0

0
0

文字

分享

0
0
0

聖母峰,一段不要命的登頂之路——《聖母峰》

PanSci_96
・2015/11/11 ・3168字 ・閱讀時間約 6 分鐘 ・SR值 538 ・八年級

-----廣告,請繼續往下閱讀-----

聖母峰上,幾乎每十年就會出現獨特而創新的突破:20和30年代專注於探索;50年代創下登頂紀錄;60年代開始嘗試不同的山稜路線;80年代則出現各種新路線以及無氧登頂。

那麼90年代呢?美國登山者艾德‧韋伯斯特說:「聖母峰上屢見創舉的歲月,似乎在90年代早期就結束了。」

有部分是因為登山人數大增。尼泊爾觀光局販售的東南稜登山許可證,數量逐年增加;這可是名符其實的金礦。中國也如法炮製,發放更多北稜登山許可。申請者多半想攀登七大峰、登上地表14座8000公尺以上的高山,或是夢想攀登聖母峰。包括梅斯納在內的許多人,都認為攀登聖母峰已經不算真正的登山了。

英國作家艾德‧道格拉斯(Ed Douglas)甚至稱之為「災厄的喜馬拉雅」。現在,數千人經由最熱門的登山路線擠上聖母峰,多數都由嚮導帶領。每年有數百人登頂,嚐到勝利的滋味;聖母峰是他們的夢想、他們的野心與一生的執著。然而,也有許多人在登頂途中喪命;有人摔死、有人缺氧而死,但大部分的人都是力竭而亡。

-----廣告,請繼續往下閱讀-----
聖母峰是許多人的夢想、野心與一生的執著。Source: flickr/ utpala ॐ

災厄年

1996年,有太多人命喪聖母峰。這次山難總共有11人罹難,受到高度關注,也不幸定義了90年代的聖母峰活動。很多人分析導致悲劇發生的一連串事件,相互指責;但這次事件和大部分的山難一樣,是由很多因素共同導致的。當然,登頂那天有太多人擠在同一條路線上,交通堵塞、進度嚴重落後。溝通也出了問題,很多人不清楚自己該在什麼時候、做什麼事。有些由嚮導帶領的登山客經驗不足,所以在驚險萬分的下山途中,過分依賴固定繩和隊友的扶持。另外,兩組商業遠征隊領隊之間的競爭或許也是原因之一。

紐西蘭籍嚮導羅伯‧霍爾是冒險顧問公司的老闆,美國籍嚮導史考特‧費雪(Scott Fischer)則是山痴公司的領隊。當時費雪首次擔任聖母峰嚮導,而霍爾早已經驗老道,除了前一年,每年都成功帶領顧客登頂。前一年,霍爾嚴格遵守自己訂的求生法則,所以即使沒有人成功登頂,大家都活著下山。那年霍爾想必承受了不少壓力,所以違反了這些法則,和顧客在8000公尺以上的地區逗留過久。1996年,霍爾隊上包括他自己,共有四人在下山途中喪命。

Farouqalzouman99 (1)

費雪在遠征隊攻頂當天生病,影響到他照顧登山客的能力,也使他和俄羅斯嚮導安納托利‧波克里夫(Anatoli Boukreev)一同擬定的策略難以實行。原本的計畫是由波克里夫領頭,費雪殿後。費雪身體不適,這項策略勢必無法成功,他們的顧客並未得到足夠的協助。根據當時山上其他登山者的觀察,所有嚮導的服裝都略顯輕便。表示他們可能對自己的能力過於自信,以為能快速往返峰頂。聘請嚮導攀登聖母峰的高昂價格,可能也令部分登山客在精疲力竭的狀態下攻頂,因為他們無法負擔重返聖母峰的費用。

最主要的因素當然還是暴風雪。有些人說,那是20世紀最大的一場暴風雪;也有人認為,那只是聖母峰上常見的暴風雪。不論這場暴風雪強度如何,加上攻頂過程中的種種因素(病痛、違反規則、溝通不良、登山技術不佳、登山者精疲力竭),就形成了最致命的風暴。當晚一共有九人喪生。如果波克里夫沒有一次次摸黑前往南坳,營救在暴風雪中縮成一團的一群登山者,可能還會有更多人死亡。羅伯‧霍爾可就沒這麼幸運了。他協助一位登山客攀上峰頂後,他的氧氣罩活瓣被冰塞住,最後死於這場暴風雪。

-----廣告,請繼續往下閱讀-----

永遠的先鋒

雖然悲劇的陰影籠罩了整個90年代,聖母峰還是不乏挑戰者,其中有不少人還以相當新穎的攀登法成功登頂。90年代初期,澳洲人提姆‧麥卡尼史奈普(Tim Macartney-Snape)從孟加拉灣出發,以步行和游泳的方式,一路跋涉到聖母峰山腳下,接著一路往上登頂。1990年,吉姆‧惠特克帶領中美蘇聯合的「和平登山隊」上山,成功將20位登山者送上峰頂。同年,斯洛維尼亞登山老將瑪莉亞和安德烈‧史丹菲耶夫婦以些微差距,擊敗美國人凱西‧吉勃遜(Cathy Gibson)和她的俄羅斯籍丈夫亞歷克斯‧克納庫斯基(Aleksei Krasnokutsky),成為史上第一對登上聖母峰頂的夫妻。

wiki
Source: wiki/ Igomezc

1991年,英國電影製作人李奧‧狄更森(Leo Dickinson)搭乘熱氣球飛越聖母峰,拍攝不少當時最出色的聖母峰照片。隔年4月22日,帕桑‧拉姆(Pasang Lhamu)第四次嘗試,終於成為第一位登頂的尼泊爾女性。但帕桑‧拉姆的故事並沒有快樂的結局,她成為祖國的英雄後,在下山時不幸喪生,還連帶讓雪巴人索朗‧才仁(Sonam Tshering)也丟了性命。當時索朗‧才仁膝下有三名子女,第四個孩子也即將出生。1995年,英國登山者艾莉森‧哈格里夫斯也遭遇類似的命運。她在不帶輔助氧氣的強況下登頂,但也於同年8月,從K2峰頂下山的途中不幸身亡。

1996年,除了發生《聖母峰之死》(Into Thin Air)一書講述的山難,聖母峰登山老將暨獲獎電影製作人大衛‧布里希爾斯拍攝了聖母峰上第一部IMAX電影。布魯斯‧希洛德(Bruce Herrod)、凱西‧奧多德(Cathy O’Dowd)和伊恩‧伍道(Ian Woodall)等人組了一支南非隊伍,在那年首次將南非國旗插上峰頂。不過,希洛德不幸在途中喪生。當曼德拉總統致電基地營,恭喜成功登頂的南非隊員時,山上所有人都停下手邊的工作跑來聽。得知南非隊伍仍在山上後,曼德拉總統請他們稍候回電,甚至在南非全境播送的廣播電臺上,開始念出自己的電話號碼!所幸基地營管理員即時打斷他,使這件事成為聖母峰上的一樁趣聞。

同樣在1996年,一支來自西伯利亞的強勁俄羅斯隊伍,在瑟吉‧安提賓尼(Sergei Antipine)的帶領下,大膽挑戰北稜和東北稜之間筆直向上的新路線。這條路線的坡度從65度到90度都有,但他們第一次嘗試就成功登頂。同年,瑞典登山家約蘭‧克羅普(Göran Kropp)騎著特製的腳踏車,載著約108公斤的沉重裝備,橫越1萬1200多公里,從斯德哥爾摩一路騎到加德滿都,然後成功登上聖母峰頂。他在聖母峰最致命的季節中倖存,後來卻在西雅圖自家附近攀岩時,意外身亡。

