,並於脈衝雙星軌道週期的觀測中被證實。不過早在60 年代起,馬里蘭大學的韋伯(Joseph Weber)就開始嘗試觀測重力波。他所製作的探測器是一個兩公尺長,直徑一公尺的鋁製圓柱,共振頻率約在1660 Hz,表面的壓電材料會因重力波通過而形變並產生電流。韋伯準備了兩個相距約一千公里的相同偵測器以排除局部區域的雜訊,並宣稱觀測到來自銀河系中心的重力波。然而,此實驗引起相當多爭議,現今也認為當時的靈敏度並不足以觀測到訊號,但韋伯啟發了後來的重力波探測。韋伯的共振型探測器的頻寬較窄為其致命傷。所以自60 年代開始,包含韋伯本人的科學家,開始思考利用麥克遜干涉儀來測量重力波所造成的潮汐力。

5
雷射干涉儀重力波探測器示意圖。 Source: Yinweichen

干涉儀利用雷射光的相位干涉來測量微小距離變化:如上圖,穩定的雷射光經由分束器分為兩束,並分別在兩測試質量(反射鏡)間所形成的光學共振腔(光儲存臂)中來回數百次後,沿原路回到分束器合併,並產生干涉條紋。共振腔可使光程增加數百倍並提高靈敏度。當重力波經過時,干涉儀兩臂的長度改變就會造成干涉條紋變化。大型雷射干涉儀的規模遠比共振圓柱探測器宏大,無論建置或運作都涉及龐大團隊,所以在70 年代末期,科學家開始從數十公尺的小型干涉儀測試所需的技術。90 年代起,開始規劃公里等級的地面大型重力波雷射干涉儀。

目前運作中的第一代重力波干涉儀網路包括美國華盛頓與路易西安那的兩座偵測器LIGO、義大利的Virgo、德國的GEO600、日本的TAMA300。由於宇宙中的重力波波源及波長通常遠大於公里尺度的干涉儀,因此單座干涉儀的方位解析度很低,干涉儀網路除了能消除局部區域雜訊以增加信號可信度外,也強化了定位能力。第一代干涉儀網路可定位波源方向約十幾度的解析度;相比之下,電磁波的觀測動輒能達到角秒以下的解析度。

6
美國華盛頓重力波偵測器:LIGO。 Source: 左(Keenan Pepper)、中(Dmitry Alexeenko)、右(DmitryAlexeenko)

預計2015 年底後,第二代重力波干涉儀將陸續運作,以觀測十到十萬赫茲範圍的重力波。除了第一代成員的升級,印度的IndIGO 也將加入,方位解析度也可提高。它們的靈敏度與觀測半徑約是第一代的十倍,也就是一千倍的觀測範圍與機率,可偵測十億光年內的雙中子星碰撞,或更遠的黑洞碰撞,遠遠超過我們所處的超星系團。歐洲太空總署也預計在十年內,將三艘太空船組成的大型雷射干涉儀eLISA 送入地球公轉軌道,以探索更低頻的重力波,約是地面干涉儀頻段的萬分之一。

自21 世紀初以來,雖然尚未直接觀測到重力波,但技術上確實可在各種內外的震動、熱擾動、以及雷射光的量子擾動下,測量遠小於原子核尺度的長度變化。目前的結果也提供了重力波的相關訊息:例如,脈衝星的自旋減慢速度、黑洞或中子星雙星系統的發生機率、重力波背景輻射(來自於早期宇宙的原始重力波、或是銀河系內許多鄰近白矮星碰撞所造成的重力波總和)的強度上限。

重力波計算

為了實際將重力波應用到未來的天文學上,針對緻密雙星如黑洞或中子星的互繞與碰撞所產生的連續重力波訊號,科學家必須先建立不同波源及參數的波形,作為匹配濾波(matched filtering)的模板,與觀測信號逐一比對,以擷取出波源質量、自旋、自轉周期、軌道面及方位等訊息。就像指紋比對或是潛艇利用聲紋資料庫比對來判斷敵艦。

黑洞可說是廣義相對論中最神祕的部分,卻是個沒有內部結構的單純物體,只需要質量、角動量與電荷三個參數即可描述,而且它們的動力學僅牽涉時空的演化。實際的黑洞周遭多半會圍繞著星際電漿等物質,並且伴隨吸積過程產生各種電磁輻射,增加了建立數學模型的困難。相比於牛頓雙體運動的圓錐曲線解析解,雙黑洞演化——最簡單的廣義相對論雙體運動,也倚賴愛因斯坦方程式的數值計算,特別是中段的融合波形,直到2005 年才首度被計算出來。

7
雙黑洞與吸積盤的演化模擬。從上到下顯示雙黑洞從開始脫離吸積盤後旋入到融合的過程,可以清楚觀察各別的黑洞磁場集中至兩極形成噴流並合併成一條。  Source: Roman Gold et al. in arXiv:1312.0600 and arXiv:1410.1543

雙黑洞演化會以近乎圓形軌道互繞旋入(Inspiral)、碰撞融合(merger)、最後趨於穩定(Ringdown),過程中的重力波頻率逐漸上升,每互繞一圈並產生出兩個周期的重力波。當雙黑洞距離夠遠時,互繞的速度遠小於光速,軌道半徑因微弱的重力輻射逐漸縮小;到了臨界距離,約為事件視界(event horizon,可視為黑洞的邊界,任何訊息,包括光,一旦進入就無法逃出,完全獨立於視界外的觀察者)半徑的八倍時,黑洞接近光速,強大潮汐力使雙黑洞傾刻間撕裂崩潰並碰撞融合成單一黑洞,產生最強的重力波;最後,融合後的黑洞震盪並逐漸靜默成為靜態黑洞,此時的頻率約為反比於質量的自然振動頻率。整個過程大約損失10%以下的質量轉變成重力波輻射。一個十倍太陽質量的黑洞雙星臨界距離約為兩百公里,融合過程只需數百毫秒。

數值相對論

模擬非線性愛因斯坦方程式衍生出一門新興學科:數值相對論。計算上的首要問題是,如何在形式上為四維的愛因斯坦方程式中,解讀出空間與時間概念?畢竟自1905 年的狹義相對論後,物理定律都可用四維張量(可以想像成具有多個方向的向量)表示,使得慣性座標下的物理定律都具有一樣的形式:物理現象雖看似不同,但在各個平移、轉動及等速座標系間皆有確定的(羅倫茲)轉換關係(就好像在非相對論的日常經驗下,我們用向量來描述物體運動並熟悉它的轉換,因此在雨中奔跑時,預期垂直下落的雨滴會迎面而來一般)。更遑論廣義相對論下,每一點都可以有不同的慣性座標,使得時間與空間的概念更糾纏不清。

經過了近半個世紀後,形式上四維的愛因斯坦方程式終於被拆解成較明確的三維空間的演化方程。在分解表示下,四維時空可被任意地「切」成三維空間的堆砌,不同的切法是由四個參數來描述,分別代表相鄰切片的時間與空間平移。一旦知道某初始切片的三維內稟曲率(只依賴於切片上的幾何性質,例如三角形的內角和,而不依賴於它如何鑲嵌在四維時空)以及「速度」(也就是三維切片的外賦曲率,描述該曲面如何鑲嵌在四維內。例如,將一張紙捲曲成圓柱狀,即使在三維空間看起來,二維紙面的法向量呈現發散狀──外賦曲率增加,但對於紙面上的螞蟻而言,它們所畫出的三角形內角和為180 度,內稟曲率仍為零),並設定相鄰切片的四個參數,愛因斯坦方程式就能決定接下來的演化結果。無論怎麼切,拼湊起來都可重建成相同的四維時空。這也意味著座標只是一種標記,不會影響到原本的幾何性質。以一條白吐司的三維空間為例,可以選擇漂亮地切成每一片寬度相同的二維片,也可以切得歪七扭八,但拼湊起來都會重建成相同幾何性質的三維白吐司。

在過去,即使是最簡單的單黑洞計算模擬也非常不穩定,對於十倍太陽質量的單一靜態黑洞系統的預測尚不及半秒鐘,就好像只能預測下一秒鐘的氣象預報是沒有意義的。人們逐漸了解這並不是數值方法的問題,而是演化方程式本身的不穩定,使得在有限位數的電腦計算中,微小誤差迅速地以指數成長並破壞計算結果。

1995 年後,日本與美國的物理學家分別以數學上等價的演化方程式解決了不穩定的問題,搭配上適當的時空切片,之後的發展豁然開朗。第一個完整的雙黑洞旋入碰撞融合波形在2005 年分別由加州理工學院、美國太空總署與德州大學三個研究群發表。現在的科學家已有能力以數百台電腦進行長時間的黑洞或中子星模擬。目前的趨勢是考慮更實際的相對論電磁流體問題,如吸積盤與噴流、中子星黑洞演化、超新星爆炸過程等。

數值相對論在重力波觀測上扮演獨特的角色,因為它是唯一可計算出複雜天體過程及其完整重力波的工具。未來,這些精確波形將作為波形模板,與重力波干涉儀的觀測做交叉比對以獲取波源性質。隨著觀測靈敏度增加,就需要更準確的模擬波形。數量也是挑戰之一,例如雙黑洞波形就至少包含七個參數,如質量比、自旋等,即使每個維度只取十個代表點,波形模板數量也很驚人,因此除了資料的降維技術等其它近似方法,龐大計算量不可避免,模板數量需求甚至可達百萬數量級。如果考慮更複雜的中子星系統,包含電磁場、微中子傳輸方程、輻射傳輸等熱效應,參數空間更大。

模擬與觀測

從2006 年起,模擬與資料分析團隊逐漸建立起共同語言,並在2009 年後,開始正視理論或數值波形在重力波干涉儀觀測中扮演的角色,此時全球的重力波干涉儀觀測已進行一段時間了,並且LIGO 正起動第六次的運行。在這一次運作中,觀測團隊祕密地將一個模擬重力波訊號「注入」到干涉儀網路中,人為製造反射鏡的移動以產生假信號,來測試資料分析團隊是否可將該信號找出來。結果不負眾望,他們獨立地發現了這個模擬的雙黑洞碰撞訊號,並且通知合作的天文台關注該天區接下來的發展。未來的模擬將朝向最極端天文現象的分析。以「伽瑪射線爆」為例,吸積物質、磁場與重力的交互作用會產生高能量光子與可觀測的電磁訊號,例如電子加速形成的同步輻射,或是光子與原子碰撞產生逆康普敦散射而獲得的能量。

