Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

【教育專輯】一點都不科學的科學教育?

阿樹_96
・2015/11/04 ・3566字 ・閱讀時間約 7 分鐘 ・SR值 489 ・五年級

我們的中小學科學教育科學嗎?

以教材的知識向度來說,我們的科學教育強到嚇死人!生物、理化(物理、化學)、地科都教的不算少耶…舉凡遺傳學、演化論、生態學、氧化還原、電磁學、板塊運動、天氣預報…還要背至少三分之一的元素周期表,感覺這些東西學好了要進理組一點都不難吧?

不過看著目前偽科學充斥著世面,有些甚至像包著美麗糖衣的毒藥,令人防不勝防,突然覺得危機降臨。因為,有時散布偽科學訊息的,不是某某叔嬸姨舅,而是身旁具有科學領域的碩博士朋友,這很驚悚啊!他們是科學的高知識分子,怎麼會協助傳遞這些奇怪的養生謬論、食品謠言、甚至外星人見聞等等。照理說這些朋友應該最能進行科學辨證的啊?很多朋友會告訴我:這不是他擅長的領域,他還是無法辨證真偽…這不就代表我們只是訓練出某些領域的專家,而國民科學素養卻停滯不前嗎?

破除不完的偽科學,截圖轉載葉綠舒老師臉書。
破除不完的偽科學,截圖轉載葉綠舒老師臉書。

對於自然科學的學習,我們什麼時候開始歪掉的?

我想應該很小,就目前觀察可能是在國中以前,有位在天龍國教理化地科的朋友告訴我:「學生超喜歡講外星人,你只要講到地球以外的東西,問他們為什麼,八成會不假思索的跟你說:『是外星人造成的!』」這實在是出乎我意料之外,因為這發生在都會區啊!

就自己近期的例子,當我在某國中分享關於「火星任務」與國中自然科學的關係時,就聽到了前排學生在爭吵著有沒有火星人的事,其中對科普演講最熱中的那位同學,正為了他堅持目前沒有證據支持有火星人而吵的面紅耳赤。當下我並無更好的策略能化解他們的爭執,而我也想不出更好的方法,最好的方式反而是讓他們自己找資料支持自己的說法。

-----廣告,請繼續往下閱讀-----

過往的教學與測驗是重要的因素

至於怎麼歪掉的,我想這並非一日之寒的結果,在過去很長一段時間的教育與測驗,造就了我們「不重視原理機制,只強調答案正確」的學習策略。無論是聯考或是基測,我們的學習目標似乎都是以「解題」作為脈絡,雖然隨著測驗理論的演進,在後期的基測以至於現在的會考,都以「重著理解」作為前題來設計題目,然而對於大多數的坊間測驗卷、參考書或是補教業者仍以「練習」作為面對這些測驗的策略(在此強調一下,我指的是以「練習」作為策略的補教老師,並非所有補教業都是糟的,有些學校老師也可能覺得練習是王道),先前看到謝宇程先生的文章《翻轉教室的致命傷,竟然是我們「太不重視」考試?》裡面目前教育測驗的現狀,更是心有所感。

科學真的是靠練習就會的嗎?
科學真的是靠練習就會的嗎?

或許這邊也能用兩題地科試題的差異來看看測驗學理上的差異。

以下是104年教育會考的第9題:

9.下列何者不是搬運作用的現象?

-----廣告,請繼續往下閱讀-----
  • (A)屏東的漂流木隨海水漂流到小琉球
  • (B)冰島的火山灰隨風飄送到歐洲各地
  • (C)綠島的火成岩隨板塊聚合漸漸往臺東靠近
  • (D)太魯閣的大理岩碎塊被河水帶至花蓮海邊

這是一個很簡單的題目,平常我們會用自然觀察描述選項中的事情,而現在只是希望學生能從中選出「搬運作用」的自然現象,或許多少有點記憶,但實質上則是可以連結現象與原理的題目。(或許你會問「搬運作用」為何重要?至少我可以說,它是基本形塑地表變遷的外營力作用之一,我們常說的「土石流」就正屬於搬運作用啊!)

