0

0
0

文字

分享

0
0
0

2015 諾貝爾物理獎:地底水槽探索微中子震盪-《科學月刊》

科學月刊_96
・2015/12/18 ・5150字 ・閱讀時間約 10 分鐘 ・SR值 570 ・九年級

張敏娟/任職輔仁大學物理系副教授、兼任磨課師(MOOCs)執行長。曾任國際及兩岸教育處學術交流中心主任、中華民國物理學會《物理雙月刊》總編輯。

今(2015)年10 月6 日,諾貝爾遴選委員會宣布物理獎由梶田隆章(Takaaki Kajita)與亞瑟.麥唐納(Arthur B. McDonald)獲獎。表彰他們找到微中子(neutrino)震盪的證據,進而推測微中子具有質量的貢獻。

1
梶田隆章(Takaaki Kajita),1959 年生,日本物理學家、天文學家。Source: ICRR, the University of Tokyo

梶田是日本人,目前56 歲,是日本東京大學的教授。1981 年埼玉大學物理系畢業,接著在東京大學念物理博士,並加入位於日本神岡的大水槽實驗(KamiokaNDE),1986 年博士班畢業。他在畢業後,於東京大學理學院繼續擔任助手(1986)、接著轉到該校宇宙線研究所擔任助手(1988)、助教授(1992)、教授(1999)、所長(2008)。他參與神岡大水槽實驗(KamiokaNDE)與超級神岡大水槽實驗(Super-KamiokaNDE),研究能力傑出,獲得許多研究大獎。最特別的大獎之一是在2002 年,梶田與影響他最深的兩位老師、前輩:戶塚洋二與小柴昌俊,三人共同獲得潘諾夫斯基實驗粒子物理學獎。小柴昌俊因為神岡大水槽實驗獲得2002 年的諾貝爾物理獎(超級神岡大水槽實驗的前身),戶塚洋二是主導超級神岡大水槽實驗的前期主要負責人(2008 年因為癌症過世)。

6
麥唐納(Arthur B. McDonald),1943 年生,加拿大物理學家。Source: Arthur B. McDonald

而麥唐納是加拿大人,目前72 歲,是加拿大皇后大學的教授。麥唐納1964 年達爾豪西大學物理系畢業,1965 年同校物理碩士畢業,接著轉往美國加州理工學院念物理博士,1969 年畢業。他在博士畢業後,於加拿大首都渥太華的喬克河核子實驗室任職研究員(1970~1982)。接著轉往美國普林斯頓大學任職教授(1982~1989),之後又回加拿大的皇后大學擔任教授(1989)。

-----廣告,請繼續往下閱讀-----

麥唐納在任職皇后大學期間,領導位於加拿大安大略省的薩德伯里微中子觀測站(Sudbury Neutrino Observatory, 1999~2006)。在2001 年8 月,麥唐納領導的薩德伯里微中子觀測站團隊,發表實驗結果並推論出「來自太陽的電子微中子,會因為微中子振盪機制改變為緲子微中子和濤微中子」。這個結果支持在1998 年,超級神岡大水槽實驗發表的類似論點文章。因此2007 年,美國費城富蘭克林研究所,將富蘭克林獎章頒發給領導超級神岡大水槽實驗與薩德伯里微中子觀測站團隊的戶塚洋二與亞瑟·麥唐納。我想,如果戶塚洋二能夠活久一點,一定也可以拿到諾貝爾物理獎的。

  • 微中子震盪
    為微中子在三種「味」之間震盪,意思是電子微中子(e)、渺子微中子(μ)、與濤微中子(τ)之間,會互相轉換身份。
  • 味(Flavour):代表的意思跟「種類」類似,但是也含有看不見、摸不著的意思。

關於微中子被提出與命名的歷史

從沃爾夫岡‧ 包立說起。奧地利理論物理學家包立(Wolfgang Pauli, 1900~1958)是量子力學研究先驅之一。一般廣為所知的是他提出的包立不相容原理,發展出自旋理論,重新詮釋物質結構。包立獲得1945 年的諾貝爾物理獎。包立很少發表論文,他比較喜歡與同行交換長篇的信件。1930 年,包立思考了β 衰變(beta decay)的問題,也就是原子核轉變為另一種原子核時,會伴隨產生一種小粒子。他寫信給同行,提出存在一種電中性的、迄今為止未被觀測到的小粒子假說,以此解釋β 衰變。不過這個看不見的小粒子,到底要怎麼繼續討論它,包立很苦惱。

Professor-phsyics
奧地利理論物理學家包立。Source: oddee

1934 年, 恩里科· 費米(Enrico Fermi, 1901~1954)為美籍義大利裔物理學家,重新詮釋包立的β 衰變假說。費米將包立苦惱的那個伴隨β 衰變產生的小粒子,命名為微中子(neutrino),讓β 衰變滿足能量守恆理論,並定義:「β 衰變是放射性原子核放射電子(β 粒子)和微中子而轉變為另一種原子核的過程。」由於費米是義大利人,所以微中子命名給人的感覺,很像義大利咖啡卡布奇諾(Cappuccino)。費米重新詮釋的β 衰變,是弱作用力理論的前身。他演示了幾乎所有元素在中子轟炸下都會發生核變化。慢中子和核裂變的發現,也是費米以及他的學生們推論出來。費米獲得1938 年的諾貝爾物理獎。

download
美籍義大利裔物理學家恩里科· 費米。Source: atomicheritage

微中子研究,從費米之後,百家爭鳴。其中以1964 年提出夸克理論的默里·蓋爾曼(Murray Gell-Mann,1929 ~)為首,漸漸朝向基本粒子標準模型邁進。蓋爾曼因此獲得1969 年的諾貝爾物理獎。微中子們在還沒被找出來之前,就已經被預測會出現,並預先留好座位給他們了。尋找微中子特性的實驗很多,本文僅說明此次獲諾貝爾獎的兩個實驗。第一個是日本超級神岡大水槽,第二個是加拿大薩德伯里微中子觀測站。

-----廣告,請繼續往下閱讀-----

微中子的實驗觀測,主要分為四種:太陽微中子、大氣微中子、核反應爐微中子與粒子束微中子。神岡大水槽與超級神岡大水槽,屬於觀測大氣微中子的實驗;加拿大薩德伯里微中子觀測站,則屬於觀測太陽微中子的實驗。至於核反應爐微中子,比較有名的是日本的KamLAND 和中國大陸大亞灣微中子實驗,它們都屬於把偵測器放在核能發電廠旁邊的實驗。而粒子束微中子,是利用加速器產生微中子光束的實驗,比較有名的有美國的MINOS、日本的K2K、T2K。還有許多有名的微中子實驗室,就不一一列舉。

the_first_t2k_neutrino_event-4f072d7-intro
日本T2K微中子光束實驗。Source: arstechnica

日本超級神岡大水槽實驗,地點位於日本岐阜縣飛驒市神岡町的一個廢棄砷礦裡面。神岡是一個非常純樸的傳統日本小鎮。超級神岡大水槽實驗所在的廢棄礦坑,是更早之前的神岡大水槽實驗的地點,但是規格擴大了十倍。超級神岡大水槽為直徑約39.3 公尺、高度約41.4 公尺的不鏽鋼圓柱形容器,裡面注入約5 萬噸純水,容器內壁使用約1 萬1200個光電倍增管,用於探測高速微中子在水中通過時產生的「契忍可夫光(Cherenkov light)」。

超級神岡大水槽的位置,在地底下1000 公尺深,主要是為了隔離地面上的各種背景雜訊。大水槽上方,承受每平方公尺2700 噸的壓力。還好礦坑由堅硬的岩石所組成,承受得住壓力。1991 年12 月,超級神岡大水槽開始正式動工,總共花了約兩年半,才把地底下需要的空間清空。接著用噴水泥的方式,把牆面固定。每隔一定距離,在牆面做一個記號、鑿一條小通道,預留空間給光電倍增管安裝電線。為了讓地底下的五萬噸純水保持純淨,大水槽旁邊建了一座淨水系統,隨時淨水。為了分析數據,在大水槽上方的地面上,蓋了一個電腦中心。所有實驗數據都透過電子訊號讀出系統送到電腦中心,做數據分析與值班的人員,可以在地面上處理。

當帶電粒子高速通過純水,有機會產生契忍可夫光。理論物理學家推論,當水裡面的質子被高能量的粒子打碎,產生衰變放出微中子,就有機會發出契忍可夫光。接著使用光電倍增管,將光訊號放大變成光電子訊號,由於具有高壓電的光電倍增管,可以讓光電子在管中產生電子雪崩效應,讓電訊號放大,這樣就能找到質子衰變的證據。一開始建造大水槽的目的,是為了找質子衰變。

-----廣告,請繼續往下閱讀-----

日本超級神岡大水槽實驗

5
Source: Super-Kamiokande Collaboration, Japan

超級神岡大水槽,主要觀測大氣微中子,微中子觀測數量之理論預測值並不隨天頂角而改變,而是呈一定值。然而,超級神岡大水槽於1998 年發現,從大水槽下方進來的渺子微中子(產生於地球另一側)被觀測到的數量是從大水槽上方進來的渺子微中子數量的一半。這個結果被解釋成微中子轉變至其他種類的微中子,這個現象即是微中子震盪。此發現表示微中子具有有限質量,並暗示著標準模型需要被延伸。微中子在三種「味」之間震盪,而且各種微中子皆有其靜止質量。於2004 年的進一步分析顯示,事件發生率是長度除以能量的函數,並有著正弦函數的對應關係,確認了微中子震盪理論。

契忍可夫光

未命名
Source: wikipedia

契忍可夫光是帶電粒子以超過光速穿過介質時發出的光。要超過的光速是光的相速度而非群速度。契忍可夫光在1934 年,由蘇聯物理學家帕維爾·契忍可夫(Pavel Cherenkov)發現的。這個現象跟飛機以超音速飛行,產生音波堆疊,堆疊承受不住後,發生音爆現象類似。只是改成帶電粒子以超光速飛行,產生光子震波堆疊,堆疊承受不住後,發生光爆現象。契忍可夫與另外兩位蘇聯物理學家成功解釋契忍可夫光的成因後,於1958 年,三人一起拿諾貝爾物理獎。

直徑約50 公分的光電倍增管,外層的玻璃,是由日本吹玻璃技師細心做出來的,同時訓練一批技師,將光電倍增管的電極等元件,一層一層的裝好,放進玻璃管裡面。再接著用高溫融封玻璃管,一邊也確定壓力穩定沒變形之後,再將電線放入光電倍增管連接電極、電線拉出的地方做最後的防水封裝。1994 年7 月,光電倍增管完成。讀出訊號的電子設備、物理理論模擬軟體,在籌備階段也跟著一起研究。在硬體準備就緒後,所有電子設備全部運到地底下大水槽的正上方,準備做即時數據監控。

無論是神岡大水槽或是超級神岡大水槽,都沒能找到質子衰變的事件。讀者可能會疑惑:「如果神岡大水槽一直都沒有達到原本希望達到的實驗目的,為何還會再花那麼多錢、升級擴建變成十倍大的超級神岡大水槽呢?」最關鍵的原因是:

「神岡大水槽意外的在1987 年2 月,測量到大麥哲倫雲中超新星1987A 爆發時產生的微中子。」

在1987A 爆發的光線來到地球的3 小時前,世界各地有三台微中子探測器同時偵測到微中子爆發,廣泛接受的理由是微中子於超新星爆發時,比可見光更早被發射出來,而不是微中子比光速快。這三台微中子探測器分別為:日本的神岡大水槽,美國的厄文– 密西根– 布魯克海汶偵測器(IMB),俄羅斯的BAKSAN 偵測器。神岡大水槽因為有了意外的微中子訪客而爆紅,促成了超級神岡大水槽計劃。而原本希望量測質子衰變的目標,也中途改為以大氣微中子的研究為主。

加拿大薩德伯里微中子觀測站,實驗地點位於2100 米深的鎳礦中。跟超級神岡大水槽的1000 米深的砷礦比起來,還要再深1100 米。在地底下2100 米深,主要是為了隔離地面上的各種背景雜訊。觀測站上方,承受巨大的壓力,因此使用特殊錨杆技術支撐住。薩德伯里微中子觀測站中,有一個直徑12米的球形容器,裡面裝有1000 噸重水,容器壁用丙烯酸脂製成,厚度5 厘米。在這容器的外面有一個直徑17 米的偵測球,在偵測球裡面安裝了9600 個光電倍增管,用於偵測契忍可夫光。為了給予浮力與輻射屏蔽,整個探測器浸泡在直徑22米、高度約34米、裝滿普通水的圓柱形腔體中。

早於1960 年代,就已有美國Homestake實驗獲得關於太陽微中子抵達地球的測量數據。在薩德伯里微中子觀測站之前,所有實驗都只觀測到大約為標準太陽模型所預測的微中子數量的1/3 至1/2。這被稱為太陽微中子難題。幾十年來,很多理論被提出來解釋這效應。其中一個是微中子振盪假說。1984 年,美國加州大學爾灣分校的物理學教授赫伯特·陳(Herbert Chen)指出,重水是製作太陽微中子探測器的優良材料,因為可以清楚分辨三種微中子與電子微中子,適合研究太陽微中子振盪。1990 年,實驗計畫正式被批准。在這實驗裡,當微中子與重水交互作用時,會出現電子以高速移動經過重水,因契忍可夫效應而產生藍色光錐。利用光電倍增管可以偵測出光訊號。

加拿大薩德伯里微中子觀測站

12228554_f1024
Source: SNO

加拿大薩德伯里微中子觀測站,主要觀測太陽微中子。在太陽微中子理論中,有三種產生微中子的衰變:

-----廣告,請繼續往下閱讀-----

一、在電性流交互作用裡,微中子將重氫裡的中子變為質子,並且釋出一個電子。
二、在中性流交互作用裡,微中子離解了重氫,將其分裂成中子、質子。
三、在電子彈性散射裡,微中子與束縛於原子裡的電子發生碰撞。

在薩德伯里微中子觀測站中,以上三種產生微中子的衰變,每天都可以量測得到。2001 年6 月18 日,薩德伯里微中子觀測站因為透過研究這三種太陽微中子衰變,也確定了微中子會轉變至其他種類的微中子,產生微中子震盪,確認了微中子震盪理論。

物理獎的未來

微中子的研究風潮,仍然在高能物理科學界如火如荼地進行者。因為研究微中子而發表優秀實驗結果的團隊,依然很多。明年的諾貝爾物理獎,會不會又是給高能物理實驗呢?會是哪一個團隊呢?每年的十月份,總讓人充滿期待。

2

〈本文選自《科學月刊》2015年12月號〉

延伸閱讀:
2014諾貝爾物理獎:把「光子」變重了—基本粒子的質量起源

天上掉下來的粒子—從包利到希格斯

什麼?!你還不知道《科學月刊》,我們46歲囉!
入不惑之年還是可以當個科青

文章難易度
科學月刊_96
249 篇文章 ・ 3436 位粉絲
非營利性質的《科學月刊》創刊於1970年,自創刊以來始終致力於科學普及工作;我們相信,提供一份正確而完整的科學知識,就是回饋給讀者最好的品質保證。

0

8
2

文字

分享

0
8
2
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 300 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

6
2

文字

分享

0
6
2
宇宙學的最大謎團!有超過90%的世界都是暗物質和暗能量,但,它們究竟是什麼?──《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》
台灣東販
・2022/08/08 ・3400字 ・閱讀時間約 7 分鐘

觀測星系時,科學家發現了「看不見的物質」

我們現在所看到的人類、太陽、星系以及星系群等等,所有東西都是由物質構成。「物質構成了宇宙的全部」這個概念長年以來深植於人類心中。

宇宙是由物質構成的,但究竟是由甚麼物質構成的呢?圖 / twenty20photos

不過,後來我們了解到,宇宙中存在著許多我們人類看不到的物質,那就是「暗物質(dark matter)」。這個名稱聽起來很像科幻作品中的虛構物質,卻實際存在於宇宙中,而且暗物質在宇宙中的含量,遠多於我們看得到的「物質」

1934 年,瑞士的天文學家茲威基(Fritz Zwicky,1898~1974)觀測「后髮座星系團」時,發現周圍星系的旋轉速度所對應的中心質量,與透過光學觀測結果推算的中心質量不符。

周圍星系的轉速明顯過快,推測存在 400 倍以上的重力缺損(missing mass)。

在這之後,美國天文學家魯賓(Vera Rubin,1928~2016)於 1970 年代觀測仙女座星系時,發現周圍與中心部分的旋轉速度幾乎沒什麼差別,並推論仙女座的真正質量,是以光學觀測結果推算出之質量的 10 倍左右。

-----廣告,請繼續往下閱讀-----

到了 1986 年,科學家們觀測到了宇宙中的大規模結構,發現星系的分布就像是泡泡般的結構。若要形成這種結構,僅靠觀測到的質量是不夠的。

為了補充質量的不足,科學家們假設宇宙中存在「看不見的物質=暗物質」。

看不到卻存在?暗物質究竟是什麼?

既然看不到,那我們怎麼確定暗物質真的存在?圖 / twenty20photos

前面提到我們看不見暗物質,而且不只用可見光看不到,就連用無線電波、X 射線也不行,任何電磁波都無法檢測出這種物質(它們不帶電荷,交互作用極其微弱)。

因為用肉眼、X 射線,或者其他方法都看不到它們,所以稱其為「暗」物質。

不過,從星系的運動看來,可以確定「那裡確實存在眼見所及之上的重力(質量)」。這就是由暗物質造成的重力。

-----廣告,請繼續往下閱讀-----

看不到的能量:暗能量

事實上,科學家們也逐漸了解到,宇宙中除了暗物質之外,還存在「看不見的能量」。

原本科學家們認為,宇宙膨脹速度應該會愈來愈慢才對,不過,1998 年觀測 Ⅰa 型超新星(可精確估計距離)時,發現宇宙的膨脹正在加速中。這個結果證明宇宙充滿了我們看不到的能量「暗能量(dark energy)」。而且,暗能量的量應該比暗物質還要更多。

我們過去所知道的「物質」,以及暗物質、暗能量在宇宙中的估計比例,如下圖所示。 這項估計是基於 WMAP 衛星(美國)於 2003 年起觀測的宇宙微波背景輻射(CMB),計算出來的結果。

圖/台灣東販

後來,普朗克衛星(歐洲太空總署)於 2013 年起開始觀測宇宙,並發表了更為精準的數值。

-----廣告,請繼續往下閱讀-----
  • 什麼是「普朗克衛星」?

歐洲太空總署(ESA)為了觀測距離我們 138 億光年的宇宙微波背景輻射(CMB)而發射至宇宙的觀測裝置(人造衛星)。可與 NASA 發射,廣視角、低感度的 WMAP 衛星互相對照。由 WMAP 衛星製成的 CMB 地圖,計算出宇宙年齡應為 137 億年左右,誤差在正負 2 億年內;普朗克衛星則製作出了更為詳細的 CMB 地圖,並以此推論出宇宙年齡應為 138 億年左右,誤差在正負 6000 萬年內,數字更為精準。

歐洲太空總署(ESA)為了觀測距離我們 138 億光年的宇宙微波背景輻射(CMB)而發射至宇宙的觀測裝置(人造衛星)。可與 NASA 發射,廣視角、低感度的 WMAP 衛星互相對照。由 WMAP 衛星製成的 CMB 地圖,計算出宇宙年齡應為 137 億年左右,誤差在正負 2 億年內;普朗克衛星則製作出了更為詳細的 CMB 地圖,並以此推論出宇宙年齡應為 138 億年左右,誤差在正負 6000 萬年內,數字更為精準。  

暗物質的真面目,究竟是什麼?微中子嗎?

既然暗物質有質量,那會不會是由某種基本粒子構成的呢?也有人認為暗物質是在宇宙初期誕生的迷你黑洞(原始黑洞),而我也致力於這些研究,不過相關說明不在此贅述。

已知的基本粒子(共 17 種)以及其他未知粒子,都有可能是暗物質,在這些粒子當中最被看好的是微中子。

因為暗物質不帶電荷,不與其他物質產生交互作用,會輕易穿過其他物質。這些暗物質的特徵與微中子幾乎相同。而且,宇宙中也確實充滿了微中子。因此,微中子很可能是暗物質的真面目。

-----廣告,請繼續往下閱讀-----

不過,目前的物理學得出的結論卻是「微中子不可能是暗物質的主要成分」。

NASA 曾經想透過星系團的碰撞來了解暗物質的特性。圖/NASA

為什麼微中子被撇除了呢?

這是因為,雖然微中子大量存在於宇宙中,質量卻太輕了。雖然科學家們現在還不確定微中子的精準質量是多少,不過依照目前的宇宙論,3 個世代的微中子總質量上限應為 0.3eV。如果暗物質是微中子,那麼 3 個世代的微中子總質量應高達 9eV 才對,兩者相差過大。

另一方面,暗物質中的冷暗物質(cold dark matter)的速度應該會非常慢才對。

宇宙暴脹時期會產生密度的擾動,進而產生暗物質的擾動(空間的擾動應與觀測到的 CMB 擾動相同),這種微妙的重力偏差,會讓周圍的暗物質聚集,提升重力,進一步吸引更多原子聚集,最後形成我們現在看到的星系。

-----廣告,請繼續往下閱讀-----

相較於此,微中子過輕(屬於熱暗物質,hot dark matter),會以高速飛行。微中子無法固定在一處,這樣就無法聚集起周圍的原子,自然也無法形成星系。

暗物質、暗能量的真相究竟是甚麼?仍然是宇宙學中最大的謎團!

熱暗物質、冷暗物質

這裡要介紹的是熱暗物質與冷暗物質。所謂的「熱暗物質」,指的是由像微中子那樣「以接近光速的速度飛行」的粒子組成暗物質的形式。

宇宙微波背景輻射(CMB)可顯示出宇宙初期的溫度起伏,因而得知存在相當微小,卻十分明顯的擾動,此擾動與暗物質的擾動相同。擾動中,物質會往較濃的部分聚集,並形成星系或星系團等大規模結構。

不過,如同我們前面提到的,科學家們認為以接近光速的速度運動的微中子,在程度那麼微弱的宇宙初期擾動下,很難形成現今的星系團。

-----廣告,請繼續往下閱讀-----

於是,科學家們假設宇宙中還存在著速度非常慢的未知粒子「冷暗物質」。

冷暗物質的候選者包括「超對稱粒子(SUSY 粒子)」當中光的超伴子——超中性子(neutralino)、名為軸子(axion)的假設粒子;另外,也有人認為原始黑洞可能是「冷暗物質的候選者」,雖然黑洞並不是基本粒子。

在討論暗物質時,即使不假設這些未知粒子的存在,在標準模型的範圍內,微中子也是呼聲很高的候選者。

如同在討論熱暗物質時提到的,當我們認為微中子應該不是主要暗物質時,就表示基本粒子物理學需要一個超越標準理論的新理論,這點十分重要。

-----廣告,請繼續往下閱讀-----
宇宙微波背景(CMB)是宇宙大霹靂後遺留下來的熱輻射,充滿了整個宇宙。圖 / 台灣東販

那麼,微中子真的完全不可能是暗物質嗎?

倒也並非如此。如果存在右旋的微中子,由於我們還不曉得它的質量以及存在量,所以「微中子是暗物質」的可能性還沒完全消失。不過,這樣就必須引入超越標準理論的理論才行。

在目前只有發現左旋、符合標準理論的微中子的情況下,一切都還未知。關於這點,我們將在《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》第 6 章第 7 節詳細說明。

——本文摘自《大人的宇宙學教室:透過微中子與重力波解密宇宙起源》,2022 年 6 月,台灣東販,未經同意請勿轉載。

台灣東販
5 篇文章 ・ 2 位粉絲
台灣東販股份有限公司是在台灣第1家獲許投資的國外出版公司。 本公司翻譯各類日本書籍,並且發行。 近年來致力於雜誌、流行文化作品與本土原創作品的出版開發,積極拓展商品的類別,期朝全面化,多元化,專業化之目標邁進。

2

10
2

文字

分享

2
10
2
2021 諾貝爾物理獎得主真鍋淑郎——地表模型開山始祖,研究地表模式都要引用他的論文
Y.-S. Lu
・2021/10/14 ・2990字 ・閱讀時間約 6 分鐘

  • 作者|盧彥森,目前任職於 德國于利希研究中心 能源與氣候研究所

第一個地表模型的開發者——真鍋淑郎

在大氣科學領域中,有一部份專業領域統稱為「氣象模擬」,其中,有一門名為「地表模式」的領域,是專門算地表上各種物理、化學、生物作用的行為。

在做這些模擬的研究者中,有個很有名的日本名字,叫做 Manabe,他的論文會一直出現在大家眼前,也就是(只有我們在乎的)《 Manabe 1969, CLIMATE AND THE OCEAN CIRCULATION I : THE ATMOSPHERIC CIRCULATION AND THE HYDROLOGY OF THE EARTH’S SURFACE 》[1]最近因為大量的報導,我才知道原來他名字的漢字是——真鍋淑郎,也就是第一個地表模型的開發者,而在 2021 年時,他拿下了諾貝爾獎。

真鍋淑郎,2021年諾貝爾物理學獎得主之一。圖/維基百科

地表模式(Land Surface Model)在大氣模擬中有舉足輕重的地位,可以算地面是怎麼跟大氣作反應的,像是降水是怎麼被樹冠層截流、土壤水是怎麼變成地表逕流跟地下水、水是怎麼靠蒸散發回到大氣中;還有太陽光怎麼被地面或葉面吸收、能量怎麼被蒸散發作用給吸收、地面上的溫度增加或減少了多少,還有太陽輻射是有多少返回大氣層。

而真鍋淑郎的地表模式,則涵蓋了一大部份的物理反應,供美國國家海洋暨大氣總署(NOAA)的 Geophysical Fluid Dynamics Laboratory 的全球大氣模型使用。

-----廣告,請繼續往下閱讀-----
Geophysical Fluid Dynamics Laboratory 圖/Geophysical Fluid Dynamics Laboratory

不過學界是殘酷的。在那個電腦比房子貴的年代(房價在 1960 年的中位數約為$11,900,CNBC報導),真鍋順便背了個學界的鍋,像是:你的模型是不夠真實的、你的土壤濕度估算不夠物理……等因為電腦計算跟理論發展還不夠成熟,所以尚未發展的物理與計算方法。

後來的論文也會稱真鍋的地表模式是水桶模型(因為其計算土壤濕度的方法宛如水桶一樣,滿了就去除,而非經土壤中水流方法流走的)。但無論如何,第一個地表模型,基本上就是真鍋與他在普林斯頓的好夥伴們發展出來的。因此,真鍋的地表模型也在後來的論文中,尊稱為第一代的地表模式,建立起祖師爺等級的封號(Sellers et al., 1997)。

水桶模型後,百家爭鳴的地表模式大戰

雖然第一代的地表模式,土壤當做水桶,地上也沒有植物,更不要說可以進行光合作用或是碳排放來研究二氧化碳是怎麼搞壞我們的人生,但也讓後續的第二代地表模型有了出發點。

1980年後,在個人電腦逐漸普及後,地表模式也開始百家爭鳴,其中真鍋的身影也就只存在各家論文的引用中了。後來再出現時,則是在地表模式大戰——PILPS(Project for the Intercomparison of Land-surface Parametrization Schemes)[2]。這個計畫中,以水桶模型這個稱號出現。基本上始於 1995 年的 PILPS 計畫,就是利用荷蘭的 Cabauw 量測站測到的氣象狀況,來驗證各家第二代的地表模式中,誰才是最強的。

荷蘭 Cabauw 村莊。圖/維基百科

當然結果就是,沒有誰家最強。

更重要的是,雖然地表模式都比真鍋的模型更複雜了一點,但是有個東西是沒有人考慮到的:光合作用

-----廣告,請繼續往下閱讀-----

當時各家的蒸散發公式,主要都是用Jarvis的葉面氣孔參數化公式做考量[3],所以也沒有真的考慮到二氧化碳、水、太陽之間的直接關聯。而做出這個關連性主要公式——Farquhar等人[4] 的二氧化碳同化作用公式,才在 1980 年時正式發表,離他同事 Berry 拿去演化成植物氣孔跟光合作用的連動公式[5],還有七年。而在地表模型大戰中發表的模型,其實都長得 87% 像。

在 1997 年時,NASA 的 Sellers等人[6],與多位同樣是地表模式的作者與植物氣孔模擬專家,在《Science》期刊中,登高一呼:我們要有能夠計算生態跟複雜物理的模型!畢竟在 PILPS 的大戰中,沒有真正的勝者,也沒有真正的輸家,甚至我們的真鍋大哥在水文計算上也沒有輸[2]

所以在 2003 年,集合了 PILPS 大戰中和解的部份朋友們,第一支集眾人之力誕生的通用地表模式(Common Land Model)上線了[7],這支從 1998 年開始寫的程式,過了近五年後才發表,算是第三代地表模式的代表作

而這個第三代中,植物終於開始有了它的意義,這植物的葉子終於可以隨四季生長了,也會行光合作用了,土壤也增厚到兩公尺多了,土壤也會依不飽和水流公式往下滲流,也可以計算堆雪了。其中最重要的,就是那光合作用公式的應用。

-----廣告,請繼續往下閱讀-----

持續再精進與貢獻

之後的地表模式,就一直著重在地面植物的改良,讓植物越來越真,從一開始的沒有植物,到會蒸發水,再到會跟二氧化碳互動,以及跟氮交互作用,計算植物的農作產出,一步步朝著更精細的方向前進。

當然地表模式也有很多需要改良的地方,首先是地表模型是假設地表跟大氣是一維方向的互動,而土壤中水流也是只會向下滲流,如果要計算真正的水流,就必須要進行三維的地下水流動,這就是另外一個耗資源的計算。另外植物也不是真的植物,植物被假設只有四片葉子,還只有一層。

英國的「JULES」模型曾報告說他們做了個多層葉冠層的模型,最後只能淡淡的說因為計算資源耗太兇,所以沒算完 [8]。更甚者,地底下的根是「死」的,一年四季,不生不滅、不垢不淨,持續地在只有兩公尺厚的土裡,把水吸到植物中行光合作用(Pitman, 2003)[9]

所以無論如何,地表模型不僅不死,其勢更烈,因為有太多的東西可以靠地表模式來計算,像是人類對地球表面的影響、化合物排放,也都可以靠地表模式計算其對大氣的影響,就連地下水模型也都要拜託地表模式處理複雜的地表水文狀況[10]

從 1969 年到 2021 年,無數的改良與改版,還有兩次的超級地表模式大戰(第二次利用 Rhône 流域量測結果[11]),都增加了人們對大氣系統的了解,並且一步步改善天氣預報的準確度,而其中的功臣之一,當然是真鍋博士在 1969 年,比 Unix 更早發表的地式模型,所以的確功不可沒,而現在地球科學的眾多估算中,地表模式解決了很多的水文與能量問題,更遑論對氣候變遷的計算,才能在1975年提出二氧化碳加劇溫度上升的研究[12]。拿下諾貝爾獎,不僅僅是贊同真鍋博士的功勞,更是對大氣模擬界的慰勞吧。

-----廣告,請繼續往下閱讀-----

參考資料

  1. Manabe S. (1969). CLIMATE AND THE OCEAN CIRCULATION 1: I. THE ATMOSPHERIC CIRCULATION AND THE HYDROLOGY OF THE EARTH’S SURFACE. Mon. Weather Rev. 97:739–774.
  2. Pitman, A. J., Henderson-Sellers, A., Desborough, C. E., Yang, Z. L., Abramopoulos, F., Boone, A., … & Xue, Y. (1999). Key results and implications from phase 1 (c) of the Project for Intercomparison of Land-surface Parametrization Schemes. Climate Dynamics, 15(9), 673-684.
  3. Jarvis PG. (1976). The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field. Philos. Trans. R. Soc. Lond. B Biol. Sci. 273:593–610.
  4. Farquhar, G. D., von Caemmerer, S. V., & Berry, J. A. (1980). A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species. Planta, 149(1), 78-90.
  5. Ball JT., Woodrow IE., Berry JA. (1987). A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Progress in photosynthesis research. Springer, 221–224.
  6. Sellers PJ., Dickinson RE., Randall DA., Betts AK., Hall FG., Berry JA., Collatz GJ., Denning AS., Mooney HA., Nobre CA., Sato N., Field CB., Henderson-Sellers A. (1997). Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere. Science 275:502–509
  7. Dai Y., Zeng X., Dickinson RE., Baker I., Bonan GB., Bosilovich MG., Denning AS., Dirmeyer PA., Houser PR., Niu G. (2003). The common land model. Bull. Am. Meteorol. Soc. 84.
  8. Best MJ., Pryor M., Clark DB., Rooney GG., Essery RLH., Ménard CB., Edwards JM., Hendry MA., Porson A., Gedney N., Mercado LM., Sitch S., Blyth E., Boucher O., Cox PM., Grimmond CSB., Harding RJ. (2011). The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes. Geosci Model Dev 4:677–699
  9. Pitman AJ. (2003). The evolution of, and revolution in, land surface schemes designed for climate models. Int J Clim. 23:479–510.
  10. Kollet SJ., Maxwell RM. (2006). Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. 29:945–958.
  11. Boone A., Habets F., Noilhan J., Clark D., Dirmeyer P., Fox S., Gusev Y., Haddeland I., Koster R., Lohmann D. 2004. The Rhone-Aggregation land surface scheme intercomparison project: An overview. J. Clim. 17:187–208.
  12. Manabe, S., & Wetherald, R. T. (1975). The effects of doubling the CO2 concentration on the climate of a general circulation model. Journal of Atmospheric Sciences, 32(1), 3-15.


所有討論 2
Y.-S. Lu
4 篇文章 ・ 6 位粉絲
自從來到學界後,便展開了一段從土木人到氣象人的水文之旅。主要專業是地球系統數值模擬,地下水與地表模式的耦合系統,以及大氣氣象模擬。目前是于利希研究中心(Forschungszentrum Jülich GmbH)超級電腦中心的博士後研究員。