最近2011 年的模擬中,科學家首次計算出兩個直徑約十幾公里的中子星碰撞融合成黑洞,並產生噴流的過程。在融合後的瞬間,磁場從一團混亂的炙熱物質中逐漸增加至地球磁場的一千兆倍,並且向兩極形成類似漏斗的狹窄通道,形成高能量噴流。在雙黑洞模擬中也出現類似的噴流。這些噴流或電磁輻射與重力波形成的時間及強度關係,都是理解未知天文過程以及增加重力波觀測的機會。

8
耗時將近兩個月的中子星碰撞模擬。在這個歷時不到30 毫秒的炫麗過程,顯示中子星融合並形成黑洞後的瞬間,以白色線條表示的磁場迅速增強自並從兩極延伸出去。 Source: M. Koppitz and L. Rezzolla from NASA/AEI/ZIB

高能天文物理現象,往往伴隨著物質與強重力場的相互作用,因此仰賴廣義相對論扮演探索未知宇宙的嚮導;另一方面,深空的觀測也同時檢驗著這些基本理論。未來的天文學將結合重力波觀測以及近來的宇宙線或微中子觀測,開啟探索宇宙的另一扇窗,讓我們一窺宇宙深處,帶來新的驚奇。近一個世紀的重力波理論,在經歷近半個世紀的觀測實驗後,也將有希望在下階段的大型觀測中獲得直接證實。

延伸閱讀:

  1. Kip S. T., Black Holes and Time Warps: Einstein’s Outrageous Legacy, 1995.
  2. Sathyaprakash, B. S., Schutz, B. F., Physics, Astrophysics and Cosmology with Gravitational Waves, 2009.
  3. Centrella, J. M. et al., Black-hole binaries, gravitational waves, and numerical relativity, Rev. Mod. Phys., Vol. 82:3069, 2010.

1234〈本文選自《科學月刊》2015年8月號〉

延伸閱讀:
愛因斯坦與廣義相對論的誕生
時間起源與量子重力

什麼?!你還不知道《科學月刊》,我們46歲囉!
入不惑之年還是可以
當個科青

文章難易度
科學月刊_96
231 篇文章 ・ 2292 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

1

2
0

文字

分享

1
2
0
金魚的記憶才不只 7 秒!記憶力怎麼回事?好想要超大記憶容量
鳥苷三磷酸 (PanSci Promo)_96
・2022/12/01 ・2720字 ・閱讀時間約 5 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文由 美光科技 委託,泛科學企劃執行。

你是不是也有過這樣的經驗?本來想上樓到房間拿個東西,進到房間之後卻忘了上樓的原因,還完全想不起來;到超巿想著要買三四樣東西回家,最後只記得其中兩樣,結果還把重要的一樣給漏了;手機 Line 群組裡發的訊息,看過一轉身回頭做事轉眼就忘了。

發生這種情況,是不是覺得很懊惱:明明才想好要幹嘛,才不過幾秒鐘的時間就全部忘記了?吼呦!我根本是金魚腦袋嘛!記憶力到底是怎麼回事啊?要是能擁有更好的記憶力就好了!

明明才想好要幹嘛,一轉眼卻又都忘記了。 圖/GIPHY

金魚的記憶才不只 7 秒!

忘東忘西,我是金魚腦?!無辜地的金魚躺著也中槍!被網路流傳的「魚只有 7 秒記憶」的說法牽累,老是被拖下水,被貼上「記憶力不好、健忘」的標籤,金魚恐怕要大大地舉「鰭」抗議了!魚的記憶只有 7 秒嗎?

根據研究顯示,魚類的記憶可以保持一到三個月,某些洄游的魚類都還記得小時候住過的地方的氣味,甚至記憶力可以維持到好幾年,相當於他們的一輩子。

還有科學家發現斑馬魚在經過訓練之後,可以很快學會如何走迷宮,根據聲音信號尋找食物。但是當牠們壓力過大時會記不住東西,注意力分散也會降低學習效率,而且記憶力也會隨著衰老而逐漸衰退。如此看來,斑馬魚的記憶特點是不是跟人類有相似之處。

記憶力到底是怎麼回事?

為什麼魚會有記憶?為什麼人會有記憶?記憶力跟腦袋好不好、聰不聰明有關係嗎?這個就要探究記憶歷程的形成源頭了。

依照訊息處理的過程,外界的訊息經由我們的感覺受器(個體感官)接收到此訊息刺激形成神經電位後,被大腦轉譯成可以被前額葉解讀的資訊,最終會在我們的前額葉進行處理,如果前額處理後認為是有意義的內容就有可能被記住。

在問記憶好不好之前,先了解記憶形成的過程。圖/GIPHY

根據英國神經心理學家巴德利 Alan Baddeley 提出的工作記憶模式,前額葉處理資訊的能力稱為「短期工作記憶」,而處理完有意義、能被記住的內容則是「長期記憶」。

你可能會好奇「那記憶能被延長嗎」?只要透過反覆背誦、重覆操作等練習,我們就有機會將短期記憶轉化為長期記憶了。

要是能有超大記憶容量就好了!

比如當我們在接聽客戶電話時,對方報出電話號碼、交辦待辦事項,從接收訊息、形成短暫記憶到資訊篩選方便後續處理,整個大腦記憶組織海馬迴區的運作,如果用電腦儲存區來類比,「短期記憶」就像隨機存取記憶體 RAM,能有效且短暫的儲存資訊,而「長期記憶」就是硬碟等儲存裝置。

從上一段記憶的形成過程,可以得出記憶與認知、注意力有關,甚至可以透過刻意練習、習慣養成和一些利用大腦特性的記憶法來輔助學習,並強化和延長記憶力。

雖然人的記憶可以被延長、認知可以被提高,但當日常生活和工作上,需要被運算處理以及被記憶理解的事物越來越多、越來越複雜,並且需要被快速、大量地提取使用時,那就不只是記憶力的問題,而是與資訊取用速度、條理梳理、記憶容量有關了!