以下是從某參考書中摘出屬於單純練習卻無實質意義的題目:

部分國中自然總複習和地科參考書,這只是極小部分。
部分國中自然總複習和地科參考書,這只是極小部分。

1.單純只有海洋的板塊,下列板塊何者最合乎這條件?

(A)非洲板塊 (B)南極板塊 (C)太平洋板塊 (D)北美板塊

-----廣告,請繼續往下閱讀-----

2.有關大陸與海洋變動的理論,最先提出的學說是什麼?

(A)大陸漂移 (B)海底擴張 (C)板塊運動 (D)地球板塊

第1題如果拿給地科的教授會瞬間被罵翻,根本沒有「海洋板塊」的說法,題意不明,記得這個也沒什麼意義。而第2題雖然有碰觸到大陸漂移、板塊學說等理論,卻仍淪為零碎的記誦知識,知道「誰先提出」並沒有科學意義。

所以若以科學教育來看,教改是失敗的囉?

但我不會這麼簡化的把事情這樣解讀,因為即使就算是失敗好了,也不能說明「原來比較好」,畢竟這個社會不科學已久,即使包括我或比我年紀大的聯考世代,頂多只能說在考試壓力下「顯得」厲害一點,但那是會考試會解題,並不一定是能「解決問題」,否則大家也不會老說教改失敗了吧?以制度面來看即使是現今的教育政策,還是會有人說「無解」,因為不存在同時可以符合國民教育與菁英教育的課綱,而以目前競爭較激烈的考區,仍視會考為升學考試;甚至有人說教育問題的解方根本是要改變家長的思維……但這些消極的態度無助於現狀的改變,反而身為教育者或是知識提供者(我們寫科普的人),應該思索的是有沒有我們有可能有機會做到的哪些事來翻轉我們的科教困境呢?

-----廣告,請繼續往下閱讀-----

不先下結論,尋求更多的方向

像我們這樣的升斗小民,既撼不了教育政策,也動不了課綱,但就一個儀器來說,似乎也沒有一個螺絲釘是完全不重要的?故也不用妄自斐薄,近來像翻轉教育、磨課師、探究實作……等對臺灣而言較新的教育策略,似乎成了許多創新教育者的工具,畢竟能脫離教條試的背誦、無目的的計算過程,可以說是跳脫僵化科學教育的第一步。但是,然後呢?

然後我們的學生就能乖乖的從實作中學習到探究精神?別傻了,這絕對會被教育現場的老師批到死。都會的老師會說:「我這樣子拖進度鐵定被校方家長罵死。」偏鄉的老師則會講:「我的學生要是能乖乖在位子上就喔米斗弗了!」但話說回來,沒有要整學期都在探究啊,而探究的事也不該只有自然科老師能做啊?或許可以在國文課裡論證某個文章的邏輯,甚至從史地著手,像是五堵、七堵、頭城、九分這樣的地名由來的資料搜集。從資料上的邏輯和證據來探究,還是能用科學精神下去推…

你是為了考試念自然,還是為了瞭解自然念自然? CC2.0 By Alberto G. https://www.flickr.com/photos/albertogp123/
你是為了考試念自然,還是為了瞭解自然念自然?
CC2.0 By Alberto G.
https://www.flickr.com/photos/albertogp123/

當然說到此,有些老師又要鞭我了,當然身為一個科普傳播人,仍積極的在嘗試融入科學探究精神在自己的文章當中,而非只是寫寫冷知識,或是寫些笑笑偽科學的文章而已。若對此議題有興趣,我會在今年11月8日泛科知識節,16:00~17:00的時段位於D會議廳(據說在B1樓),與大家討論中學科教與科普該怎麼做,才會讓社會變得更科學。而同台的廖英凱大大,也會從政策面來探討我們該如何解決台灣的「社會性科學議題」。

 

本文同時發表於作者部落格地球故事書

-----廣告,請繼續往下閱讀-----

延伸閱讀

person-690157-4

【‎教育專輯‬】 泛科學十月份特別專題:「科學教育,科學嗎?」

歡迎你來稿和我們談談你所知的科學教育的過去,現在,以及未來。
我們希望討論的方向包括(但不限於):
● 什麼是科學?科學是一種能力?態度?知識?
● 教自然科就是教科學嗎?教自然科才能教科學嗎?
● 那些自然科以外的學科,和科學有關係嗎?

如果你是在學學生,請與我們分享:
● 過往的教育經驗讓你了解科學、愛好科學嗎?請和我們分享你的經驗!
● 你希望自然科(地科/生物/物理/化學)、數學、各種學校科目該怎麼教,讓你更接近科學?

-----廣告,請繼續往下閱讀-----

如果你是老師,請告訴我們:
● 在你的理想中,科學應該怎麼教?
● 你正在嘗試什麼樣的科學教育?成果如何?
● 在今日的教育現場教科學,什麼是優勢和助力,有哪些難關和阻力?

兩者皆非,也歡迎你來談談你的想法:
● 學「科學」有什麼價值?
● 什麼樣的結果意味著成功的科學教育?
● 要達成科學教育,有什麼樣的好方法?

來稿請寄:pansci.tw@gmail.com
來稿字數1000-3000,並請註明希望發表的名稱與身分;請於10/31前提供,泛科學編輯部將保留來稿最終修改審核權;如審核通過將刊登於泛科學並謹備稿費,感謝您的參與。

泛科學本次「科學教育,科學嗎?」教育專輯,將配合11/8泛科知識節活動,當天將舉行現場對談,歡迎你的加入!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
阿樹_96
73 篇文章 ・ 24 位粉絲
地球科學的科普專門家,白天在需要低調的單位上班,地球人如果有需要科普時時會跑到《震識:那些你想知道的震事》擔任副總編輯撰寫地震科普與故事,並同時在《地球故事書》、《泛科學》、《國語日報》等專欄分享地科大小事。著有親子天下出版《地震100問》。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
本地工作者暢談科學時代的人文發展:哲學、專才培訓與大眾教育
臺灣邏輯、方法論、科學與科技哲學學會_96
・2023/02/01 ・5061字 ・閱讀時間約 10 分鐘

  • 撰文/詹遠至|臺灣邏輯、方法論、科學與科技哲學學會助理、臺灣大學哲學系碩士生
  • 校對/陳樂知|臺灣大學哲學系副教授、臺大傳統與科學形上學研究中心執行長、臺灣邏輯、方法論、科學與科技哲學學會秘書長

我們所處的二十一世紀已是科學的時代,科學理論被視為宇宙的終極答案。在這個「科學至上」的時代,人文探求還如何可能?人文如何可以與科學攜手並進?以「人文」與「科學」之間的對話為主軸,臺灣邏輯、方法論、科學與科技哲學學會(LMPST Taiwan)於 2022 年 11 月 19 日在臺灣大學主辦了一場以《科學內外的人文可能》為題的論壇,邀請了國內哲學學者以及科學普及界的資深工作者擔任講者。

本活動主持人由鄭會穎教授(政治大學哲學系助理教授、政大現象學研究中心主任)擔任,受邀講者則包括陳竹亭教授(臺灣大學化學系名譽教授)、陳樂知教授(臺灣大學哲學系副教授、臺大傳統與科學形上學研究中心執行長、LMPST Taiwan 秘書長)、鄭國威先生(PanSci 泛科學知識長)與嚴如玉教授(陽明交通大學心智哲學研究所副教授兼所長)。

本論壇屬於 LMPST Taiwan 長期舉辦的《種種意識論壇》系列。除 LMPST Taiwan 以外,這一系列的論壇由政治大學現象學研究中心、清華大學實作哲學中心、臺灣大學哲學系、臺灣跨校意識社群、PHEDO 台灣高中哲學教育推廣學會、沃草公民學院共同合辦;贊助單位則為順奕有限公司。

《科學內外的人文可能》邀請了國內哲學學者,以及科學普及界的資深工作者擔任講者。圖/臺灣邏輯、方法論、科學與科技哲學學會 – LMPST Taiwan

科學為人文帶來危機?先論科學主義與自然主義

主持人鄭會穎教授點出了本論壇的核心議題後,陳樂知教授(臺灣大學哲學系副教授、臺大傳統與科學形上學研究中心執行長、LMPST Taiwan 秘書長)發表了他的觀點。

-----廣告,請繼續往下閱讀-----

陳教授想要討論的是「就其理論本質而言,科學是否威脅人文」這個問題。陳教授首先談到一些人持有「科學主義(scientism)」的世界觀。科學主義認為,科學是唯一可以讓我們獲得知識的可靠方法。陳教授認為科學主義是一種自相矛盾的世界觀;原因在於科學主義本身並不是科學,並未被科學方法證明,它只是一個哲學理論。因此,科學主義身為一個哲學理論,它本身就是自己會排斥的對象。

回到核心問題,科學是否帶來了人文危機?陳教授的答案是否定的。他認為科學所帶來的其實不是科學主義,而是「自然主義(naturalism)」。自然主義認為,這個世界最根本、基礎的組成,就是自然科學理論認為存在的那些事物,例如粒子、力場、化學反應等。

陳教授認為科學所帶來的自然主義是現代世界觀的基礎;即使一些特定人士因為宗教背景等理由而不同意自然主義,其實也應該要同意例外情況相當有限。如果我們接受「自然主義」,而非「科學主義」,那麼科學本身根本就不會帶來人文危機。這是因為,自然主義只認為世界最根本的組成是科學所談論的事物,但是它並不認為我們只能透過科學方法來認識這些事物。

「就其理論本質而言,科學是否威脅人文?」。圖/臺灣邏輯、方法論、科學與科技哲學學會 – LMPST Taiwan

事實上,從科學世界觀的角度來說,人類也是自然的一員。人類作為一種自然生命體,出於其演化而來的結構,與生俱來就有各種世界互動、認識世界的方式,不限於科學方法。就此而言,人類會發展出的人文也是一種自然現象。因此,雖然人類後來發展出了「科學方法」這種較為優化的認識途徑,我們依然不能否定「人文方法」也是一種認識世界的可靠方法。

-----廣告,請繼續往下閱讀-----

接著,陳教授提及羅素(Bertrand Russell)對「熟知知識(knowledge by acquaintance)」以及「描述知識(knowledge by description)」的區分。熟知知識指的是我們透過直接的感受、互動與掌握所獲得的知識,描述知識則是理論性的知識。

陳教授認為熟知知識與描述知識不可被截然二分,兩者之間是程度上的差別。而人文學門的一些觀念就較為接近熟知知識,因為它們重視同理及感受。雖然如此,這一切都符合腦神經科學的描述,人文仍然是自然現象。另一方面,人文因此仍然是科學可以研究的對象,也需要科學的補充。人文學門自己也必須要了解,自己所研究的熟知知識其實也是自然現象,有其組成基礎與運作原理。

因此,科學可以幫助人文把熟知知識轉換為更精確的描述知識,並且為人文提供更精密的研究方法,以及協助其排除錯誤,比如排除人類先天認知系統的偏誤、漏洞等等。總結來說,科學與人文其實研究的是同一個自然界;科學非但不應帶來人文危機,還可以幫助人文研究走得更加長遠。

跨科際合作的需求,兼論「人類世」中的人文與科學走向

不同於陳樂知教授從哲學觀點出發,陳竹亭教授(臺灣大學化學系名譽教授)帶來的是他在教育方面的經驗。首先,陳教授介紹了他為台灣教育部主持的「科學人文跨科際人才培育計畫」,簡稱「SHS(Society-Humanities-Science)計畫」。

-----廣告,請繼續往下閱讀-----

由於現代社會中的問題包含人文以及科學的面向,因此 SHS 計畫的主軸在於推動「跨科際教育(trans-disciplinary education)」。以往的教育先是學科主義,然後衍生出「多領域(multi-disciplinary)」或是「跨領域(inter-disciplinary)」,也就是由各學科各自探究共同問題,或是由兩個學科進行合作。

跨科際教育則有所不同,它以「真實世界的共同問題」為核心,直接打破學科之間的界線。只要是對解決真實世界的問題有幫助的知識,參與的學科,甚至政府、產業、民間的 NPO 或利害關係人都擔責分工合作進行知識生產、解決問題。

SHS 計畫的主軸在於推動「跨科際教育」。圖/臺灣邏輯、方法論、科學與科技哲學學會 – LMPST Taiwan

由於現代社會中的問題愈趨複雜、多元,且多樣,社會對科學界的要求也跟以往有所不同。科學家開始被要求具備社會意識及社會參與的能力,還有溝通與對話的能力;這些能力都是傳統的科學界非常缺乏的。有鑑於此,陳教授所主持的 SHS 計畫積極推動「問題導向的學習」、「系統思考」、以及「實用方法論上的創新」。他也提到,SHS 計畫的推動非常有賴於大學對本身社會角色的自覺與復興。

陳教授參與的另一個國科會計畫是「以社會需求為核心的跨領域研究計畫」。與 SHS 計畫相同,這個計畫也非常重視跨科際教育,並且認知到單靠科學知識無法解決真實世界的複雜問題。

-----廣告,請繼續往下閱讀-----

那麼,人文究竟該扮演什麼樣的角色呢?陳教授討論到他撰寫的新書《丈量人類世》中的「人類世(anthropocene)」這個概念。「人類世」指的是一個新的地質紀元。在工業革命之後,人類文明成為影響地球環境與生態變遷的關鍵角色。因此,部分學者認為地球已經進入「人類世」這個地質紀元。

在人類世中,全球有非常多的變遷趨勢,其中一個就是:科學發展帶動理性價值的昂揚,其他的人性價值卻被輕忽。陳教授說,我們培養出了許多「職業科學家」。可是,在科技急速發展的同時,人類的科技文明卻缺乏方向感:我們正面臨物質文明與精神文明之間極大的不均衡。總而言之,他認為「人類的智能尚未學會如何掌舵文明巨輪的方向」。

最後,針對人文與科學應該要如何在人類世中發展,陳教授提出了他本人的看法。首先,科學研究的同儕審核程序需要人文專業學者的投入,也就是科學家不能閉門造車。再來,婦女應該要積極加入科學與科技事業的陣容,因為科學發展不能只由男性思維主導。

最後,未來教育的趨勢必須往跨科際的方向邁進,也就是人文與科學必須並重。如此一來,陳教授強調:「人文的啟發價值和社會重大需求必須挺身而出,為人類文明的永續承擔文明指南針的角色,與科學共同尋求世紀困境的解方。」

-----廣告,請繼續往下閱讀-----

「科學實作哲學」帶來人文與科學的合作新可能

繼陳竹亭教授分享了跨科際教育發展的大方向後,嚴如玉教授(陽明交通大學心智哲學研究所副教授兼所長)則分享了她在科學人文互動的個案經驗。嚴教授身為一個哲學學者,卻在因緣際會下,走上了不同於普通學者每天關在辦公室做研究的路。她為了提升生醫背景的學生對哲學的興趣,也為了把哲學帶到課堂之外,推動了青銀共學。

嚴教授推動青銀共學,提升學生對哲學的興趣,也將哲學帶到課堂之外。圖/臺灣邏輯、方法論、科學與科技哲學學會 – LMPST Taiwan

嚴教授把社區中的長輩們請到大學的哲學課堂上,與大學生一起進行小組報告。這些生醫背景的學生們未來大多會從醫;因此,對未來將要在醫療院所工作的他們來說,與長輩互動是很好的練習。

嚴教授也針對與學生們未來在醫療場域會遇到的一些價值性思考,與哲學作出連結,讓學生們學習哲學能夠學以致用,對醫療過程有所幫助。舉例來說,她會帶領學生討論如何面對死亡、以及照護倫理等哲學議題。她認為,在學生未來的臨床工作上,這些哲學議題將派得上用場。

除了青銀共學外,嚴教授還以非常不同於傳統學者的方式,進行她個人的哲學研究。傳統哲學學者往往是埋首於書堆中,發展自己的理論;她則是親自到醫療院所中進行田野調查,去訪問醫生、護理師等第一線的人員。藉由直接了解醫療工作者在實作上遇到的困難,她試圖讓哲學能夠真正被實用。

-----廣告,請繼續往下閱讀-----

嚴教授說,這樣的研究方法被稱為「科學實作哲學」。科學實作哲學作為一種研究方法,其實不單單適用於人文學門,也同樣適用於科學。非常理論性、艱深的基礎科學如果能夠走出象牙塔,了解社會的真實需求,便有機會與人文接軌。因此,不論是科學或人文學門,若研究者可以調整研究方法,從研究對象在實作上的細節出發,再轉而調整自己的理論,那麼科學與人文的互動、合作並非不可能。

科學素養對現代社會的重要性

最後進行分享的是科普媒體《PanSci 泛科學》的知識長鄭國威先生。鄭知識長首先釐清了「人文」的定義:他認為,「人文主義」認為人類可以靠自身的能力認識這個世界,而「人文學科」正是培養這種能力的學科。從這個定義來看,人文與科學根本就不是分開的;畢竟科學也是人類靠自身能力認識世界的方式之一。

鄭知識長提到,台灣的學生在國際學生能力評量計畫(PISA)中表現非常優異,世界排名名列前茅。然而,台灣的學生卻普遍缺乏自信,在失敗時容易產生自我質疑。

鄭知識長指出,台灣學生普遍缺乏自信,在失敗時容易產生自我質疑。圖/臺灣邏輯、方法論、科學與科技哲學學會 – LMPST Taiwan

在學習的過程中,我們大致可以把人分為兩種:具有「定型心態」與具有「成長心態」的人。前者只重視結果、學習態度較消極,且容易受挫折打擊;後者則重視過程、學習態度較積極,且勇於面對挑戰。鄭知識長指出,具有定型心態的台灣學生似乎占多數。

-----廣告,請繼續往下閱讀-----

鄭知識長在高中時也面臨相同的困境,他那時非常厭惡數學和理化,完全沒有學習他們的熱忱。他後來發現不止他是如此,有許多人也在學生階段就放棄了對科學的學習;這對台灣社會是個嚴重的現象。舉例來說,公投的題目許多都牽涉科學知識,放棄學習科學的公民要如何在這種公投中作出正確的判斷?這樣的考量促使他後來創辦 PanSci 泛科學。

鄭知識長認為,獲得成長心態最簡單的方式就是學會科學原則與方法,也就是用科學方法來面對日常生活中遇到的問題。而培養科學素養則需要承認自己對許多事的無知,且需要身處一個好的素養集體之中。最後,鄭知識長勉勵大家一起培養出「科學思辨力」,為本次的論壇畫下一個強而有力的句點。

-----廣告,請繼續往下閱讀-----
臺灣邏輯、方法論、科學與科技哲學學會_96
3 篇文章 ・ 12 位粉絲
臺灣邏輯、方法論、科學與科技哲學學會(The Taiwan Association for Logic, Methodology and Philosophy of Science and Technology, LMPST Taiwan)為國內非營利法人團體,主要幹部均為國內教授或研究員。本會以促進科學型的哲學研究為宗旨,工作包括國內專業學術工作、跨領域學科交流及哲學普及推廣。

0

1
1

文字

分享

0
1
1
以科學為本!從 DNA 探索大未來——百濟神州(BeiGene)Kids Science 生物科學營,為小小醫生科學家鋪路!
鳥苷三磷酸 (PanSci Promo)_96
・2022/12/27 ・3734字 ・閱讀時間約 7 分鐘

本文由 百濟神州(BeiGene) 委託,泛科學企劃執行。

「小朋友們,當爸媽或家人生病時,你的心情如何?擔心、焦慮、想辦法讓他們好過一點?」

「希望家人最好不要生病」、「吃藥看醫生才能快快恢復」這是來自孩子們最純真直接的回應。

全球前 50 大生技製藥大廠百濟神州(BeiGene)副總裁暨細胞治療研發中心負責人黃士銘,日前率近 20 位企業志工和家人們一起至坪林國小,在泛科學協助下,舉辦「Kids Science 小小生物科學營」。課堂上,身為生物科學家的他,首次擔綱一日業師,在活動一開始即拋出了上述這個情境題,引導孩子們思考生物科學,其實是一門很有意義的學問,不僅貼近日常所需、更能真實地幫助許多人。

黃士銘表示:「BeiGene 是一家以科學為本,專注於創新癌症藥物研發,我們與全球各地科學家及醫師緊密合作,以病人至上的精神,致力為全世界患者帶來可近性及可負擔的高品質藥物。」身為一位科學家,我們相信『改變治癒未來』(Change is the Cure)。先進科學改變人類生活,而醫療科學為人類帶來治癒的力量。因此,在台灣,我們與這塊土地最頂尖的科學人才共同努力,專注於細胞治療在癌症醫學領域的研發,也因為台灣向來是生技產業人才搖籃,這更讓我們重視到,科學教育從小紮根的重要性,讓小朋友從早期開始培養科學核心素養,豐富孩子們的知識和視野,希望啟發他們對於生物科學的興趣。我們很期待透過 BeiGene 「Kids Science 小小生物科學營」,拋磚引玉,讓更多人重視科學教育的環境,挹注多元教學資源,發揮共好影響力,為台灣培育更多優秀的生技人才。

BeiGene 副總裁暨細胞治療研發中心負責人黃士銘,率近 20 位企業志工和家人們前進坪林國小,讓偏鄉小朋友從小開始培養科學核心素養。圖/BeiGene

有鑑於此,秉持以科學為本、病人至上的 BeiGene,致力「培育未來生物科學人才」作為品牌 ESG 關鍵的當責行動。於是乎,當觀察到台灣偏鄉科學教育資源與師資分配不均的狀況,便與全台最大科學知識社群–「泛科學」聯手,舉辦「 Kids Science 小小生物科學營」,BeiGene 企業志工於假日帶著家人們,前進新北市坪林國小進行教學活動,為偏鄉學童種下科學教育種子,希望藉由對生物科學的體驗與實驗過程,提升偏鄉學童對於環境觀察的敏感度與科學的認識基礎。

-----廣告,請繼續往下閱讀-----
BeiGene 「Kids Science 小小生物科學營」,為學童打造出「適齡、適性」、結合理論與手作的生物科學探索課程活動。圖/BeiGene

生物科學樂趣多! 啟發學童對科學創造的想像

小學階段是最適合紮根科學教育的時期,但偏遠地區的學校由於交通不便與地理人文環境特殊,造成師資、設備、資源不足等情況。若能引進多元的教學資源,開啟偏鄉孩子們不一樣的視野,便能在科學的啟蒙之路上,燃起他們的學習熱情、啟發學童對科學創造的想像!

引導孩子們思考生物科學,其實是一門很有意義的學問,不僅貼近日常所需、更能真實地幫助許多人。圖/BeiGene

坪林國小校長王珮君表示:「科學是生活,舉凡食、衣、住、行都隱含著許多科學知識與原理,非常感謝 BeiGene,看見偏鄉孩子在專科教育學習資源的需求,舉辦『Kids Science 小小生物科學營』, 讓孩子從做中學習。藉由豐富有趣的課程,帶領學校的孩子不僅能從學習中獲得更多與醫學相關的科學知識,同時也能啟發他們擁有像『科學家』一樣地邏輯思考,像『醫師』一樣地解決問題!永保好奇心,持續不斷的創新與探索。」

坪林國小校長王珮君致力提供學生更好的學習資源,感謝 BeiGene 帶來豐富多彩的 STEM 教育課程。圖/BeiGene

親子共學玩實驗夯: 水果DNA切切樂、手作仿生鳥

身為全台最大科學知識社群——「泛科學」知識長鄭國威表示,孩子學習科學的目的,除了開拓視野外,更重要的是培養科學思辨的精神與態度!在這個以社群力=影響力的時代,泛科學希望與各界企業一起『加乘、共好』,透過彼此的核心職能,讓下一代對科學產生興趣。

孩子學習科學的目的,除了開拓視野外,更重要的是培養科學思辨的精神與態度。圖/BeiGene
利用簡單易操作的實驗一窺水果 DNA 的樣貌。圖/BeiGene

這次的課程,特別邀請到曾獲教育部殊榮的生物老師──簡志祥「阿簡老師」,帶領學童認識水果 DNA,利用簡單易操作的實驗一窺 DNA 的樣貌,了解生命細胞最初始的模樣;也體驗了解仿生科技在醫療上及生活上的應用,透過「仿生鳥手作實驗」引導學童思考有哪些生活用品是從仿生科學啟發而得來,並從手作實驗中獲得更多靈感與樂趣,最後的「仿生鳥飛行競賽」,讓學童用自己親手做的成品互相比拚,進一步體驗空氣動力原理,邊玩邊學、小朋友無一不感到新奇與有趣。

-----廣告,請繼續往下閱讀-----
透過生活周邊常見產品實例,了解仿生科技在醫療上及生活上的應用。圖/BeiGene
透過「仿生鳥手作實驗」引導學童思考有哪些生活用品是從仿生科學啟發而得來。圖/BeiGene
「仿生鳥飛行競賽」,讓學童用自己親手做的成品互相比拚,進一步體驗空氣動力原理,邊玩邊學、小朋友無一不感到新奇與有趣。圖/BeiGene

本次課程活動獲得很好的迴響,孩子們邊玩邊學,不僅輕鬆提升專注力,同時對生物科學產生興趣。各位家長們,想要帶著孩子自己動手體驗 Kids Science 科學課程嗎? 以下分享 DIY 簡單步驟跟著做,親子共學樂趣多: 

【水果切切樂】

藉此實驗了解細胞各構造的特性,如清潔劑可溶解細胞膜的脂質,破壞細胞膜。 高濃度食鹽水可使 DNA 溶解在溶液中,DNA 不溶於酒精中,所以使用酒精萃取出 DNA。由於實驗材料簡單,且方法易操作,對生物科技有興趣的學習者也可以自行操作實驗不同水果的差異性。

教學影片。影/Youtube

材料:
萃取液(食鹽、水、清潔劑)冰棒棍、牙籤、離心管、塑膠杯、塑膠袋、紗布、竹籤、切塊水果、酒精

方法:
準備萃取液,內容是 1/3 杯的水、1/2 匙鹽和 1 匙的清潔劑混合。把切塊水果放進塑膠杯裡,倒進萃取液,能夠蓋住水果的量就夠了,用冰棒棍把水果攪爛。
把紗布鋪在另一個塑膠杯上,將攪爛的水果倒入紗布上,收集濾下的液體。
把酒精倒入液體中,過幾分鐘就會在上層的酒精裡看到白色的絲狀物。恭喜你,你拿到了這些水果的 DNA 了。拿牙籤輕輕攪拌這些 DNA,把它們收集到離心管裡頭吧。

-----廣告,請繼續往下閱讀-----

原理:
為什麼這些材料就可以萃取出 DNA 呢?當你把水果攪爛和萃取液混合時,會破壞水果的細胞,清潔劑可以破壞水果細胞的細胞膜和核膜,而加入鹽則可以讓 DNA 溶解在萃取液內。最後加入的冰酒精,則會讓 DNA 從溶解的狀態被析出來,就成了你看到的白色絲狀物。

【手作仿生鳥】

結構仿生設計學主要研究生物體和自然界物質存在的內部結構原理在設計中的應用問題,適用與產品設計和建築設計。研究最多的是植物的莖、葉以及動物形體、肌肉、骨骼的結構。本課程從生活中引導小朋友去思考有哪些生活用品是從「仿生科學」啟發得來的。並從手作實驗中得到更多靈感與啟發!

仿生學小知識:

仿生學是模仿生物特殊本領的科學,目的在了解生物的結構和功能原理,來研發新的機械和技術,將大自然的智慧轉化成人類可操控的技術,可以說是「向大自然學習」的一門科學,例如達文西的「撲翼機手稿」就是藉由研究鳥類與昆蟲飛行所設計出來的。

-----廣告,請繼續往下閱讀-----

像是出淤泥而不染的「蓮花葉」,除了表面上有蠟等物質可以防水,也發現葉面上有奈米等級的絨毛結構,這些結構使得水滴不易被戳破,讓水滴能在葉面上自由滾動,正是屬於仿生學的範疇,而這個發現也運用在現在的防水塗料上。此外,模仿蜘蛛絲做成的線非常強韌,可以拿來做防彈衣,這些都屬於仿生學的研究成果。

教學影片。影/Youtube

方法:
確認你的配件,包括翅膀、尾巴、木條、三條橡皮筋,將翅膀配件靠內的桿子套上右邊鐵鉤,靠外的桿子套上左邊鐵鉤,將木條插入翅膀的孔,另一端插入尾巴的孔,接著將橡皮筋套進兩端的掛勾,最後一步驟只要扭轉橡皮筋就可以飛行了。

-----廣告,請繼續往下閱讀-----
鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia