0

6
1

文字

分享

0
6
1

你知道心肺復甦術的存活率嗎?「叫叫 CAB」背後的數據——《醫學的張力》

左岸文化_96
・2021/10/31 ・2536字 ・閱讀時間約 5 分鐘
  • 作者 / 哈利・柯林斯,崔佛・平區(Harry Collins, Trevor Pinch)
  • 譯者 / 李尚仁

評估存活率不是一件容易的事情

直到今天,美國還未全面得知心肺復甦術的存活率。沒有全國性的資料庫,醫學研究者和政策制定者沒辦法知道有多少人接受過心肺復甦術。研究者必須仰賴短期小規模研究所估算的區域存活率。這類數字通常會有很大的差異。

有個研究比較美國二十九個城市從一九六七年到一九八八年之間接受心肺復甦術後的存活率,發現其差距從愛荷華州的百分之二到華盛頓州金恩郡的百分之二十六。

整體而言,這些存活率和一九七三年的樂觀形成強烈對比。這些研究也確認此時心肺復甦術已建立其普及度,一般大眾學習心肺復甦術,在好幾個社區有一半以上的復甦是由路人主動進行的。此外,大多數的緊急醫療體系已經成功改組。

圖/Pixabay

為何存活率有差異?

研究者開始擔心究竟是什麼因素,導致存活率出現這樣的差異?愛荷華州百分之二的存活率,意味著每五十次的復甦努力只有一次會成功;而西雅圖則平均每四次努力就有一次可以救活對方。然而,要了解這些數字的意義,西雅圖和愛荷華州的復甦術存活率必須用相同的基準線來計算。

就以反應時間(response time)這個已知會影響存活率的變數為例。這是從昏倒和開始進行復甦術之間的時間。然而,文獻對於「反應時間」沒有清楚的定義。正如米基.艾森保醫師(Dr. Mickey Eisenberg)在回顧文獻時所注意到,它可能包含以下所有或部分的動作:辨識、決定打電話求救、打電話、派遣中心問話、進行派遣、從急救站趕到現場、從現場趕到病人身邊(Eisenberg ,引自Timmermans,70)。

除了反應時間之外,艾森保也發現「心臟停止」、「路人實施心肺復甦術」、「旁人注意到心臟停止」、「心室顫動」以及「入院」等基本名詞的定義分歧。就有效的比較而言,更重要的是,研究者對復甦與存活(survival)這兩個存活率的關鍵要素有不同的定義。

有些人把任何進行心肺復甦術的嘗試,都界定為復甦的努力,其他人則將此侷限於特定的心律問題,像是心室性心搏過速(ventricular tachycardia)。

「存活」也是含糊的字眼。在某些研究中,它意味著出院時只有很輕微的神經學損傷;其他研究指的則是在進加護病房時還有能夠生存的脈搏。如果還加上各區域醫療系統之間必然會有的差異,那顯然要詮釋存活率就更加困難了。

圖/Pixabay

量化心肺復甦的效果前,先統一標準吧!

為了要克服這個無所不在的定義問題,一九九○年在挪威外海小島上的烏特斯坦修道院舉行了烏特斯坦共識會議(Utstein Consensus Conference),將定義予以標準化,並且提出一套統一的存活率計算公式。

新的公式是「分母是因心臟病導致心室震顫而停止心跳的人數,分子是〔從醫院〕出院還活著的〔病〕人數」(Timmermans,73)。換句話說,患者必須先前就已經有心臟的毛病,而不是由溺水或電擊等其他事件所引起的。

此一存活率定義遠比之前所使用的定義狹隘。它排除了許多的事件和意外(包括溺水),而這些在過去兩世紀都被視為是復甦術的適用範圍。此外它也排除了未被人見證到的心跳停止,以及不是由旁觀者實施第一次心肺復甦術的病人。由於這個定義只含括那些生存機會最佳的案例,因此相較於使用更為廣泛定義的研究,其估算出來的生存率會膨脹很多。

事實上,會用到心肺復甦術的大多數狀況(占所有案例的百分之六十到八十),現在都排除在統計數字之外。另一方面,出院時還活著的病人都列入計算,這樣的標準所創造出來的存活率則相對地高,儘管美國各醫院乃至全世界醫院的出院標準並不一致。

最終效果仍不樂觀

自一九九一年以來,有一些研究是根據烏特斯坦的標準來進行的。雖然選擇了最健康也最均質的樣本,存活率仍舊低得讓人失望,而且還是有很大的差異。

例如一個在芝加哥進行的研究發現,非裔美國人的存活率是百分之零點八,而白人的存活率則是百分之二點六。此一研究結果的論文標題相當適切:〈大都會地區心肺復甦術的結果──存活者在哪裡呢?〉紐約市的存活率很低,只有百分之一點四。

另一方面,密西根州奧克蘭郡則有百分之十四點九的存活率。正如提摩曼斯所指出(74),醫學文獻總是對數字做樂觀的詮釋。低存活率被歸咎於大都會地區醫療服務的品質不良。心肺復甦術的支持者論稱,只要有更成熟的急救體系和必要的政治意志,任何地方都應該能夠達到西雅圖那般高達百分之三十的存活率。

及早進行除顫被視為是改善存活率的關鍵,有些研究指出百分之八十到九十的存活者曾經接受過心室顫動的治療,而這不是路人在沒有他人協助下所能擁有的技術。美國目前所採取的策略是提升除顫器的普及性,以至於它們現在就像滅火器一樣,是飛機、健身房、辦公室等地方的標準配備。

心臟去顫器。圖/Pixabay

有除顫的存活率數字要比其他的統計數字稍微好一點;然而區域之間還是有差異,而且很少有令人信服的證據顯示存活率出現了突破

也許提摩曼斯提出了一個關於統計數字的深刻論點。他認為由於醫療社群和一般大眾對於心肺復甦術的信念投入很多,因此不管統計數字多低,都無法損及認定它有效的觀念

存活率不佳被解釋為意味著緊急醫療服務和醫療基礎建設還需要改良,才能得到更好的存活率。至於心肺復甦術的有效性以及必要性則很少受到質疑。

即便強力支持心肺復甦術的美國心臟協會在一九九一年也承認,出現心跳停止之後的人,能夠活著出院的比例不過百分之一到百分之三,而且由於資料品質不良,真正的百分比「或許更低」(Timmermans,4)。

——本文摘自《醫學的張力》,2021 年 9 月,左岸文化


數感宇宙探索課程,現正募資中!

文章難易度
左岸文化_96
35 篇文章 ・ 10 位粉絲
左岸的出版旨趣側重歷史(文明史、政治史、戰爭史、人物史、物質史、醫療史、科學史)、政治時事(中國因素及其周邊,以及左岸專長的獨裁者)、社會學與人類學田野(大賣場、國會、工廠、清潔隊、農漁村、部落、精神病院,哪裡都可以去)、科學普通讀物(數學和演化生物學在這裡,心理諮商和精神分析也在這裡)。


2

6
3

文字

分享

2
6
3

既是科學家,也是樂團鼓手!──專訪數學物理學家程之寧

研之有物│中央研究院_96
・2022/03/11 ・5978字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|郭雅欣、簡克志
  • 美術設計|林洵安、蔡宛潔

在學術與搖滾的多重維度上行走

還記得美劇《The Big Bang Theory》嗎?劇中常常出現的物理名詞「弦論」,是描述物理世界基本結構的理論。中央研究院「研之有物」專訪院內數學研究所程之寧研究員,她正是研究弦論的科學家,也是熱愛音樂的搖滾樂團鼓手,這種跨領域身份並不衝突,兩邊都需要創造力與紀律。由於天生斜槓的性格,讓程之寧在數學和物理領域大展身手,透過數學的深入探討,她試圖將弦論更往前推進。最近程之寧更跨足到人工智慧領域,為學界提供理論物理上的貢獻。

中研院數學所程之寧研究員,主要研究 K3 曲面(特殊的四維空間)的弦論,她發現模函數和有限對稱群之間有 23 個新的數學關聯,稱之為「伴影月光猜想」(Umbral Moonshine)。圖/研之有物

萬有理論和難以捉摸的「月光」

世界從那裡來呢?物理世界的本質是什麼呢?回答這樣的大哉問,一直是理論物理學家所追求的目標。從牛頓力學(日常應用)、廣義相對論(探討很重的物質)到量子力學(探討很小的物質),隨著物理學不斷發展,我們似乎一步步接近答案,但至今卻還未走到終點。

舉例來說,如果有個東西很重又很小,就像「黑洞」,或是大爆炸時的宇宙,我們要怎麼用數學描述?於是科學家試圖整合廣義相對論和量子力學,找出所謂的「萬有理論」(Theory of Everything)──能完全解釋物理世界基本結構的核心理論。

程之寧研究的「弦論」就企圖發展成這樣一個萬有理論。弦論一如其名的「玄妙」,它設定宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。

「人類一直以來的夢想之一就是,如果能用一句話解釋所有事情,那該有多麼美好。」中研院數學所研究員程之寧說道。

程之寧的研究牽涉到數學上的「月光猜想」(Moonshine)與弦論中 K3 曲面的連結。月光猜想是存在於模函數係數與特殊群之間的數學關聯,程之寧與其研究夥伴共發現了 23 個新的關連,並稱之為「伴影月光猜想」(Umbral Moonshine)。

基於弦論的假設,我們的世界是十維的,除了人們在日常生活中可以感知到的 3+1 維(空間+時間),還有六維是因為尺寸太小而無法用肉眼觀察的,這些看不到的維度影響著物理世界,最終也產生了我們這個物理世界所需的各種條件與特性。

綜觀程之寧的研究,橫跨了物理與數學兩個領域,她笑稱自己「天生斜槓」。在學術上,程之寧原先喜歡文學,之後卻走上數理研究的道路;在音樂上,程之寧喜愛搖滾樂,至今仍在自己的樂團裡擔任鼓手。

她如何看待自己一路走來的各種轉折?游徜在數學與物理之間,她又對這兩個領域的連結有怎樣的體會?在與「研之有物」的訪談中,程之寧侃侃而談她的經歷、想法,以及對學術研究的熱忱所在。

在弦論的設定中,宇宙所有的粒子都是由一段段「能量弦線」所組成,每一種基本粒子的振動模式不同,產生不同的粒子特性。圖/iStock
  • 請問您是如何對數學及物理產生興趣?從何時開始?

一開始考大學時,其實我想去念中文系(笑)。不過,因為我高中是選理組,而且只念了一兩年,對文科考試比較沒把握,加上對工程科系沒興趣,最後就選擇臺大物理系就讀。

後來發生兩個轉折,第一個是我很認真的去修了大學中文系的課,結果發現真的沒有想像中容易。第二個就是我發現物理系的課還蠻有趣的,像量子力學和相對論,讓我覺得還想再多學一點、多知道一點。

我開始覺得如果念完臺大物理系就停下來,好像有一種小說沒讀完的感覺,所以就想繼續讀碩士班。那時還沒有覺得自己會走上學術研究的路,單純抱著想把故事看完的想法。

  • 後來是如何接觸到弦論?弦論是如何引起您的興趣?

後來我去荷蘭念碩士,指導教授是諾貝爾物理獎得主 Gerard ’t Hooft。他其實蠻不認同弦論,但他對於如何處理量子力學與相對論很有興趣。

當時 ’t Hooft 教授在建議我碩士題目時就說:「你也知道我不太認為弦論是一條正確的道路,不過聽說弦論最近真的在量子重力這一塊有一些成果。不如妳去讀一讀,看看是不是真的有一些東西在那裡,也可以比較一下其他量子重力理論。」

在我很認真的比較各個量子重力理論之後,就變成弦論派了(笑)。’t Hooft 教授對此也保持開放態度,他有幾個不錯的博士生後來也變成弦論學家,之後我在 Erik Verlinde 的指導下念博士時,就完全以弦論為研究主題了。

  • 研究理論物理會影響您對現實世界的理解嗎?

蠻多人會問我說,妳學了量子力學,是不是就會比較了解這個世界不是非黑即白?或問我量子力學跟宗教是不是有關?可是我覺得我分得很開,我不會去做這樣的連結,我還是活在現實裡,走路時大部分都在專注於自己不要跌倒之類的。

如果真的要講,我蠻感激我們的存在,因為我所學的東西讓我知道這是沒有必然性的。我們能這樣以一種人形的很奇怪的生物的形式存在,然後在這樣一個環境過一輩子,是機率很低的事情,而且我還蠻開心我是當人,而不是奇怪的阿米巴蟲或外星生物!有些人會從這裡連結到宗教或轉世,但我不會,我就停在這裡。

  • 來談談您的研究,伴影月光猜想與 K3 曲面弦論之間是什麼關係?

弦論中有很多的可能性,我們可以挑選特定的四維,然後假設這四維空間是個 K3 曲面。例如說,我們可以把兩個甜甜圈乘起來,在上面做特殊的奇異點,來製造出一個 K3 曲面。這個曲面有一些很有趣的對稱性。從弦論的角度來講,我們可以透過這個過程,找出一個解釋為何有伴影月光猜想的框架。

「把維度乘起來」這個概念很難想像,但這在數學上是成立的。我舉例一個我們能想像的「乘起來」:如果有一個空間是一條線,另一個空間是一個圓,乘起來就變成一個圓柱形,從一個方向剖面可以切出圓,另一個方向則切出線。而在數學上,不管幾維,能不能在紙上畫的出來,都可以這樣操作。

程之寧向「研之有物」採訪團隊解釋「把維度乘起來」的概念。圖/研之有物
  • 如何透過計算,發現捉摸不定的「月光」?

有時候這看似湊巧,一個數學上的函數正好就是弦論某個問題的答案。但其實並不是真的那麼巧,弦論看起來很有彈性,好像什麼都可以解釋,但它其實有非常多結構及限制。

當我在計算一個弦論理論時,它的內部結構可能原本就具有某些特定的性質,然後我再去觀察數學中,有這樣性質的函數可能就只有一兩個,只要再初步算一下,就能知道哪一個是答案。弦論學家日常的計算常常是這樣的,所以這是巧合嗎?是也不是。

  • 您曾經發現 23 個新的伴影月光猜想,您對這類題目特別有興趣嗎?

我覺得數學有兩種,有些數學家喜歡系統性的事情,就像蓋房子一樣,在數學裡建造一個很美麗、非常有系統性的結構,可以把很多事情都放入這個結構來理解。

另一種比較少數的,就是喜歡獵奇,去收集分類奇奇怪怪的特殊東西,例如有這些性質的函數在哪裡?可能你算出來就是 5 個,你也不知道為什麼。月光猜想很明顯就屬於這一類。

兩種的樂趣感覺是不一樣的,我覺得應該都很棒,但我可能是屬於偏好獵奇的這種。

  • 您的研究連結了物理上的弦論與數學上的月光猜想,您怎麼看待這兩個知識體系的互動?

弦論是一個需要很多數學理論配合的物理理論,它是一個有點繁複的框架,我們什麼都要會一些,才能看懂這個理論。當你把許多不一樣的學門的知識加起來,有時候就會在某一個學門──例如幾何──有意想不到的收穫。

弦論在數學上也扮演探索與找尋新方向的角色,讓數學家有新的發現。雖然最後數學定理的證明還是得仰賴傳統數學方法,但在這二三十年間,我們一直從弦論身上找尋數學研究的新方向或有趣的猜想,看到了弦論與數學之間的互動。

數學家有兩種,一種人喜歡建立美麗又有系統性的結構,另一種人喜歡尋找和收集奇怪特殊的數學物件(比如函數),程之寧表示自己屬於後者。圖/研之有物
  • 剛才一開始提到,您高中只念了一兩年,是因為對學校沒有興趣嗎?

其實我一直都覺得上學很無聊。我小時候臺灣教育和現在很不一樣,一班 50 幾個人,老師必須盡量軍事化管理,大家最好都一模一樣,比較好管理。我和學校一直處於互相磨合的狀況,我自認已經努力配合學校,但學校一直覺得我在反抗,這可能是一個認知上的差別。

舉例來說,我小學的時候不想睡午覺,可是老師說大家都一定要睡午覺,不睡午覺的人要罰抄課文,所以我早上到學校時就會把已經抄好的課文交給老師。我覺得我這樣做是在配合老師的規定,可是以老師的立場會覺得我在反抗,學校教育中我遇到了很多類似的情況。

還有就是不喜歡高中的升學氛圍,同學和老師好像都只有一個活著的目標,就是「考大學」。我當時無法習慣升學氛圍,感覺好像活在平行宇宙一樣。

  • 高中休學後,您去唱片行工作,可否談談當時的想法?

我國中開始聽音樂,這是我除了看書之外的重要興趣,我也很快就喜歡上了搖滾樂。高中休學的時候,我唯一的謀生技能可能就是我對音樂的各類知識吧!所以我就去了唱片行,這是唯一一個我會做又有興趣的工作,還好那時候還有很多唱片行(笑)。

  • 對音樂的熱忱,讓您與朋友共組了樂團,並擔任鼓手。您是否比較過樂團生活和學術研究之間的異同之處?

有些人覺得我這樣很跳 tone,但我自己覺得還好。音樂和學術都是我發自內心覺得好玩的東西,兩者也有相同之處,例如它們都需要創造性,也都有需要了解的框架。數學需要嚴謹的證明,音樂演奏也需要遵循結構,例如不能掉拍。

音樂領域還有一點和數學類似──玩樂團的圈子也是以男性為主。我們樂團則是只有一個男生,其他都是女生,可能我真的天生對框架有點遲鈍,玩團之後才發現:「怎麼大家都是男生?」

程之寧表示,學術界仍有許多性別不平等問題未受重視。圖/研之有物
  • 也就是說,目前數學學術圈仍是男性主導,在研究路上,您有因為性別而感受到一些衝擊或眼光嗎?您怎麼面對?

有。那感覺很明顯,日復一日地要去面對,尤其是年紀還比較輕、還必須每一天去證明自己的能力的時候,特別有感。

我遇到時的反應就是,在心裡暗罵一句髒話,然後繼續做我要做的事。我不會想改變別人的想法,感覺那是浪費時間,就算環境給我的阻礙是這樣,我還是繼續去做該做的事。

可是有些事情沒那麼簡單,現在我也當過老師,有時候會看到年輕女生在學術界因為性別而被欺負,或遭到不公平待遇、甚至騷擾。

對此我感到心痛,覺得為何我們學術領域還是這樣的狀況?甚至為什麼性騷擾至今還是一個議題?可以確定的是,學術界許多性別不平等問題未受到重視。

  • 您現在已經有傑出的研究成果,還會因為性別而遭受質疑嗎?

我現在比較會遇到一個狀況反而是來自學生的質疑。我在荷蘭阿姆斯特丹大學教書時,有時候學生會因為我是女教授,而且我的外表在許多歐洲人眼中看起來就像小妹妹,所以比較容易去挑我的毛病。

在課堂上,下面坐的可能都是男學生,只有一兩個女學生,那個氣氛就會變得很奇怪。例如說偶爾會聽到學生評論我的身材或樣貌。

我有和其他一些在歐洲或美國的女性教授聊過這樣的問題,似乎不少人都有類似的不太愉快的經驗。感覺不是很好。

  • 看到您最近的研究和人工智慧(AI)有關,為何會想往這個方向發展?

我有兩個動機。一個就是我真的想深入了解人工智慧。我也可以像普羅大眾,看看 AI 下圍棋,讚嘆「哇!好厲害!」這樣就好,可是我覺得我一定可以真的去理解它,這可能就是數學家的自大吧!

另一方面,我知道對科學研究來說,未來 AI 將會是一個非常重要的工具。這是「在職訓練」的概念,我可能會用到這個新工具,或以後我可能會需要教這樣的課,因為學生是下一代的科學家。因為這些原因,我覺得我需要去訓練自己使用新的工具。在我的領域裡,也有一些有趣的、還沒被解答的科學問題,是 AI 有可能幫得上忙的,我看到了一些潛力。

  • 弦論和 AI 感覺差距很大,AI 也可以應用到弦論的研究嗎?

乍看之下,弦論的確比較抽象,也不像其他許多實驗會產生大量數據。但其實弦論有大量的可能性,我認為使用 AI 來在這些巨量的可能性當中搜尋特別有趣的理論,是一個有潛力能夠加深我們對弦論理解的新的研究方法。

而且 AI 的應用絕不僅限於巨量資料。如果是面對一些比較新的挑戰,在沒有現成的演算法可以用的情形之下,可以自己做出需要的功能嗎?這過程我覺得也非常很有趣,而且應該是會有成果的一條路。這種不是那麼顯而易見的事情,我覺得很有挑戰性,也蠻好玩的。

除了用 AI 來幫助物理跟數學的研究之外,我也試著物理研究當做靈感來源,找出新的 AI 的可能性,我覺得這也是一個很有趣的研究方向。我現在有和 AI 的學者合作,嘗試做出一些創新的演算法,真的還蠻有趣的。

  • AI 對您而言是全新的領域,您如何面對跨領域遇到的門檻?

一開始會覺得真的要去碰這個新的領域嗎?其實現在也還是偶爾會有這樣的懷疑。我在弦論領域可能已經是專家,但去了一個新的領域,我學得不會比二十歲的人快,要怎麼去跟人家競爭?是不是在浪費時間?

但也會想,與其想這麼多,不如先做再說。到目前為止我做了兩年多,感覺還蠻好的,我有學到東西,也有做出小小的貢獻。

其實我還蠻感激有這樣的學習機會。對我來說當科學家最大的好處就是,去搞懂一個新的東西就是工作的一部分。當科學家雖然蠻辛苦,但就結果論來說,我還蠻開心能當一位科學家!

延伸閱讀

  1. Moonshine Master Toys With String Theory | Quanta Magazine
  2. Mathematicians Chase Moonshine’s Shadow | Quanta Magazine
  3. 林正洪教授演講 一 怪物與月光(Monster and Moonshine),《數學傳播》

數感宇宙探索課程,現正募資中!

文章難易度
所有討論 2
研之有物│中央研究院_96
8 篇文章 ・ 15 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook