2

10
2

文字

分享

2
10
2

2021 諾貝爾物理獎得主真鍋淑郎——地表模型開山始祖,研究地表模式都要引用他的論文

Y.-S. Lu
・2021/10/14 ・2990字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者|盧彥森,目前任職於 德國于利希研究中心 能源與氣候研究所

第一個地表模型的開發者——真鍋淑郎

在大氣科學領域中,有一部份專業領域統稱為「氣象模擬」,其中,有一門名為「地表模式」的領域,是專門算地表上各種物理、化學、生物作用的行為。

在做這些模擬的研究者中,有個很有名的日本名字,叫做 Manabe,他的論文會一直出現在大家眼前,也就是(只有我們在乎的)《 Manabe 1969, CLIMATE AND THE OCEAN CIRCULATION I : THE ATMOSPHERIC CIRCULATION AND THE HYDROLOGY OF THE EARTH’S SURFACE 》[1]最近因為大量的報導,我才知道原來他名字的漢字是——真鍋淑郎,也就是第一個地表模型的開發者,而在 2021 年時,他拿下了諾貝爾獎。

真鍋淑郎,2021年諾貝爾物理學獎得主之一。圖/維基百科

地表模式(Land Surface Model)在大氣模擬中有舉足輕重的地位,可以算地面是怎麼跟大氣作反應的,像是降水是怎麼被樹冠層截流、土壤水是怎麼變成地表逕流跟地下水、水是怎麼靠蒸散發回到大氣中;還有太陽光怎麼被地面或葉面吸收、能量怎麼被蒸散發作用給吸收、地面上的溫度增加或減少了多少,還有太陽輻射是有多少返回大氣層。

而真鍋淑郎的地表模式,則涵蓋了一大部份的物理反應,供美國國家海洋暨大氣總署(NOAA)的 Geophysical Fluid Dynamics Laboratory 的全球大氣模型使用。

-----廣告,請繼續往下閱讀-----
Geophysical Fluid Dynamics Laboratory 圖/Geophysical Fluid Dynamics Laboratory

不過學界是殘酷的。在那個電腦比房子貴的年代(房價在 1960 年的中位數約為$11,900,CNBC報導),真鍋順便背了個學界的鍋,像是:你的模型是不夠真實的、你的土壤濕度估算不夠物理……等因為電腦計算跟理論發展還不夠成熟,所以尚未發展的物理與計算方法。

後來的論文也會稱真鍋的地表模式是水桶模型(因為其計算土壤濕度的方法宛如水桶一樣,滿了就去除,而非經土壤中水流方法流走的)。但無論如何,第一個地表模型,基本上就是真鍋與他在普林斯頓的好夥伴們發展出來的。因此,真鍋的地表模型也在後來的論文中,尊稱為第一代的地表模式,建立起祖師爺等級的封號(Sellers et al., 1997)。

水桶模型後,百家爭鳴的地表模式大戰

雖然第一代的地表模式,土壤當做水桶,地上也沒有植物,更不要說可以進行光合作用或是碳排放來研究二氧化碳是怎麼搞壞我們的人生,但也讓後續的第二代地表模型有了出發點。

1980年後,在個人電腦逐漸普及後,地表模式也開始百家爭鳴,其中真鍋的身影也就只存在各家論文的引用中了。後來再出現時,則是在地表模式大戰——PILPS(Project for the Intercomparison of Land-surface Parametrization Schemes)[2]。這個計畫中,以水桶模型這個稱號出現。基本上始於 1995 年的 PILPS 計畫,就是利用荷蘭的 Cabauw 量測站測到的氣象狀況,來驗證各家第二代的地表模式中,誰才是最強的。

荷蘭 Cabauw 村莊。圖/維基百科

當然結果就是,沒有誰家最強。

更重要的是,雖然地表模式都比真鍋的模型更複雜了一點,但是有個東西是沒有人考慮到的:光合作用

-----廣告,請繼續往下閱讀-----

當時各家的蒸散發公式,主要都是用Jarvis的葉面氣孔參數化公式做考量[3],所以也沒有真的考慮到二氧化碳、水、太陽之間的直接關聯。而做出這個關連性主要公式——Farquhar等人[4] 的二氧化碳同化作用公式,才在 1980 年時正式發表,離他同事 Berry 拿去演化成植物氣孔跟光合作用的連動公式[5],還有七年。而在地表模型大戰中發表的模型,其實都長得 87% 像。

在 1997 年時,NASA 的 Sellers等人[6],與多位同樣是地表模式的作者與植物氣孔模擬專家,在《Science》期刊中,登高一呼:我們要有能夠計算生態跟複雜物理的模型!畢竟在 PILPS 的大戰中,沒有真正的勝者,也沒有真正的輸家,甚至我們的真鍋大哥在水文計算上也沒有輸[2]

所以在 2003 年,集合了 PILPS 大戰中和解的部份朋友們,第一支集眾人之力誕生的通用地表模式(Common Land Model)上線了[7],這支從 1998 年開始寫的程式,過了近五年後才發表,算是第三代地表模式的代表作

而這個第三代中,植物終於開始有了它的意義,這植物的葉子終於可以隨四季生長了,也會行光合作用了,土壤也增厚到兩公尺多了,土壤也會依不飽和水流公式往下滲流,也可以計算堆雪了。其中最重要的,就是那光合作用公式的應用。

-----廣告,請繼續往下閱讀-----

持續再精進與貢獻

之後的地表模式,就一直著重在地面植物的改良,讓植物越來越真,從一開始的沒有植物,到會蒸發水,再到會跟二氧化碳互動,以及跟氮交互作用,計算植物的農作產出,一步步朝著更精細的方向前進。

當然地表模式也有很多需要改良的地方,首先是地表模型是假設地表跟大氣是一維方向的互動,而土壤中水流也是只會向下滲流,如果要計算真正的水流,就必須要進行三維的地下水流動,這就是另外一個耗資源的計算。另外植物也不是真的植物,植物被假設只有四片葉子,還只有一層。

英國的「JULES」模型曾報告說他們做了個多層葉冠層的模型,最後只能淡淡的說因為計算資源耗太兇,所以沒算完 [8]。更甚者,地底下的根是「死」的,一年四季,不生不滅、不垢不淨,持續地在只有兩公尺厚的土裡,把水吸到植物中行光合作用(Pitman, 2003)[9]

所以無論如何,地表模型不僅不死,其勢更烈,因為有太多的東西可以靠地表模式來計算,像是人類對地球表面的影響、化合物排放,也都可以靠地表模式計算其對大氣的影響,就連地下水模型也都要拜託地表模式處理複雜的地表水文狀況[10]

從 1969 年到 2021 年,無數的改良與改版,還有兩次的超級地表模式大戰(第二次利用 Rhône 流域量測結果[11]),都增加了人們對大氣系統的了解,並且一步步改善天氣預報的準確度,而其中的功臣之一,當然是真鍋博士在 1969 年,比 Unix 更早發表的地式模型,所以的確功不可沒,而現在地球科學的眾多估算中,地表模式解決了很多的水文與能量問題,更遑論對氣候變遷的計算,才能在1975年提出二氧化碳加劇溫度上升的研究[12]。拿下諾貝爾獎,不僅僅是贊同真鍋博士的功勞,更是對大氣模擬界的慰勞吧。

-----廣告,請繼續往下閱讀-----

參考資料

  1. Manabe S. (1969). CLIMATE AND THE OCEAN CIRCULATION 1: I. THE ATMOSPHERIC CIRCULATION AND THE HYDROLOGY OF THE EARTH’S SURFACE. Mon. Weather Rev. 97:739–774.
  2. Pitman, A. J., Henderson-Sellers, A., Desborough, C. E., Yang, Z. L., Abramopoulos, F., Boone, A., … & Xue, Y. (1999). Key results and implications from phase 1 (c) of the Project for Intercomparison of Land-surface Parametrization Schemes. Climate Dynamics, 15(9), 673-684.
  3. Jarvis PG. (1976). The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field. Philos. Trans. R. Soc. Lond. B Biol. Sci. 273:593–610.
  4. Farquhar, G. D., von Caemmerer, S. V., & Berry, J. A. (1980). A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species. Planta, 149(1), 78-90.
  5. Ball JT., Woodrow IE., Berry JA. (1987). A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Progress in photosynthesis research. Springer, 221–224.
  6. Sellers PJ., Dickinson RE., Randall DA., Betts AK., Hall FG., Berry JA., Collatz GJ., Denning AS., Mooney HA., Nobre CA., Sato N., Field CB., Henderson-Sellers A. (1997). Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere. Science 275:502–509
  7. Dai Y., Zeng X., Dickinson RE., Baker I., Bonan GB., Bosilovich MG., Denning AS., Dirmeyer PA., Houser PR., Niu G. (2003). The common land model. Bull. Am. Meteorol. Soc. 84.
  8. Best MJ., Pryor M., Clark DB., Rooney GG., Essery RLH., Ménard CB., Edwards JM., Hendry MA., Porson A., Gedney N., Mercado LM., Sitch S., Blyth E., Boucher O., Cox PM., Grimmond CSB., Harding RJ. (2011). The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes. Geosci Model Dev 4:677–699
  9. Pitman AJ. (2003). The evolution of, and revolution in, land surface schemes designed for climate models. Int J Clim. 23:479–510.
  10. Kollet SJ., Maxwell RM. (2006). Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. 29:945–958.
  11. Boone A., Habets F., Noilhan J., Clark D., Dirmeyer P., Fox S., Gusev Y., Haddeland I., Koster R., Lohmann D. 2004. The Rhone-Aggregation land surface scheme intercomparison project: An overview. J. Clim. 17:187–208.
  12. Manabe, S., & Wetherald, R. T. (1975). The effects of doubling the CO2 concentration on the climate of a general circulation model. Journal of Atmospheric Sciences, 32(1), 3-15.


-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
Y.-S. Lu
4 篇文章 ・ 6 位粉絲
自從來到學界後,便展開了一段從土木人到氣象人的水文之旅。主要專業是地球系統數值模擬,地下水與地表模式的耦合系統,以及大氣氣象模擬。目前是于利希研究中心(Forschungszentrum Jülich GmbH)超級電腦中心的博士後研究員。

0

1
0

文字

分享

0
1
0
AI 能像人類一樣思考?諾貝爾物理學獎研究助力人工智慧模擬人類大腦
PanSci_96
・2024/11/14 ・2117字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

即使再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?畢竟電腦的電子元件和我們大腦中的神經細胞結構截然不同。再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?

錯,可以。

2024 年諾貝爾物理學獎跌破所有專家的眼鏡,頒給了兩位研究機器學習的科學家——約翰·霍普菲爾德(John Hopfield)和傑佛瑞·辛頓(Geoffrey Hinton)。他們以「人工」的方法打造了類神經網路,最終模擬出生物的「智慧」,奠定了當代深度學習的基礎。

為什麼解決人工智慧發展瓶頸的,竟然會是物理學?物理要怎麼讓 AI 更像人類?

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從巴甫洛夫的狗到赫布理論:理解學習的基礎

為了解答這個疑問,我們需要一些背景知識。

20 世紀初,俄羅斯心理學家巴甫洛夫發現,狗在食物還沒入口前,就會開始分泌唾液。他進行了一系列實驗,改變食物出現前的環境,比如讓狗習慣在聽到鈴聲後馬上得到食物。久而久之,狗只要聽到鈴聲,就會開始分泌唾液。

大約 50 年後,神經科學家赫布(Donald Hebb)提出了一個假說:大腦中相近的神經元,因為經常同時放電,會產生更強的連結。這種解釋稱為「赫布理論」,不僅奠定了神經心理學的發展,更成為現代深度學習的基礎。

然而,赫布理論雖然描述了鄰近神經元的關係,卻無法解釋大腦如何建構出如此複雜的聯想網路。

-----廣告,請繼續往下閱讀-----

霍普菲爾德網路:物理學家對神經網路的貢獻

然而,赫布理論雖能描述神經元之間的關係,卻缺乏數學模型。物理學家約翰·霍普菲爾德從數學家約翰·康威(John Conway)的「生命遊戲」(Game of Life)中獲得靈感,試圖建立一個可以在電腦上運行的記憶系統。

霍普菲爾德受「生命遊戲」啟發,嘗試建立電腦記憶系統。圖/envato

「生命遊戲」由數學家康威(John Conway)發明,玩家開始時有一個棋盤,每個格子代表一個細胞,細胞可以是「活」或「死」的狀態。根據特定規則,細胞會根據鄰居的狀態決定下一次的生存狀態。康威的目的是展示複雜的系統不一定需要複雜的規則。

霍普菲爾德發現,這個遊戲與赫布理論有強大的關聯性。大腦中的大量神經元,在出生時處於初始狀態,經過刺激後,神經元間的連結會產生或斷裂,形成強大的記憶系統。他希望利用這些理論,創造一個能在電腦上運行的記憶系統。

然而,他面臨一個難題:赫布理論沒有明確的數學模型來決定神經元連結的規則。而在電腦上運行,必須要有明確的數學規則。

-----廣告,請繼續往下閱讀-----

物理學的啟發:易辛模型

霍普菲爾德從物理學的研究中找到了類似的模型:易辛模型(Ising Model)。這個模型用於解釋鐵磁性物質的磁性特性。

在鐵磁性物質中,電子具有「自旋」,自旋產生磁矩。電子的自旋方向只有「向上」或「向下」,這就像生命遊戲中細胞的「生」或「死」。鄰近的電子會影響彼此的自旋方向,類似於細胞之間的互動。

易辛模型能用數學描述電子間的相互影響,並通過計算系統能量,得出自旋狀態的分佈。霍普菲爾德借用了這個概念,將神經元的互動視為電子自旋的互動。

他結合了康威生命遊戲的時間演化概念、易辛模型的能量計算,以及赫布理論的動態連結,創造了「霍普菲爾德網路」。這讓電腦能夠模擬生物大腦的學習過程。

-----廣告,請繼續往下閱讀-----

突破瓶頸:辛頓與波茲曼機

約翰·霍普菲爾德於1982年發明聯想神經網路,即「霍普菲爾網路」。圖/wikimedia

然而,霍普菲爾德網路並非完美。它容易陷入「局部最小值」的問題,無法找到系統的全局最優解。為了解決這個問題,加拿大計算機科學家傑佛瑞·辛頓(Geoffrey Hinton)提出了「波茲曼機」(Boltzmann Machine)。

辛頓將「模擬退火」的概念引入神經網路,允許系統以一定的機率跳出局部最小值,尋找全局最優解。他還引入了「隱藏層」的概念,將神經元分為「可見層」和「隱藏層」,提高了網路的學習能力。

受限波茲曼機(Restricted Boltzmann Machine)進一步簡化了模型,成為深度學習的基礎結構之一。這些創新使得 AI 能夠更有效地模擬人類的思維和學習過程。

AI 的未來:跨學科的融合

霍普菲爾德和辛頓的工作,將物理學的概念成功應用於人工智慧。他們的研究不僅解決了 AI 發展的瓶頸,還奠定了深度學習的基礎,對現代 AI 技術產生了深遠的影響。因此,2024 年諾貝爾物理學獎頒給他們,並非意外,而是對他們在跨學科領域的重大貢獻的肯定。

-----廣告,請繼續往下閱讀-----

AI 的發展,離不開物理學、生物學、數學等多學科的融合。霍普菲爾德和辛頓的工作,正是這種融合的典範。未來,隨著科學技術的進步,我們有理由相信,AI 將越來越接近人類的思維方式,甚至可能超越我們的想像。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2408 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

7
4

文字

分享

0
7
4
高速移動的話時間流速會不一樣嗎?時間暫停是可能的嗎?——《關於宇宙我們什麼都不知道》
天下文化_96
・2023/11/08 ・2746字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

我們都感覺到相同的時間嗎?

在二十世紀之前,科學認為時間是普適的:每個人和宇宙中的一切,都感覺到相同時間。那時的假設是,你如果在宇宙裡四處擺滿了一模一樣的時鐘,那麼每個時鐘在任何時刻都會顯示相同時間。畢竟,這就是我們在日常生活中遇到的情況。想像一下,如果每個人的鐘都以不同的速度奔跑,會是多麼混亂!

但後來,愛因斯坦的相對論把空間與時間結合成「時空」*1 概念,改變了一切。愛因斯坦強調,移動中的時鐘運行速度較慢。如果你以接近光速行駛至附近的星星,那麼你體驗的時間,將遠遠少於在地球上的時間。這並不是說你覺得時間過得很慢,像是「駭客任務」中的慢動作鏡頭那樣,而是說地球上的人和時鐘測量到的時間,會比宇宙飛船上的時鐘量到的更長。我們都以同樣的方式(以每秒一秒的節奏)體驗時間,但是如果我們彼此以相對高速移動,我們的時鐘就不會同步。

在瑞士的某個地方,製錶師剛剛心臟病發作。

一模一樣的時鐘卻以不同速度運行,似乎違背了所有的邏輯論證,但宇宙就是這樣運行的。我們知道這是真的,因為我們己經在日常生活中見證了。你的手機(或汽車、飛機)上的 GPS 接收器,會假定繞地球跑的 GPS 衛星時間走得較慢(衛星以每小時數千里的速度,在受地球巨大質量彎曲的空間中移動)。沒有這些資訊,你的 GPS 設備將無法從衛星傳輸的信號中,精確的同步和進行三角定位。關鍵是當宇宙遵循某個邏輯法則時,這些法則有時不見得如你所想。以這個案例來說,宇宙有個最高速限:光速。根據愛因斯坦的相對論,沒有任何東西、資訊甚至是外送披薩的旅行速率,可以比光跑得快。這個速率(每個時段所移動的距離)的絕對上限,會產生一些奇怪後果,並挑戰我們的時間概念。

-----廣告,請繼續往下閱讀-----

首先,先確定我們了解這個速率限制是如何運作的。最重要的規則是:從任何角度來衡量任何人的速率時,這個速率限制都必須適用。我們說沒有什麼東西可以比光速還快時,無論你用什麼觀點來看,就是「沒有」。

所以我們來做個簡單的思考實驗。假設你坐在沙發上並打開手電筒。對你來說,手電筒的光線以光速遠離你。不過,我們是否可以把你的沙發綁在火箭上,點燃火箭然後讓沙發以驚人的速度移動呢?如果此時你打開手電筒,會發生什麼事?如果把手電筒指向火箭前方,光線是否以光速再加上火箭的速率移動呢?

我們將在第十章〈我們能以超光速移動嗎?〉花更多時間在這些想法上。但重要的是,為了讓所有觀察者(在火箭上的你和我們其他在地球上的人)看到,手電筒的光線都是以光速移動的,於是某些東西必須改變,這個東西就是「時間」。

為了幫助你理解這個概念,讓我們回到把時間當做時空第四維度的想法。這個想法有助於想像物體如何穿越時間和空間,而把宇宙速限應用在你的總速率上。如果你坐在地球上的沙發裡,你沒有穿越空間(相對於地球)的速率,所以你穿越時間的速率可以很高。

-----廣告,請繼續往下閱讀-----

但如果你坐在火箭上,對地球而言,火箭的移動速度接近光速,那麼你穿越空間的速率是非常高的。因此,為了讓你穿越時空的總速率在相對於地球時,保持在宇宙速限之內,你的時間速率必須減少,在此所有的速率量測都使用地球上的時鐘。

還讀得下去嗎?

對於不同人可以回報不同時間長度,你可能很難接受,但這是宇宙的運作方式。更奇怪的是,人們可能會在某些情況下,看到事件以不同順序發生,而且都是正確的。舉例來說,兩位誠實的觀察者,如果以非常不同的速度移動,他們會對誰贏得直線競速賽有不同的看法。

如果你的寵物美洲駝和雪貂進行賽跑,那麼,依據你的移動速度和相對於比賽場地的距離,你可以看到心愛的美洲駝或雪貂贏得比賽。每隻寵物都會有屬於自己事件的版本,如果你的祖母能夠以接近光速的速率移動,她看到的比賽結果可能完全不同。而且,所有人都是正確的!(不過要注意的是,每個人的時間起始點都不相同。)

-----廣告,請繼續往下閱讀-----
圖/《關於宇宙我們什麼都不知道》

我們喜歡認為宇宙有絕對真實的歷史,所以不同人可以體驗不同的時間,是令人難以接受的想法。我們可以想像,原則上有人可以寫下宇宙至今發生的每一件事(這會是非常冗長的故事而且大半都超級無聊)。如果這故事存在,那麼每個人都可以根據自己的經驗來進行檢查,除非是無心之過或視力模糊,每個人讀的故事應該要一致。但愛因斯坦的相對論使得一切都是相對的,所以不同觀察者對於宇宙裡事件的先後順序,會有不同的描述。

最終我們必須放棄宇宙有絕對單一時鐘存在的想法。雖然因此我們有時會遇到違反直覺且看似荒謬的領域,但驚人的是,這種看待時間的方式已測試為真。與許多物理革命一樣,我們被迫拋棄自我的直覺,並遵循受時間主觀意識影響較小的數學之道。

時間會停止嗎?

打從一開始,人們就想排除時間會停止的概念。時間除了向前,我們從未見過它做過其他事,既然如此,時間怎麼可能還有別的選項呢?由於我們本來就不清楚為什麼時間要前進,所以很難自信的說,時間向前是永恆真理。

一些物理學家相信,時間的「箭頭」是根據熵必須增加的法則所決定。也就是說,時間的方向與熵增加的方向相同。但如果這是真的,當宇宙達到最大熵時會發生什麼事?在這樣的宇宙裡,一切都將處於平衡而且不能創造秩序。那麼,時間會在這一點停下來嗎?還是時間不再有意義?一些哲學家猜測,在這個時刻,時間的箭頭和熵增加的法則可能會逆轉過來,導致宇宙縮小到一個微小奇點。不過,這個說法比較像是深夜裡藥吃多了後激發的猜測,而不是實際的科學預測。

-----廣告,請繼續往下閱讀-----

還有理論提出大霹靂創造了兩個宇宙,一個時間向前流逝,一個時間向後奔流。更瘋狂的理論則提出時間不只一個方向。為什麼不呢?我們可以在三個(或更多)空間方向中移動,為什麼不能有兩個或更多的時間方向?真相為何?如往常一樣,我們不知道。

註解

  1. 愛因斯坦的天才並沒有展現在為事物命名上面。

——本文摘自《關於宇宙我們什麼都不知道》,2023 年 9 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
天下文化_96
142 篇文章 ・ 623 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

1

3
3

文字

分享

1
3
3
你有時間了解「時間」到底是什麼嗎?——《關於宇宙我們什麼都不知道》
天下文化_96
・2023/11/06 ・3469字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

時間是什麼?

我們已經看到,空間、質量和物質這樣的基本概念,其實比你想像的更神祕。那麼我們的世界還有哪個基本要素,有可能在眾目睽睽之下隱藏了它們的祕密?現在是時候讓我們提出這個及時的問題了:時間究竟是什麼?

如果你是訪問地球的外星人,試圖透過偷聽咖啡館和雜貨店裡的對話來學習我們的語言,你可能很難回答「時間是什麼」這個問題。人類花很多時間聊時間,但幾乎沒有時間討論時間究竟是什麼!

我們無時無刻不在檢查時間。我們談起壞的時光、好的時光、過去的年代以及瘋狂的年代。我們節省時間、把握時間、製造時間、花費時間、縮短時間或誤了時間。時間可以終了、可以暫停、可以超過,或甚至可以停止。時間不會等待過客!有時我們說,時光飛逝,或說你的身體在不知不覺中留下了歲月的痕跡。甚至說,時間一點一滴的流逝。不過大多數的時候,我們只是感嘆用完了時間。

究竟,時間是什麼呢?時間會是有形的東西(如物質或空間)嗎?或者時間是我們立足於宇宙經驗上的抽象概念?

-----廣告,請繼續往下閱讀-----

如果你希望物理學家對這深奧,又有點令人混淆的時間問題做出回答,現在還不是時候。時間仍然是物理學的巨大奧祕之一,時間問題甚至動搖物理學最根本的定義。所以讓我們花點時間,仔細研究這個亙古不變的話題。

時間到底是什麼

在所有關於宇宙的問題裡,最有趣的是那些聽起來很簡單,但實際上很困難的問題,它們會讓你在埋頭苦思後,才意識到有些基本的東西就擺在眼前,而我們卻沒有明確的解釋。

這類問題產生一種可能性:我們可能把一切都想錯了,就像我們過去那樣(例如「地球是平的」或「嘿!讓我放些水蛭到你身上來治病!」)。在得到堅定且具體的答案後,可能會徹底改變我們對於宇宙,以及我們在宇宙何處的思考方式。翻盤的機率非常高!

我們要做的第一件事,就是嘗試定義時間是什麼。畢竟,這是物理學家解決難題的步驟。首先,我們對你想要理解的東西,提出鉅細靡遺的定義;接著,我們用數學來描述定義,這允許你應用邏輯和實驗的力量來引領其他步驟。

-----廣告,請繼續往下閱讀-----

所以,時間是什麼?如果你今天在街上隨機街訪陌生人,並要求他們定義時間,你可能會得到如下的答案:

「時間是過去和現在之間的區別。」
「時間告訴我們事情在何時發生。」
「時間是時鐘測量的數值。」
「時間就是金錢,所以別煩我!」

以上所述,都是對時間合理的定義,但是這些答案反而產生層出不窮的問題。例如,你可以問:「為什麼從一開始就有『過去』和『現在』的存在?」或「究竟『何時』是什麼意思?」還有「時鐘不是受時間支配嗎?」或「誰有時間管這些問題?」

如果我們不能描述時間,似乎很難在時間問題上取得進展。但不需要因此而驚慌。雖然「時間是什麼」聽起來像是五歲小孩會問的問題 *1,但無法定義或精確描述我們非常熟悉的東西,這種狀況我們也不是第一次遇到,在其他領域也曾發生:過去數十年來,生物學家一直在爭論「生命」的定義(殭屍權利組織是強大的遊說團體),神經科學家對「意識」有激烈爭議,而哥吉拉學家 *2 不能就「怪物」的定義達成一致協議。

-----廣告,請繼續往下閱讀-----

定義時間的部分難處在於,時間已經根植在我們的經驗和思考模式裡。時間是我們聯繫現在的「現在」與過去的「現在」的方法。我們現在正感覺到的所有一切,就是我們所說的「現在」,但「現在」轉瞬即逝,我們沒辦法把時間當做美味的巧克力蛋糕,細細品嘗或延續。我們經歷的每一刻,都會從現在的鮮活體驗瞬間,轉成過去的褪色記憶。

但時間也有關未來。能夠將未來與過去和現在互相連結事關重大。如果你是希望在下個嚴冬生存下去的穴居人,或是需要地方為智慧手機充電的現代人,那麼從過去推斷來思考未來,絕對是生存關鍵。所以很難想像,人類經驗若沒有時間概念會怎樣。

物理學家思考時間的方式也是如此。事實上,時間深嵌在物理學的基本定義裡!根據權威定義(維基百科),物理學只不過是「研究物質本身,以及物質在時空中的運動」。即使是「運動」這個詞也包含了時間概念。物理學的基本工作,就是用過去了解未來有什麼可能性,以及我們如何影響未來。沒了時間,物理學就沒有意義。

事實是,人類對時間的任何定義,都可能受我們的經驗扭曲。想一想,就算是思考時間也「需要」時間!外星物理學家可能有與我們相異的時間概念,因為他們的經驗和思維模式,與我們有天壤之別,以致於我們目前的主觀經驗,阻礙了我們真正理解時間的定義。

-----廣告,請繼續往下閱讀-----

所以請告訴我們:時間是什麼?

我們來談談雪貂。

為了進一步了解物理學家對時間的想法,讓我們考慮常見的情況。例如,假設你的寵物雪貂正計劃在你下班回家時,把水球丟在你頭上。這情況常常發生,是吧?

現在,別把時間想成流暢的經驗,而是把時間切成片段,並設想它就像電影一樣,是把許多靜態快照接在一起。

對物理學家來說,每張快照都描述了某個事件在每個時刻的狀態。所以,你可能有如下的快照系列:

-----廣告,請繼續往下閱讀-----
  1. 你無憂無慮吹著口哨,天真的走到家門前。
  2. 雪貂將水球推到發射位置。
  3. 你把鑰匙插進鑰匙孔。
  4. 雪貂發射水球。
  5. 你成了落湯雞。
  6. 雪貂捧腹大笑。

每張快照都是對局部狀況的描述:在那個時刻,所有東西所處的位置以及正在做的事情。每張快照都是凍結、靜止、沒有變化的。如果我們沒有時間概念,宇宙將是這些凍結的快照之一,無法改變或運動。

幸運的是,我們的宇宙沒那麼無趣:這些快照彼此不能單獨存在,時間將它們以兩種重要的方式聯繫在一起。

首先,時間把快照以特定序列鏈結。譬如,快照如果沒照順序排好,我們可能會感到不對勁。

其次,時間要求快照彼此因果相連。這表示宇宙中的每一刻,都取決於前一刻發生的事情。這不過是因果關係罷了。例如,你不能這一刻坐在沙發上吃冰淇淋,而下一刻就已經跑完半場馬拉松。

-----廣告,請繼續往下閱讀-----

這正是物理定律的工作:物理定律告訴我們,宇宙可以怎麼變,或不可以怎麼變。從一張過去的快照,物理學能告訴我們在未來的快照中,哪些是比較可能的,哪些則是緣木求魚。而時間是這些推測的基本要求。由於任何一種變化或運動都需要時間,如果時間不存在,我們必須想像一個靜態的宇宙。

那麼,要如何將快照論述連接到我們的平滑時間經驗?好吧!我們可以把這些快照拼接在一起,把快照之間的時間間隔縮得愈小愈好 *5,使它像我們喜歡的電影一樣順暢且連續。

這正是為了物理而發明的數學語言「微積分」的作用。微積分把許多微小切片,轉換成平滑變化。你看電影時,由於時間間隔非常小,你沒有注意到電影實際上是一系列的凍結影像。以同樣的方式,我們可以用一組有序且由物理學相互關聯的靜態快照,來描述充滿變化和運動的宇宙。時間是這些快照的排序和間距。

註解

  1. 物理學家是永遠長不大的五歲小孩。
  2. 小朋友抱歉了,哥吉拉學家不是真正的工作。
  3. 譯注:引述自美國著名電視影集「超時空奇俠」(Dr. Who)的經典台詞。劇中人用此台詞來形容混亂的時間線。
  4. 譯注:改寫自捷克裔法國作家米蘭.昆德拉 1984 年的小說《生命中不能承受之輕》。

——本文摘自《關於宇宙我們什麼都不知道》,2023 年 9 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
所有討論 1
天下文化_96
142 篇文章 ・ 623 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。