-----廣告,請繼續往下閱讀-----
聖母峰,PanSci
Source: wiki/ Pem Dorjee Sherpa

1990年代末期,美國登山家康拉德‧安克於1999年5月1日,在聖母峰上發現一具屍體,服裝樣式十分過時。安克大感震驚,因為他認為自己找到了小沙‧厄文。其他隊員抵達後,他們發現一件上衣的衣領上,縫著「G‧馬洛里」字樣的名牌。由於他們都深信找到的是厄文,其中一個隊員傑克‧諾頓(Jake Norton)還問道:「真怪。厄文為什麼要穿馬洛里的衣服?」但安克找到的,其實是喬治‧馬洛里的遺體。

隔年,斯洛維尼亞滑雪運動員達弗‧卡尼查(Davo Karni ar)創下首次從聖母峰上滑下來的紀錄,從峰頂到基地營只花了不到五小時。雪巴人巴布‧奇里率先在千禧年創下紀錄,以短短16小時走完正規的登頂路線。1999年,這位攻頂十次的登山老手還實現了計劃,在未使用輔助氧氣的情況下,露宿於峰頂。2001年,巴布‧奇里想到山上拍幾張照片,卻墜入西谷二號營附近的冰隙,不幸身亡。

同一年,法國單板滑雪運動員馬可‧席弗烈迪(Marco Siffredi)從聖母峰西藏一側,首度以滑雪板成功滑下山。2002年,他嘗試以滑雪板滑下洪賓雪溝,卻不幸喪生。2001年,艾瑞克‧溫梅爾成為首位登上聖母峰的盲人,令事前不看好他的人啞口無言。雖然有些人認為這次登頂不過是「噱頭」,但他確實為世界上成千上萬名身障人士帶來了希望。三年後,一支俄羅斯隊伍在北壁上,沿日本雪溝左方開闢了一條路線,沿途架設了超過3000公尺長的固定繩。他們登頂後便離去,但大部分的固定繩都還留在聖母峰上。

聖母峰,PanSci

 

本文摘自《聖母峰》,由大石國際文化 出版。

-----廣告,請繼續往下閱讀-----

延伸閱讀:

文章難易度
PanSci_96
1226 篇文章 ・ 2337 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 56 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

0
0

文字

分享

0
0
0
【醫學辦案室】右手玩數獨,卻引起左手肌肉抽搐?!
白羊的醫學辦案室
・2017/11/03 ・1399字 ・閱讀時間約 2 分鐘 ・SR值 473 ・五年級

-----廣告,請繼續往下閱讀-----

文/蔡明真
醫師,希望能用好懂的描述及有趣的故事,讓醫學更為平易近人。

一名25歲的右撇子德國男性一臉困擾地來到診間,表示當他在玩數獨遊戲時,左手臂的肌肉突然出現了不正常的抽搐。這些肌肉抽搐也可能在他說話的時候發生在嘴巴的肌肉,或者在他走路時發生在兩側小腿肌肉。

雪崩意外的倖存者

經過德國醫師Dr. Feddersen仔細詢問病史,這位年輕人表示:這些突然發生的肌肉抽搐並不是從小就有,而是在他發生意外之後。在他25歲時,熱愛滑雪的他在山上不幸遭遇雪崩,他被掩埋了約15分鐘,導致腦部缺氧。幸運的是,與他同行的夥伴擁有急救技術,趕緊從雪堆中將他拯救出來,並即時開始對他施行心肺復甦術,才撿回一條命。那次雪崩的意外導致他的脾臟破裂、髖骨骨折以及腦部缺氧。救難隊發現他後將他送至醫院進行治療。

雪崩意外的生存者,圖/by Greg L. Wright@wikipedia commons。

-----廣告,請繼續往下閱讀-----

住院治療後的幾個禮拜,他順利出院並被轉介到復健機構,這時他拿起手邊的報紙,想要重拾他的興趣 — 玩數獨遊戲。但當他正在解決數獨謎題時,他的左手臂開始出現不正常的肌肉抽搐。

https://www.youtube.com/watch?v=c8NnAuaaGdg

是說,什麼是數獨?

