Loading [MathJax]/extensions/tex2jax.js

2

10
2

文字

分享

2
10
2

2021 諾貝爾物理獎得主真鍋淑郎——地表模型開山始祖,研究地表模式都要引用他的論文

Y.-S. Lu
・2021/10/14 ・2990字 ・閱讀時間約 6 分鐘

  • 作者|盧彥森,目前任職於 德國于利希研究中心 能源與氣候研究所

第一個地表模型的開發者——真鍋淑郎

在大氣科學領域中,有一部份專業領域統稱為「氣象模擬」,其中,有一門名為「地表模式」的領域,是專門算地表上各種物理、化學、生物作用的行為。

在做這些模擬的研究者中,有個很有名的日本名字,叫做 Manabe,他的論文會一直出現在大家眼前,也就是(只有我們在乎的)《 Manabe 1969, CLIMATE AND THE OCEAN CIRCULATION I : THE ATMOSPHERIC CIRCULATION AND THE HYDROLOGY OF THE EARTH’S SURFACE 》[1]最近因為大量的報導,我才知道原來他名字的漢字是——真鍋淑郎,也就是第一個地表模型的開發者,而在 2021 年時,他拿下了諾貝爾獎。

真鍋淑郎,2021年諾貝爾物理學獎得主之一。圖/維基百科

地表模式(Land Surface Model)在大氣模擬中有舉足輕重的地位,可以算地面是怎麼跟大氣作反應的,像是降水是怎麼被樹冠層截流、土壤水是怎麼變成地表逕流跟地下水、水是怎麼靠蒸散發回到大氣中;還有太陽光怎麼被地面或葉面吸收、能量怎麼被蒸散發作用給吸收、地面上的溫度增加或減少了多少,還有太陽輻射是有多少返回大氣層。

而真鍋淑郎的地表模式,則涵蓋了一大部份的物理反應,供美國國家海洋暨大氣總署(NOAA)的 Geophysical Fluid Dynamics Laboratory 的全球大氣模型使用。

-----廣告,請繼續往下閱讀-----
Geophysical Fluid Dynamics Laboratory 圖/Geophysical Fluid Dynamics Laboratory

不過學界是殘酷的。在那個電腦比房子貴的年代(房價在 1960 年的中位數約為$11,900,CNBC報導),真鍋順便背了個學界的鍋,像是:你的模型是不夠真實的、你的土壤濕度估算不夠物理……等因為電腦計算跟理論發展還不夠成熟,所以尚未發展的物理與計算方法。

後來的論文也會稱真鍋的地表模式是水桶模型(因為其計算土壤濕度的方法宛如水桶一樣,滿了就去除,而非經土壤中水流方法流走的)。但無論如何,第一個地表模型,基本上就是真鍋與他在普林斯頓的好夥伴們發展出來的。因此,真鍋的地表模型也在後來的論文中,尊稱為第一代的地表模式,建立起祖師爺等級的封號(Sellers et al., 1997)。

水桶模型後,百家爭鳴的地表模式大戰

雖然第一代的地表模式,土壤當做水桶,地上也沒有植物,更不要說可以進行光合作用或是碳排放來研究二氧化碳是怎麼搞壞我們的人生,但也讓後續的第二代地表模型有了出發點。

1980年後,在個人電腦逐漸普及後,地表模式也開始百家爭鳴,其中真鍋的身影也就只存在各家論文的引用中了。後來再出現時,則是在地表模式大戰——PILPS(Project for the Intercomparison of Land-surface Parametrization Schemes)[2]。這個計畫中,以水桶模型這個稱號出現。基本上始於 1995 年的 PILPS 計畫,就是利用荷蘭的 Cabauw 量測站測到的氣象狀況,來驗證各家第二代的地表模式中,誰才是最強的。

荷蘭 Cabauw 村莊。圖/維基百科

當然結果就是,沒有誰家最強。

更重要的是,雖然地表模式都比真鍋的模型更複雜了一點,但是有個東西是沒有人考慮到的:光合作用

-----廣告,請繼續往下閱讀-----

當時各家的蒸散發公式,主要都是用Jarvis的葉面氣孔參數化公式做考量[3],所以也沒有真的考慮到二氧化碳、水、太陽之間的直接關聯。而做出這個關連性主要公式——Farquhar等人[4] 的二氧化碳同化作用公式,才在 1980 年時正式發表,離他同事 Berry 拿去演化成植物氣孔跟光合作用的連動公式[5],還有七年。而在地表模型大戰中發表的模型,其實都長得 87% 像。

在 1997 年時,NASA 的 Sellers等人[6],與多位同樣是地表模式的作者與植物氣孔模擬專家,在《Science》期刊中,登高一呼:我們要有能夠計算生態跟複雜物理的模型!畢竟在 PILPS 的大戰中,沒有真正的勝者,也沒有真正的輸家,甚至我們的真鍋大哥在水文計算上也沒有輸[2]

所以在 2003 年,集合了 PILPS 大戰中和解的部份朋友們,第一支集眾人之力誕生的通用地表模式(Common Land Model)上線了[7],這支從 1998 年開始寫的程式,過了近五年後才發表,算是第三代地表模式的代表作

而這個第三代中,植物終於開始有了它的意義,這植物的葉子終於可以隨四季生長了,也會行光合作用了,土壤也增厚到兩公尺多了,土壤也會依不飽和水流公式往下滲流,也可以計算堆雪了。其中最重要的,就是那光合作用公式的應用。

-----廣告,請繼續往下閱讀-----

持續再精進與貢獻

之後的地表模式,就一直著重在地面植物的改良,讓植物越來越真,從一開始的沒有植物,到會蒸發水,再到會跟二氧化碳互動,以及跟氮交互作用,計算植物的農作產出,一步步朝著更精細的方向前進。

當然地表模式也有很多需要改良的地方,首先是地表模型是假設地表跟大氣是一維方向的互動,而土壤中水流也是只會向下滲流,如果要計算真正的水流,就必須要進行三維的地下水流動,這就是另外一個耗資源的計算。另外植物也不是真的植物,植物被假設只有四片葉子,還只有一層。

英國的「JULES」模型曾報告說他們做了個多層葉冠層的模型,最後只能淡淡的說因為計算資源耗太兇,所以沒算完 [8]。更甚者,地底下的根是「死」的,一年四季,不生不滅、不垢不淨,持續地在只有兩公尺厚的土裡,把水吸到植物中行光合作用(Pitman, 2003)[9]

所以無論如何,地表模型不僅不死,其勢更烈,因為有太多的東西可以靠地表模式來計算,像是人類對地球表面的影響、化合物排放,也都可以靠地表模式計算其對大氣的影響,就連地下水模型也都要拜託地表模式處理複雜的地表水文狀況[10]

從 1969 年到 2021 年,無數的改良與改版,還有兩次的超級地表模式大戰(第二次利用 Rhône 流域量測結果[11]),都增加了人們對大氣系統的了解,並且一步步改善天氣預報的準確度,而其中的功臣之一,當然是真鍋博士在 1969 年,比 Unix 更早發表的地式模型,所以的確功不可沒,而現在地球科學的眾多估算中,地表模式解決了很多的水文與能量問題,更遑論對氣候變遷的計算,才能在1975年提出二氧化碳加劇溫度上升的研究[12]。拿下諾貝爾獎,不僅僅是贊同真鍋博士的功勞,更是對大氣模擬界的慰勞吧。

-----廣告,請繼續往下閱讀-----

參考資料

  1. Manabe S. (1969). CLIMATE AND THE OCEAN CIRCULATION 1: I. THE ATMOSPHERIC CIRCULATION AND THE HYDROLOGY OF THE EARTH’S SURFACE. Mon. Weather Rev. 97:739–774.
  2. Pitman, A. J., Henderson-Sellers, A., Desborough, C. E., Yang, Z. L., Abramopoulos, F., Boone, A., … & Xue, Y. (1999). Key results and implications from phase 1 (c) of the Project for Intercomparison of Land-surface Parametrization Schemes. Climate Dynamics, 15(9), 673-684.
  3. Jarvis PG. (1976). The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field. Philos. Trans. R. Soc. Lond. B Biol. Sci. 273:593–610.
  4. Farquhar, G. D., von Caemmerer, S. V., & Berry, J. A. (1980). A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species. Planta, 149(1), 78-90.
  5. Ball JT., Woodrow IE., Berry JA. (1987). A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Progress in photosynthesis research. Springer, 221–224.
  6. Sellers PJ., Dickinson RE., Randall DA., Betts AK., Hall FG., Berry JA., Collatz GJ., Denning AS., Mooney HA., Nobre CA., Sato N., Field CB., Henderson-Sellers A. (1997). Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere. Science 275:502–509
  7. Dai Y., Zeng X., Dickinson RE., Baker I., Bonan GB., Bosilovich MG., Denning AS., Dirmeyer PA., Houser PR., Niu G. (2003). The common land model. Bull. Am. Meteorol. Soc. 84.
  8. Best MJ., Pryor M., Clark DB., Rooney GG., Essery RLH., Ménard CB., Edwards JM., Hendry MA., Porson A., Gedney N., Mercado LM., Sitch S., Blyth E., Boucher O., Cox PM., Grimmond CSB., Harding RJ. (2011). The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes. Geosci Model Dev 4:677–699
  9. Pitman AJ. (2003). The evolution of, and revolution in, land surface schemes designed for climate models. Int J Clim. 23:479–510.
  10. Kollet SJ., Maxwell RM. (2006). Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model. 29:945–958.
  11. Boone A., Habets F., Noilhan J., Clark D., Dirmeyer P., Fox S., Gusev Y., Haddeland I., Koster R., Lohmann D. 2004. The Rhone-Aggregation land surface scheme intercomparison project: An overview. J. Clim. 17:187–208.
  12. Manabe, S., & Wetherald, R. T. (1975). The effects of doubling the CO2 concentration on the climate of a general circulation model. Journal of Atmospheric Sciences, 32(1), 3-15.


-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
Y.-S. Lu
4 篇文章 ・ 6 位粉絲
自從來到學界後,便展開了一段從土木人到氣象人的水文之旅。主要專業是地球系統數值模擬,地下水與地表模式的耦合系統,以及大氣氣象模擬。目前是于利希研究中心(Forschungszentrum Jülich GmbH)超級電腦中心的博士後研究員。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
1

文字

分享

0
2
1
AI 能像人類一樣思考?諾貝爾物理學獎研究助力人工智慧模擬人類大腦
PanSci_96
・2024/11/14 ・2117字 ・閱讀時間約 4 分鐘

即使再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?畢竟電腦的電子元件和我們大腦中的神經細胞結構截然不同。再怎麼模仿,AI 終究無法以與生物相同的方式思考吧?

錯,可以。

2024 年諾貝爾物理學獎跌破所有專家的眼鏡,頒給了兩位研究機器學習的科學家——約翰·霍普菲爾德(John Hopfield)和傑佛瑞·辛頓(Geoffrey Hinton)。他們以「人工」的方法打造了類神經網路,最終模擬出生物的「智慧」,奠定了當代深度學習的基礎。

為什麼解決人工智慧發展瓶頸的,竟然會是物理學?物理要怎麼讓 AI 更像人類?

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從巴甫洛夫的狗到赫布理論:理解學習的基礎

為了解答這個疑問,我們需要一些背景知識。

20 世紀初,俄羅斯心理學家巴甫洛夫發現,狗在食物還沒入口前,就會開始分泌唾液。他進行了一系列實驗,改變食物出現前的環境,比如讓狗習慣在聽到鈴聲後馬上得到食物。久而久之,狗只要聽到鈴聲,就會開始分泌唾液。

大約 50 年後,神經科學家赫布(Donald Hebb)提出了一個假說:大腦中相近的神經元,因為經常同時放電,會產生更強的連結。這種解釋稱為「赫布理論」,不僅奠定了神經心理學的發展,更成為現代深度學習的基礎。

然而,赫布理論雖然描述了鄰近神經元的關係,卻無法解釋大腦如何建構出如此複雜的聯想網路。

-----廣告,請繼續往下閱讀-----

霍普菲爾德網路:物理學家對神經網路的貢獻

然而,赫布理論雖能描述神經元之間的關係,卻缺乏數學模型。物理學家約翰·霍普菲爾德從數學家約翰·康威(John Conway)的「生命遊戲」(Game of Life)中獲得靈感,試圖建立一個可以在電腦上運行的記憶系統。

霍普菲爾德受「生命遊戲」啟發,嘗試建立電腦記憶系統。圖/envato

「生命遊戲」由數學家康威(John Conway)發明,玩家開始時有一個棋盤,每個格子代表一個細胞,細胞可以是「活」或「死」的狀態。根據特定規則,細胞會根據鄰居的狀態決定下一次的生存狀態。康威的目的是展示複雜的系統不一定需要複雜的規則。

霍普菲爾德發現,這個遊戲與赫布理論有強大的關聯性。大腦中的大量神經元,在出生時處於初始狀態,經過刺激後,神經元間的連結會產生或斷裂,形成強大的記憶系統。他希望利用這些理論,創造一個能在電腦上運行的記憶系統。

然而,他面臨一個難題:赫布理論沒有明確的數學模型來決定神經元連結的規則。而在電腦上運行,必須要有明確的數學規則。

-----廣告,請繼續往下閱讀-----

物理學的啟發:易辛模型

霍普菲爾德從物理學的研究中找到了類似的模型:易辛模型(Ising Model)。這個模型用於解釋鐵磁性物質的磁性特性。

在鐵磁性物質中,電子具有「自旋」,自旋產生磁矩。電子的自旋方向只有「向上」或「向下」,這就像生命遊戲中細胞的「生」或「死」。鄰近的電子會影響彼此的自旋方向,類似於細胞之間的互動。

易辛模型能用數學描述電子間的相互影響,並通過計算系統能量,得出自旋狀態的分佈。霍普菲爾德借用了這個概念,將神經元的互動視為電子自旋的互動。

他結合了康威生命遊戲的時間演化概念、易辛模型的能量計算,以及赫布理論的動態連結,創造了「霍普菲爾德網路」。這讓電腦能夠模擬生物大腦的學習過程。

-----廣告,請繼續往下閱讀-----

突破瓶頸:辛頓與波茲曼機

約翰·霍普菲爾德於1982年發明聯想神經網路,即「霍普菲爾網路」。圖/wikimedia

然而,霍普菲爾德網路並非完美。它容易陷入「局部最小值」的問題,無法找到系統的全局最優解。為了解決這個問題,加拿大計算機科學家傑佛瑞·辛頓(Geoffrey Hinton)提出了「波茲曼機」(Boltzmann Machine)。

辛頓將「模擬退火」的概念引入神經網路,允許系統以一定的機率跳出局部最小值,尋找全局最優解。他還引入了「隱藏層」的概念,將神經元分為「可見層」和「隱藏層」,提高了網路的學習能力。

受限波茲曼機(Restricted Boltzmann Machine)進一步簡化了模型,成為深度學習的基礎結構之一。這些創新使得 AI 能夠更有效地模擬人類的思維和學習過程。

AI 的未來:跨學科的融合

霍普菲爾德和辛頓的工作,將物理學的概念成功應用於人工智慧。他們的研究不僅解決了 AI 發展的瓶頸,還奠定了深度學習的基礎,對現代 AI 技術產生了深遠的影響。因此,2024 年諾貝爾物理學獎頒給他們,並非意外,而是對他們在跨學科領域的重大貢獻的肯定。

-----廣告,請繼續往下閱讀-----

AI 的發展,離不開物理學、生物學、數學等多學科的融合。霍普菲爾德和辛頓的工作,正是這種融合的典範。未來,隨著科學技術的進步,我們有理由相信,AI 將越來越接近人類的思維方式,甚至可能超越我們的想像。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

7
4

文字

分享

0
7
4
高速移動的話時間流速會不一樣嗎?時間暫停是可能的嗎?——《關於宇宙我們什麼都不知道》
天下文化_96
・2023/11/08 ・2746字 ・閱讀時間約 5 分鐘

我們都感覺到相同的時間嗎?

在二十世紀之前,科學認為時間是普適的:每個人和宇宙中的一切,都感覺到相同時間。那時的假設是,你如果在宇宙裡四處擺滿了一模一樣的時鐘,那麼每個時鐘在任何時刻都會顯示相同時間。畢竟,這就是我們在日常生活中遇到的情況。想像一下,如果每個人的鐘都以不同的速度奔跑,會是多麼混亂!

但後來,愛因斯坦的相對論把空間與時間結合成「時空」*1 概念,改變了一切。愛因斯坦強調,移動中的時鐘運行速度較慢。如果你以接近光速行駛至附近的星星,那麼你體驗的時間,將遠遠少於在地球上的時間。這並不是說你覺得時間過得很慢,像是「駭客任務」中的慢動作鏡頭那樣,而是說地球上的人和時鐘測量到的時間,會比宇宙飛船上的時鐘量到的更長。我們都以同樣的方式(以每秒一秒的節奏)體驗時間,但是如果我們彼此以相對高速移動,我們的時鐘就不會同步。

在瑞士的某個地方,製錶師剛剛心臟病發作。

一模一樣的時鐘卻以不同速度運行,似乎違背了所有的邏輯論證,但宇宙就是這樣運行的。我們知道這是真的,因為我們己經在日常生活中見證了。你的手機(或汽車、飛機)上的 GPS 接收器,會假定繞地球跑的 GPS 衛星時間走得較慢(衛星以每小時數千里的速度,在受地球巨大質量彎曲的空間中移動)。沒有這些資訊,你的 GPS 設備將無法從衛星傳輸的信號中,精確的同步和進行三角定位。關鍵是當宇宙遵循某個邏輯法則時,這些法則有時不見得如你所想。以這個案例來說,宇宙有個最高速限:光速。根據愛因斯坦的相對論,沒有任何東西、資訊甚至是外送披薩的旅行速率,可以比光跑得快。這個速率(每個時段所移動的距離)的絕對上限,會產生一些奇怪後果,並挑戰我們的時間概念。

-----廣告,請繼續往下閱讀-----

首先,先確定我們了解這個速率限制是如何運作的。最重要的規則是:從任何角度來衡量任何人的速率時,這個速率限制都必須適用。我們說沒有什麼東西可以比光速還快時,無論你用什麼觀點來看,就是「沒有」。

所以我們來做個簡單的思考實驗。假設你坐在沙發上並打開手電筒。對你來說,手電筒的光線以光速遠離你。不過,我們是否可以把你的沙發綁在火箭上,點燃火箭然後讓沙發以驚人的速度移動呢?如果此時你打開手電筒,會發生什麼事?如果把手電筒指向火箭前方,光線是否以光速再加上火箭的速率移動呢?

我們將在第十章〈我們能以超光速移動嗎?〉花更多時間在這些想法上。但重要的是,為了讓所有觀察者(在火箭上的你和我們其他在地球上的人)看到,手電筒的光線都是以光速移動的,於是某些東西必須改變,這個東西就是「時間」。

為了幫助你理解這個概念,讓我們回到把時間當做時空第四維度的想法。這個想法有助於想像物體如何穿越時間和空間,而把宇宙速限應用在你的總速率上。如果你坐在地球上的沙發裡,你沒有穿越空間(相對於地球)的速率,所以你穿越時間的速率可以很高。

-----廣告,請繼續往下閱讀-----

但如果你坐在火箭上,對地球而言,火箭的移動速度接近光速,那麼你穿越空間的速率是非常高的。因此,為了讓你穿越時空的總速率在相對於地球時,保持在宇宙速限之內,你的時間速率必須減少,在此所有的速率量測都使用地球上的時鐘。

還讀得下去嗎?

對於不同人可以回報不同時間長度,你可能很難接受,但這是宇宙的運作方式。更奇怪的是,人們可能會在某些情況下,看到事件以不同順序發生,而且都是正確的。舉例來說,兩位誠實的觀察者,如果以非常不同的速度移動,他們會對誰贏得直線競速賽有不同的看法。

如果你的寵物美洲駝和雪貂進行賽跑,那麼,依據你的移動速度和相對於比賽場地的距離,你可以看到心愛的美洲駝或雪貂贏得比賽。每隻寵物都會有屬於自己事件的版本,如果你的祖母能夠以接近光速的速率移動,她看到的比賽結果可能完全不同。而且,所有人都是正確的!(不過要注意的是,每個人的時間起始點都不相同。)

-----廣告,請繼續往下閱讀-----
圖/《關於宇宙我們什麼都不知道》

我們喜歡認為宇宙有絕對真實的歷史,所以不同人可以體驗不同的時間,是令人難以接受的想法。我們可以想像,原則上有人可以寫下宇宙至今發生的每一件事(這會是非常冗長的故事而且大半都超級無聊)。如果這故事存在,那麼每個人都可以根據自己的經驗來進行檢查,除非是無心之過或視力模糊,每個人讀的故事應該要一致。但愛因斯坦的相對論使得一切都是相對的,所以不同觀察者對於宇宙裡事件的先後順序,會有不同的描述。

最終我們必須放棄宇宙有絕對單一時鐘存在的想法。雖然因此我們有時會遇到違反直覺且看似荒謬的領域,但驚人的是,這種看待時間的方式已測試為真。與許多物理革命一樣,我們被迫拋棄自我的直覺,並遵循受時間主觀意識影響較小的數學之道。

時間會停止嗎?

打從一開始,人們就想排除時間會停止的概念。時間除了向前,我們從未見過它做過其他事,既然如此,時間怎麼可能還有別的選項呢?由於我們本來就不清楚為什麼時間要前進,所以很難自信的說,時間向前是永恆真理。

一些物理學家相信,時間的「箭頭」是根據熵必須增加的法則所決定。也就是說,時間的方向與熵增加的方向相同。但如果這是真的,當宇宙達到最大熵時會發生什麼事?在這樣的宇宙裡,一切都將處於平衡而且不能創造秩序。那麼,時間會在這一點停下來嗎?還是時間不再有意義?一些哲學家猜測,在這個時刻,時間的箭頭和熵增加的法則可能會逆轉過來,導致宇宙縮小到一個微小奇點。不過,這個說法比較像是深夜裡藥吃多了後激發的猜測,而不是實際的科學預測。

-----廣告,請繼續往下閱讀-----

還有理論提出大霹靂創造了兩個宇宙,一個時間向前流逝,一個時間向後奔流。更瘋狂的理論則提出時間不只一個方向。為什麼不呢?我們可以在三個(或更多)空間方向中移動,為什麼不能有兩個或更多的時間方向?真相為何?如往常一樣,我們不知道。

註解

  1. 愛因斯坦的天才並沒有展現在為事物命名上面。

——本文摘自《關於宇宙我們什麼都不知道》,2023 年 9 月,天下文化出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。