日常生活中需要處理的事務越來越多,那就不只是記憶力的問題,而是有關記憶力容量的問題了……。圖/GIPHY

再加上短期記憶會隨著年齡增加明顯衰減,這時我們更需要借助一些外部「儲存裝置」來幫我們記住、保存更多更複雜的資訊!

美光推出高規格新一代快閃記憶體,滿足以數據為中心的工作負載

4K 影片、高清晰品質照片、大量數據、程式代碼、工作報告……在這個數據量大爆炸的時代,誰能解決消費者最大的儲存困擾,並滿足最快的資料存取速度,就能佔有這塊前景看好的市場!

全球第四大半導體公司—美光科技又領先群雄一步!除了推出 232 層 3D NAND 外,業界先進的 1α DRAM 製程節點可是正港 MIT,在台灣一條龍進行研發、製造、封裝。日前更宣布推出業界最先進的 1β DRAM,並預計明年於台灣量產喔! 

美光不久前宣布量產具備業界多層數、高儲存密度、高性能且小尺寸的 232 層 3D NAND Flash,能提供從終端使用者到雲端間大部分數據密集型應用最佳支援。 

美光技術與產品執行副總裁 Scott DeBoer 表示,美光 232 層 3D NAND Flash 快閃記憶體為儲存裝置創新的分水嶺,涵蓋諸多層面創新,像是使用最新六平面技術,讓高達 232 層的 3D NAND 就像立體停車場,能多層垂直堆疊記憶體顆粒,解決 2D NAND 快閃記憶體帶來的限制;如同一個收納達人,能在最小的空間裡,收納最多的東西。

藉由提高密度,縮小封裝尺寸,美光 232 層 3D NAND 只要 1.1 x 1.3 的大小,就能把資料盡收其中。此外,美光 232 層 NAND 存取速度達業界最快的 2.4GB/s,搭配每個平面數條獨立字元線,好比六層樓高的高速公路又擁有多條獨立運行的車道,能緩解雍塞,減少讀寫壽命間的衝突,提高系統服務品質。

結語

等真正能在大腦植入像伊隆‧馬斯克提出的「Neuralink」腦機介面晶片,讓大腦與虛擬世界溝通,屆時世界對資訊讀取、儲存方式可能又會有所不同了。

但在這之前,我們可以更靈活地的運用現有的電腦設備,搭配高密度、高性能、小尺寸的美光 232 層 NAND 來協助、應付日常生活上多功需求和高效能作業。

快搜尋美光官方網站,了解業界最先進的技術,並追蹤美光Facebook粉絲專頁獲取最新消息吧!

參考資料

  1. https://pansci.asia/archives/101764
  2. 短期記憶與機制
  3. 感覺記憶、短期記憶、長期記憶  
  4. 注意力不集中?「利他能」真能提神變聰明嗎?

文章難易度
所有討論 1

0

1
0

文字

分享

0
1
0
薛丁格的貓是死是活?再不懂點量子就落伍了!——《我們的生活比你想的還物理》
商周出版_96
・2022/12/06 ・2327字 ・閱讀時間約 4 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

奧地利的物理學家薛丁格最初閱讀愛因斯坦和德布羅意的論文後,也注意到物質波的概念,並進而闡釋發展成波動力學,促成量子力學誕生。薛丁格的波動力學是後來量子力學的具體論述之一, 薛丁格波動方程式更是量子力學最重要的方程式之一,也是現代人研究發展量子電腦的重要思維。

繼續討論薛丁格的想法前,容我「插播」兩種說法,一種是「哥本哈根詮釋」,一種是「愛因斯坦悖論」。

萬物受機率支配?愛因斯坦可不這麼認為

前面提到電子的雙狹縫干涉實驗,說明在微觀世界的電子具有波動性。在電子的雙狹縫干涉實驗中,為何被觀測到的電子只有在屏幕的一點留下痕跡呢?照理說,在屏幕的任意地方都能發現電子的蹤跡。然而,當我們「觀測」到屏幕的一「質點」的電子的瞬間,電子的波函數立即「塌縮」。

物理學家解釋這是因為電子的波函數與發現機率有關,亦即觀測電子時,電子波會縮小分布範圍, 呈現電子的粒子形式。活躍於哥本哈根的波耳等人認同這種融合「波函數塌縮」和「機率詮釋」的想法,因此成為「哥本哈根詮釋」。至於「電子波為何會塌縮?」是一個未解之謎。

自然界真的受到機率的支配嗎?真的大哉問啊!

愛因斯坦儘管預言光子存在,提出光量子論,但他強烈反駁「機率論」的觀點。對於哥本哈根學派的「機率詮釋」和「波的塌縮」,愛因斯坦以「上帝不玩擲骰子的遊戲」批判哥本哈根詮釋, 完全不能接受哥本哈根學派主張「決定一切事物的上帝竟然會依照擲出骰子出現的點數決定電子的位置」。

「上帝不玩擲骰子的遊戲」批判哥本哈根詮釋。圖/GIPHY

愛因斯坦也指摘「幽靈般的超距作用」。他認為未來已經確定,反駁「自然界曖昧不明」的不確定性,進一步指出「自然界並非曖昧不明,而是量子論還不完備,無法正確闡述自然界的緣故」。以上所提,是量子力學發展歷程的觀點論戰的故事,包含 1935 年,愛因斯坦和共同研究者波多斯基(Boris Podolsky)、羅森(Nathan Rosen)聯合發表觸及量子論矛盾的「EPR 悖論」(Einstein-Podolsky-Rosen paradox)。

迄今,我們已經知道微觀世界,電子等粒子會自己旋轉,具有「自旋」的物理量,或直接用專業術語「自旋角動量」,自旋的方向依據量子論會以多個狀態同時存在,並存或疊合。

愛因斯坦等人認為,對於相距非常遙遠的電子,不可能無時間限制,瞬時互相影響;根據狹義相對論的說法,沒有任何物體的飛行速度比光速還快。觀測相距遙遠的兩粒子之一,竟然會在瞬間同時決定兩者的狀態,這樣特殊奇妙的現象,愛因斯坦稱之為「幽靈鬼魅般的超距作用」。

沒錯!又要提那隻貓了

薛丁格曾以「量子糾纏」解釋愛因斯坦論文中的悖論現象,指出互相遠離的粒子的性質,並非各自獨立,而是成組決定,無法個別決定,這個現象是 2022 年諾貝爾物理學獎得獎主題的「量子糾纏」。如果能這樣思考,那麼就不會認為粒子是瞬間傳送並影響到遠方粒子,有如「幽靈般的超距作用」。

貓同時是活和死的「疊加」。圖/維基百科

談到量子力學,「薛丁格的貓」此知名想像實驗必定會浮現在讀者的腦海中吧?此實驗探討一隻貓的狀態究竟是活或死的,而實驗結果是:貓同時是活和死的「疊加」。如果以古典物理學來思考,會顯得極其荒謬;但若以微觀世界視之,這項理論其實符合電子波粒二象性的機率概念。

根據 1927 年量子力學學派的詮釋,觀察一個量子物體時,會干擾其狀態,造成其立即從量子本質轉變成傳統物理現實。原子及次原子粒子的性質,在量測之前並非固定不變,而是許多互斥性質的「疊加」。此觀念的知名例子就是「薛丁格的貓」實驗。

在這個想像的實驗中,一隻貓被鎖在一個箱子中,並有一個毒氣瓶,在量子粒子處於某狀態下毒氣瓶會破裂,但若該粒子處於另一狀態,則毒氣瓶會完好無損。如果將箱子封閉,此粒子的量子狀態是兩種狀態「共存」的情況,也就是說,毒氣既是已從瓶中放出,又被封存在瓶中,也因此,箱中的貓同時既是活的也是死的。當箱子打開時,由於此量子疊加狀態瓦解了,因此在那瞬間,這隻貓或許被毒死,或許得以保命。

當箱子打開的瞬間,這隻貓或許被毒死,或許得以保命。圖/《我們的生活比你想的還物理

物理小教室

  • 索爾維會議

量子力學是近代物理學的重要基石,與相對論被認為是近代物理學的兩大基本支柱,許多物理學理論和科學,如原子物理學、固態物理學、核物理學和粒子物理學,都以其為基礎。物理學界往往會在物理重要會議激盪出重要的論述,例如 1927 年第 5 次索爾維會議,此次會議主題為「電子和光子」,當時世上最重要的物理學家,都聚集在一起討論新的量子理論。

1927 年第 5 次索爾維會議,此次會議主題為「電子和光子」。

——本文摘自《我們的生活比你想的還物理》,2022 年 11 月,商周出版,未經同意請勿轉載。

0

122
3

文字

分享

0
122
3
愛因斯坦是第一個發現狹義相對論的物理學家嗎?
賴昭正_96
・2022/10/21 ・7324字 ・閱讀時間約 15 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

  • 文|賴昭正/前清大化學系教授、系主任、所長;合創科學月刊

自從數學家入侵(狹義)相對論後,我自己也搞不懂了。
——愛因斯坦(Albert Einstein),1921 年諾貝爾物理獎得主

在「畢業求職碰壁,在伯爾尼專利局思索的愛因斯坦」裡,筆者提到了 1905 年愛因斯坦在專利局一口氣寫了五篇諾貝爾獎級的論文,投到德國名雜誌《物理年鑑》(Annalen der Physik),創造了理論物理界的一個「奇蹟年」。愛因斯坦曾希望他在《物理年鑑》這傑出期刊上的大量論文能夠讓他擺脫默默無聞的三流專利審查員,獲得一些學術認可,甚至找到一份學術工作;但是事與願違,反應卻是非常冷淡。

正在絕望之際,愛因斯坦於 1906 年 3 月突然收到了一位物理學家的反應;令他驚奇的是:這位物理學家竟然不是別人,而是當時歐洲受人尊敬的理論物理學大師普朗克(Max Planck)!

馬克斯.普朗克(Max Planck)。圖/維基百科

普朗克寫信告訴他說那篇題爲「關於運動物體的電動力學」(Zur Elektrodynamik bewegter Körper)論文「立即引起了我的熱烈關注」。在該論文出版後,普朗克立即在柏林大學講授相對論!由於他的影響,這個理論很快在德國被廣泛接受,並公開地為愛因斯坦理論辯護,反對一波又一波的懷疑論者,終於使這篇完全改變牛頓之時空觀念的論文與量子力學一起開創了近代物理學(詳見「除了發現量子力學,普朗克還有第二個重大發現是什麼?」)。

可是愛因斯坦真的是首位發現狹義相對論的物理學家嗎?

馬克斯威方程式:用簡單的公式解釋電磁學

在「近代物理的先驅:馬克斯威」裡,筆者提到曾被評選為有史以來第三大物理學家馬克斯威用簡潔數學方程式闡釋了當時已知的電磁現象。從那些簡潔的方程式中,他看出了原來的安培定律只適用於穩定的電流情況,因此人為地加進去一個現在稱為「位移電流」(displacement current)的項目!此「位移電流」不但解決了時變電場如何產生(誘導)磁場的問題(安培—馬克斯威定律),也讓馬克斯威看出電、磁本是一家人的對稱關係,使他成為第一位統合了自然界兩種不同作用力的科學家!也就是這一項令他在 1865 年導出電磁波的存在,並證明光事實上就是一種電磁波!

詹姆士.克拉克.馬克士威(James Clerk Maxwell)。圖/維基百科

這現在所謂的「馬克斯威方程式(Maxwell′s Equations)」事實上有一個很大的問題:與具有 300 多年歷史之牛頓力學衝突!在牛頓力學裡,速度是「相對」的;但馬克斯威方程式中卻包含與光源運動無關的「定值」光速(讀者注意到沒:牛頓第二定律公式只含加速度、沒有速度)!因此儘管後者在解釋電磁現象的成功是無可置疑的,不少理論物理學家還是想修正它使其能容於牛頓力學;其中最著名的就是眾所皆知的:認為空間充滿了絕對靜止的「以太」,「光速為定值」就是相對於這一固定的「以太」而言——這不但解決了光速問題,還使電磁波有個「機械」的基礎(像聲波需要靠空氣來傳播)。

於是實驗物理學家開始設計各種實驗來偵測這一「以太」或者地球在這一「以太」中的運動速度;不幸的是各種實驗都是空手而歸:偵測不到地球在「以太」中的運動速度(其中最著名的就是 1887 年之麥可森—莫利(Albert Michelson and Edward Morley)實驗)。於是理論物理學家就開始尋找各種理論來解釋這些失敗的原因……。

其中「最簡單的解釋」是:馬克斯威方程式適用於在「以太」中做等速運動的任何慣性系統(inertial frame)——稱為「相對性原理」(principle of relativity)。

相對性原理——伽利略

法國數學、物理、工程、哲學家龐加萊(Henri Poincaré)於 1904 年將「相對性原理」定義為:根據該原理,物理現象的定律無論是對於固定的觀察者,或等速平移運動的觀察者,都應該是相同的;所以我們沒有、也不可能有任何方法來辨別我們是否正在做這樣的運動。

事實上早在 1632 年,伽利略(Galileo Galilei)在「關於兩個主要世界系統的對話」(Dialogue Concerning the Two Chief World Systems)中,即已明確地闡述這一原理。正是因為這一個原理,所以我們沒有感覺到地球自轉及圍繞太陽運行(加速不夠快,所以大約是一個慣性系統);因此不管你什麼時候在台北或北京做實驗,所得到的結果或定律都應該是一樣的。

伽利略.伽利萊(Galileo Galilei)圖/維基百科

到了 19 世紀末、20 世紀初,物理學家已經完全接受這一原理。在數學上,他們謂牛頓力學定律必須符合「伽利略坐標轉換」(Galilean transformation)公式:物理定律不應因從甲坐標轉換到另一慣性系統之乙坐標而改變。馬克斯威方程式不符合這一坐標轉移,因此上面所提到的「最簡單的解釋」顯然不對!所以光速為定值還是一個謎。

洛倫茲與龐加萊

洛倫茲(Hendrik Lorentz, 1902 年諾貝爾物理獎得主)毫無疑問是十九世紀下半葉和二十世紀上半葉最偉大的物理學家之一。由於測不出地球在以太中的運動,洛倫茲提出理論謂:設備通過以太時,可能導致設備在運動方向上沿其長度方向收縮(空間收縮)。他進一步假設運動系統的「局部虛擬」時間[註1]也必須相應地改變(時間膨脹),導出了馬克斯威方程式必須符合的「洛倫茲(坐標)轉換」(Lorentz transformation)公式。

事實上龐加萊在 1898 年時即已意識到:「科學家必須將光速的恆定性作為一個假設,才能為物理理論提供最簡單的形式。」在相對性原理或洛倫茲轉換的物理解釋,龐加萊的貢獻至少比愛因斯坦早了 5 年;而在其它方面,他們的許多貢獻則可以說是同時發生的:例如不少科學家認為龐加萊 1905 年 6 月在法國科學院所宣讀的「關於電子動力學(Sur la dynamique de l’électron)」)刪節版,似乎「預見」了愛因斯坦 1905 年的相對論。

朱爾·亨利.龐加萊(法語:Jules Henri Poincaré) 圖/維基百科

愛因斯坦

1905 年,愛因斯坦在題為「關於運動物體的電動力學」的論文引言裡,開宗明義地謂「不要爭辯」光速了:

我們建議將「相對性原理」這個猜想(conjecture)提升到一個公設(postulate)的地位,並引入另一個表面上與前者不調和(irreconcilable)的公設,即光是在真空中的傳播速率為一與發射體運動狀態無關的定值 c[註2]。 這兩個假設足以(讓我們)透過適用於靜止物體(狀態)之馬克斯威理論,導出一個簡單且不矛盾(consistent)的電動力學理論。

然後開始討論「運動學」,以光在任何等速坐標中都相同為出發點,用簡單的數學討論同時性的定義、關於長度和時間的相對性、從一個固定系統到另一個系統的時間與空間之坐標轉換理論、運動剛體和運動時鐘方程的物理意義、及速度的組成(相對運動的速度相加)。在這一章節裡愛因斯坦不需任何極端近似,就能推導出「洛倫茲轉換方程式」、時間膨脹(time dilation)、「洛倫茲—傅玆久拉空間收縮」Lorentz-FitzGerald contraction)等等學物理的都耳熟能詳想的的觀念。

第二章「電動部分」所用的數學就複雜多了。愛因斯坦在這裡將新的空間和時間理論應用於馬克斯威電動力學,證明電場與磁場是一物的兩面,因運動者的觀點而不同;馬克斯威實際上是遵循慣性運動的相對性原理:但因為我們一直認為空間和時間具有牛頓性質,而不是狹義相對論,故我們沒有注意到它而已。

狹義相對論的關鍵是同時性的相對性,只有在相對運動速度很小的情況下,牛頓的絕對時間和空間觀念才能(近似地)適用。所以原來是牛頓力學,而不是「馬克斯威方程式」錯了!所以愛因斯坦在該論文的最後一節裡「修正」牛頓第 2 運動定律,得到電子[註3]的動能:

式中 v 為電子的運動速度,m0 為電子的質量。愛因斯坦只指出「(所以)大於光速的速度……,沒有存在的可能性」[註4]

所以,到底是誰發現相對論?

德國物理學家郭夫曼(Walter Kaufmann)可能是第一個注意到愛因斯坦這篇論文之一的人:1905 年,他比較了洛倫茲和愛因斯坦的理論,謂大部分的物理學家可能會較喜歡後者的方法,但他認為這兩種理論在觀察上是等價的,因此他把相對性原理稱為「洛倫茲—愛因斯坦理論」。

這算是客氣的了!1953 年,英國數學、物理、歷史學家魏達克爾(Edmund Whittaker)爵士在總體評價上是正面的「以太和電理論史」(A History of the Theories of Aether and Electricity)一書中聲稱:相對論是龐加萊和洛倫茲的創造,愛因斯坦的貢獻並不大。

「以太和電理論史」(A History of the Theories of Aether and Electricity)一書出版於 1910 年。圖/維基百科

事實上我們應該放棄優先權的無意義爭論,探討不同方法之間的異同才能看出愛因斯坦的貢獻。愛因斯坦徹底消除了在物理學中沒有任何作用的以太,以光在任何等速坐標中都相同為出發點,探討了「同時」、空間、和時間的相對性。相比之下,龐加萊認為以太是一種定義了「真實」空間和時間的特殊參考系統,其它框架中測量的空間和時間則只是「表面的」。 愛因斯坦從他的兩個假設,用最少的數學知識,導出了當時需要幾個極端近似的洛倫茲轉換式;而龐加萊則因這樣的轉換可使馬克斯威方程式保持不變,而「被動地」反向導出這些轉換。愛因斯坦的論文不是因為要解釋實驗結果而東拼西湊出來的,它是「從公理開始,然後從中進行推論……」的美麗又簡單的理論。從他的假設中準確地推導出了當時需要幾個極端近似才能得到的結果。

洛倫茲在十年後終於完全意識到他自己的論點和愛因斯坦的論點之間的區別,謂「如果我現在必須寫最後一章,我當然應該給愛因斯坦的相對論一個更突出的位置……。(他的)運動電磁現象理論系統具有我無法達到的簡單性。」儘管如此,洛倫茲(1853~1928)從未接受愛因斯坦的相對論觀點——這讓愛因斯坦非常傷心,因為洛倫茲是他最敬佩的四位物理學家之一(其他三位是伽利略、牛頓、馬克斯威)。

愛因斯坦與洛倫茲於 1921 年的合影。圖/維基百科

閔可夫斯基時空

愛因斯坦在那篇論文裡一共提了 15 次的「空間」,但從來沒有將它和「時間」連在一起,所以他當時應該沒想到在他的新運動學裡,空間和時間處於完全相同地位。將時間和空間組合成一個現在稱為「閔可夫斯基時空(Minkowski space或spacetime)」之嶄新觀念的功勞歸於他在蘇黎世聯邦理工學院就讀時的數學老師閔可夫斯基(Hermann Minkowski)。這一新觀點奠定了相對論的數學基礎,完成了近代物理學家所熟悉之(狹義)相對論形式[註5]

愛因斯坦在理工學院就讀時,常常表現出一副無所不知的態度,不但很少注意閔可夫斯基的課,也常翹課,因此閔可夫斯基稱他為「懶狗 (lazy dog)」。愛因斯坦發表相對論後,閔可夫斯基評論道「我真不敢相信他能做到」。而愛因斯坦則一開始就反對閔可夫斯基所提之時空為一體的新觀念;在他第一次聽到它時甚至貶低它,謂那是「多餘的博學」,並抱怨「自從數學家入侵相對論後,我自己也搞不懂了」!誰又想到如果不是這一新觀念及其數學,他後來的廣義相對論將永遠發展不出來!

1908 年 9 月 21 日,閔可夫斯基(已經被挖角到德國哥廷根大學)在第 80 屆德國自然科學家和醫師大會上的演講謂:

……,擺在你們面前的空間和時間觀是從實驗物理學的土壤中產生的,因此蘊含著它們的力量。它們是革命性的(radical)。 從此,空間本身和時間本身注定要消逝於虛無之中,唯有兩者的某種結合才能保持獨立的現實。

在閔可夫斯基時空裡,單獨的空間和時間都不再是絕對的,而是因觀察者的運動狀態而異;但一體的時空則還是絕對的(詳見「牛頓的水桶」),比如所有觀察者測量得到的「兩點時空之距離」都是相同的。

有兩件事似乎說明了閔可夫斯基獨立地得出了愛因斯坦的狹義相對論和時空概念:

  1. 閔可夫斯基不可能那麼快的就於 1908 年報告、並發表 59 頁的成熟四維時空物理學,其內容充分地顯示了他對所有實驗都未能檢測到相對於絕對空間之均勻運動的原因有最深刻的理解;
  2. 他的學生玻恩(Max Born,1954 年諾貝爾物理獎得主)的回憶也證實閔可夫斯基獨立地在思考平面時空物理學。玻恩回憶說:在 1905 年初夏的一次內部研討會上,閔可夫斯基「偶爾提到」他的時空研究;「(但)因為他希望先弄清楚其所有輝煌的數學結構,因此沒有(提早)發表它們」,而讓愛因斯坦搶得先機。」

結論

從上面的分析看來,愛因斯坦那篇文章所討論到的幾乎都「古已有之」[註7];因此像普朗克波思(Satyendra Bose)一樣,愛因斯坦可能根本沒想到該篇電動力學論文是「革命性的」。知己莫若己,1905 年,在寫給好友哈比希特(Conrad Habicht)的信中,他只說「第一篇涉及輻射和光的能量特性,非常具有革命性:……第四篇論文現在還只是一個粗略的草稿,它是對時空理論進行修改之運動體的電動力學。」以「馬後砲」之明來看,第一篇光量子的假設只是量子力學發展中(或許是很重要)的一個螺絲而已,但第四篇相對論則是一下子推翻了三百多年古典物理中的時空觀念,讀者說那個具有革命性呢?所以愛因斯坦真的知道他發現了革命性的相對論嗎?

愛因斯坦解釋廣義相對論的手稿。圖/維基百科

後記

1915 年,愛因斯坦又發表了後來讓他一夜成名的廣義相對論,改寫了牛頓萬有引力理論;但也好事多磨,曾發生與非常傑出的數學物理學家、閔可夫斯基好友希爾伯特(David Hilbert)[註6]爭吵發現廣義相對論之頭銜。愛因斯坦也沒有因廣義相對論而獲得諾貝爾獎;他之獲得諾貝爾獎主要還是因他那自認為「非常具有革命性」的論文。

爭論如此之多,愛因斯坦為什麼要發表相對論呢?知己莫若己,且聽他道來:「我有時會問自己,我是如何發展相對論的。我認為其原因是:一個正常的成年人從不去思考空間和時間的問題——這些都是他小時候就想到的;但我的智力發育遲緩,因此長大後才開始思考空間和時間。」什麼?愛因斯坦發育遲緩?怪不得筆者曾為文謂愛因斯坦其實沒那麼神?反觀筆者自己,小時候從沒想過空間和時間,長大後也只知「生活空間」及「善用時間」而已,真是白痴一個!

註解

  1. 在愛因斯坦發表相對論之前,一般物理學家都認為只有一個絕對的時間。
  2. 愛因斯坦從來沒有說明為什麼要第二個光速為定值的假設,因為這似乎是多餘的:如果馬克斯威理論謂光速在一(靜態)體系內為 c,那麼依照第一個「相對性原理」的假設,在任何其它慣性坐標體系內的光速不應也是 c 麼?在網絡上有許多猜測與討論,但筆者認為是因為當時馬克斯威理論尚不容於古典之故。又,光速是一個實驗可以測出來的物理量,怎麼可以「假設」呢?
  3. 因為可以假設物體帶有非常微量的電荷,所以愛因斯坦大膽地認為其結論適用於「所有物體」。
  4. 當電子的運動速度比光速小多時,該公式就得回牛頓的動能公式。該公式暗示電子的質量會因運動而增加,因此在網路上可以看到許多誤認為該文提出了「質能相等」的觀念(洛倫茲等人也早就「暗示」了)。事實上愛因斯坦在該文中從未提及這些字眼;而在幾個月後又發表了一篇短文,從該公式推導出「物體的質量是其能量含量的量度:如果能量變化為 L,則質量在相同意義上的變化為 L/c2」,但也沒提及「質能相等」的觀念——儘管如此,物理學家還是將提出 E=mc2 的功勞歸於愛因斯坦(詳見「愛因斯坦其實沒那麼神?」)。這篇短文事實上一開始就在邏輯上受到批評,而第一位批評的不是別人,竟然正是「發掘」他的普朗克!
  5. 正像波爾(Niels Bohr)等人在普朗克及愛因斯坦之後完成了近代物理的量子力學一樣(詳見《量子的故事》)。
  6. 正是他將閔可夫斯基挖角到德國哥廷根大學,使得該校成為當時全世界之數學物理學重鎮。可惜閔可夫斯基英年早逝,1909 年元月,正當相對論起飛時死於急性盲腸炎,時年才 45 歲。
  7. 不少物理學家及歷史學家都認為如果要發諾貝爾相對論獎,則除了愛因斯坦外,也應該包括洛倫茲及龐加萊。

延伸閱讀

賴昭正_96
34 篇文章 ・ 34 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。