數獨是一種風靡全球的遊戲。一開始在法國、瑞士發展,後來在1970年代傳到美國,後在日本發揚光大,並在1984年一本遊戲雜誌《パズル通信ニコリ》正式被命名為「數獨」,意指「在每一格只有一個數字」。遊戲的玩法是玩家必須以數字填進每一個空格,每行、每列及每宮(3×3的大格)都必須有1-9的所有數字,使謎題只有一個答案。

19世紀在法國報紙上的數獨遊戲,圖/by B. Meyniel@wikipedia commons。

-----廣告,請繼續往下閱讀-----

缺氧導致的腦部傷害

這位病人在做其他數學題目或者閱讀的時候,並不會出現肌肉抽搐的現象。Dr. Feddersen進一步詢問,病人表示,他在做數獨遊戲時,有一個小撇步—把這個遊戲在腦海中以3D的方式想像,以迅速精確的解答謎題。

Dr. Feddersen在對專業醫學網站Medscape的訪談中表示:「病人告訴我,他在解決數獨問題時,會專注在數獨的某一個格子或者數字上,然後在腦海中想像,試圖在它的周圍排列其他數字。」

在經過一系列的檢查評估,答案揭曉。功能性磁振造影顯示這種在解決數獨時的3D想像會造成病人右側中央頂葉皮質區(central parietal cortex)過度活化。擴散張量攝影(diffusion tensor imaging),一種提供可量化腦部微結構(microstructure)及神經束評估的造影結果顯示,病人喪失了部分腦部右側中央頂葉區域的抑制神經元。

深黃色區域為病患腦部受損區域,圖/by Washington irving. Current shape by Mateuszica, Hdante, SAE1962, King of Hearts.@wikipedia commons。

-----廣告,請繼續往下閱讀-----

原來這些在做數獨時不自主的肌肉抽搐,源自於這位病人在雪崩意外時,因為腦部缺氧而導致的一些位於腦部右側中央頂葉區域,負責抑制訊息傳遞的神經元的死亡。在正常的情況下,這個腦部區域的神經元會在人類運用3D想像時活躍。然而,因為經歷腦部缺氧,這位病人位於這個區域的抑制神經元減少,腦部訊息過度活化,導致他左手臂的肌肉不自主的抽搐。

在他停止這些3D想像時,左手臂的肌肉抽搐立刻消失了。可惜的是他必須放棄數獨這項多年的興趣。在放棄數獨及服用抗癲癇藥物之後,他順利地擺脫了這個困擾已久的問題,並在五年內都沒有再發作。

再見了數獨。

圖/by stevepb@pixabay

-----廣告,請繼續往下閱讀-----

參考資料

  1. Feddersen, Berend, et al. “Seizures from solving Sudoku puzzles.” JAMA neurology72.12 (2015): 1524-1526.
  2. 維基百科 – 數獨
白羊的醫學辦案室
6 篇文章 ・ 3 位粉絲
醫師,興趣是醫學研究、科普寫作與學習方法。個人FB(https://www.facebook.com/mingchen.tsai.37),白羊醫誌(https://drjanettsai.blogspot.tw)。

0

0
0

文字

分享

0
0
0
聖母峰究竟有多高?——《聖母峰》
PanSci_96
・2015/11/20 ・1568字 ・閱讀時間約 3 分鐘 ・SR值 535 ・七年級

19世紀上半葉,在印度溼熱的平原上展開了史上最具野心的科學事業之一。英國探險家1808年開始進行印度大三角測量計畫。除了勘測遼闊的印度次大陸之外,他們更懷抱雄心壯志,要判定地球的確切形狀。儘管早在1700年代中期,兩次法國進行的測量計畫就已經測定出地球的形狀,不過精確的赤道隆起率和極地扁平率仍然成謎。英國的印度測量計畫耗時大半世紀,成員也是全帝國最厲害的數學家。領導這項浩大工程的是測量師和數學家威廉‧蘭姆頓(William Lambton),這位英國軍官早先曾在北美洲進行勘測任務,累積了大量經驗。當時的測量器材又大又重,由標準鏈、標尺和巨大的經緯儀組成。在瘧疾、滂沱的季風雨和猛虎的侵擾之下,英國測量人員和印度雇工飽受折磨,但仍不懈地繼續勘測下去。

聖母峰,PanSci
為了瞭解這座山究竟有多高,測量人員吃了許多苦。Source: wiki/ Luca Galuzzi

1847年,大三角測量計畫終於進行到喜馬拉雅山最南邊的山腳。由於無法進入尼泊爾王國,測量人員被迫留在尼泊爾南邊的帶狀地區塔萊(Tarai),從160多公里外勘測喜馬拉雅山脈各大高峰。1847年秋天,季風季過後,總測量師安德魯‧沃(Andrew Waugh)在喜馬拉雅山東端附近,從大吉嶺丘陵下方的孫納古達(Sonakhoda),量測遠方「白雪皚皚的山峰」。有一座山頭矗立在群峰之上,就是現在大家所知的干城章嘉峰(Kangchenjunga),海拔8586公尺,是世界第三高峰。沃幾年之後才公布這項測量結果,其中一個原因是他們發現尼泊爾和西藏邊界還有另一座高山。他們以希臘字母γ稱呼這座遙遠的巨峰。

差不多同一時間,1847年11月,助理測量員約翰‧阿姆斯壯(John Armstrong)也從比較西邊的位置,把測量儀器對準γ。阿姆斯壯為這座山取名為「b」,高度初估為8778公尺。沃不確定「γ-b」高度計算結果的可信度,決定等進一步測量,重新計算數據後再公布結果。之後兩年間,沃又派出兩名測量員前往塔萊,進行更多觀察和測量,但在雲霧和距離的阻礙下,他們還是沒能取得更多資料。

-----廣告,請繼續往下閱讀-----

經過多次嘗試,詹姆斯‧尼克遜(James Nicolson)在1849年從多個觀測站測量這座神祕山峰,距離比前人都要近,終於取得數筆垂直角和水平角資料。他的初步計算結果顯示,這座山高約9205公尺。但尼克遜當時沒有考慮到光折射的問題;這項因素可能讓高度計算結果出現顯著誤差。

光的折射,PanSci
對於聖母峰高度的初期量測,因為沒有考慮折射,產生了誤差。Source: wiki/ Delamaran

之後又過了幾年。當時沃手下的「首席計算機」是孟加拉裔的天才數學家,名叫拉德納‧希達(Radhanath Sikdar),他很可能是第一位成功判定γ-b正確高度的人。1856年3月,沃終於正式公布測量結果。報告文件共有14段,其中第五段寫道:「過去幾年我們已經發現,迄今在印度的所有測量結果中,這座山比其他山都要高,極有可能就是世界最高峰。」他把這座山命名為「埃弗勒斯峰」,或稱「喜馬拉雅山第15號峰」,座標位置27°59’16.7”N,86°58’5.9”E,並公布聖母峰的高度為8840公尺。

英國測量員若是知道當地人如何稱呼山峰,通常會偏好用原名來為喜馬拉雅山脈的群峰命名。但因為尼泊爾不對外國人開放,沃無從得知當地名稱。於是,他以前任總測量師喬治‧埃弗勒斯爵士(Sir George Everest,他們家族讀作「伊弗勒斯」)的姓氏為這座山命名。埃弗勒斯爵士本人並不認同這個命名方式,但皇家地理學會(Royal Geographic Society)還是在倫敦批准了這個名稱。發現地球第一高峰的消息也很快在世界各地傳開。

-----廣告,請繼續往下閱讀-----

聖母峰,PanSci

本文摘自《聖母峰》,由大石國際文化 出版。

延伸閱讀: