Loading [MathJax]/extensions/tex2jax.js

1

3
2

文字

分享

1
3
2

是人?還是機器?圖靈的模仿遊戲-《創新者們》

天下文化_96
・2015/09/20 ・3935字 ・閱讀時間約 8 分鐘 ・SR值 572 ・九年級

1950 年10 月,圖靈在《心智》(Mind)期刊發表了第二篇重要論述〈計算機器與智能〉時,在論文中設計了所謂的「圖靈測試」。圖靈一開始先明確聲明:「我提議大家思考以下問題:『機器能不能思考?』」他像個愛玩的孩子般發明了一個遊戲(直到現在還有人玩這個遊戲,並為之爭辯不休),賦予上述問題實證的意義。他為人工智慧提出了純粹操作型定義:假如我們分辨不出機器的產出和人類大腦思考的結果有何不同,那麼就沒有理由堅持機器不會「思考」。

turing, pansci

圖靈稱為「模仿遊戲」的測試其實很簡單:提問者會事先寫好問題,然後對不同房間的人與機器提問,再根據他們的回答辨認哪個房間裡的答題者是人,不是機器。他寫道,以下是題目範例:

問:請以福斯橋為題,寫一首十四行詩。
答:別指望我。我從來都不懂寫詩。
問:34,957 加70,764 等於多少?
答:(停頓30 秒後,給的答案是)105,621。
問:你會下西洋棋嗎?
答:會。
問: 我的棋子K 在K1 位置上,此外沒有其他棋子了。你只有K6 位置上的棋子K 和R1 位置上的棋子R。輪到你走,你要怎麼下這一步?
答:(停頓15 秒後)棋子R 走到R8,將軍。

在這段對話範例中,圖靈做了幾件事。仔細檢查後發現,答題者在計算了三十秒後,仍犯了個小錯誤(正確答案是105,721)。這樣就足以證明答題者是人嗎?也許吧。不過,也說不定是機器在處心積慮假扮人類。傑弗遜的反對意見(機器不會寫十四行詩)也遭圖靈輕鬆反駁:上面的答案說不定是人類答題者在承認自己的不足。圖靈後來在論文中,以下列提問內容說明:以能否創作十四行詩為標準,來判斷答題者究竟是人或機器,其實不是那麼容易:

-----廣告,請繼續往下閱讀-----

問: 你的十四行詩在第一行說「你好比夏日」,那麼用「春天」來形容也一樣嗎,還是會更好?
答:這樣不合詩的韻律。
問:那假如用「冬日」呢,這樣就能押韻了。
答:對,可是沒有人想被比擬為冬日。
問:你覺得皮克威克先生會讓你想起聖誕節嗎?
答:或多或少吧。
問: 可是聖誕節的時候正逢冬天,我認為皮克威克先生不會介意這樣的比喻。
答: 你不是當真吧。「冬日」的意思是指典型的冬天,而不是像聖誕節這樣的特殊節日。

圖靈的觀點是,或許我們根本無從判斷答題者究竟是真人,或只不過是機器在假扮人。究竟電腦能否在這場模仿遊戲中勝出,圖靈的猜測是:「我相信大約要到五十年後,人類才有能力設計出電腦程式⋯⋯ 讓電腦玩模仿遊戲的功力高強到,一般人質問電腦五分鐘後,能正確判斷的機率低於七成。」

泛科學選書 《創新者們:掀起數位革命的天才、怪傑和駭客》
Source: Geek & Poke

圖靈也試圖在論文中為他所定義的思考提出辯駁。神學界的異議著眼於,世間萬物中,上帝只賦予人類靈魂和思考能力;圖靈則加以駁斥,認為他們的觀點「暗自為無所不能的上帝設下嚴重限制」。他問道,只要上帝「認為適當」,祂能否「自由賦予大象靈魂」?假設如此,那麼依照相同的邏輯(諷刺的是,這樣的邏輯居然出自沒有宗教信仰的圖靈),只要上帝想這麼做,祂自然可以讓機器也擁有靈魂。

最有趣的反對意見(尤其對本書而言),則是愛達的看法。「分析機不會聲稱自己創造了任何東西,」她在1843 年寫道:「它可以執行任何我們懂得命令它做的事情,但它沒有能力預言任何分析關係或真相。」換句話說,機械裝置和人類心智不同的是,機器沒有自由意志,也無法採取主動,只能依照設定的程式執行任務。圖靈則在1950 年發表的論文中,特別撥一些篇幅來討論「勒夫雷思夫人的反對意見」。

-----廣告,請繼續往下閱讀-----

針對愛達的反對意見,圖靈最有創意的反駁是辯稱:機器或許有能力透過學習而開始產生主體性,有能力創造新的思維。「與其試圖設計程式來模擬成人心智,何不乾脆製造出能模擬孩童的程式?」他問:「透過適當的教育,或許可讓它擁有成年人的腦力。」他承認,機器的學習過程和孩童不一樣。「比方說,機器沒有腳,所以你不能叫他到屋外鏟煤,把桶子裝滿。機器可能也沒有眼睛⋯⋯ 你不能送機器去上學,因為其他孩子會拚命取笑它。」所以,必須想其他法子來教育機器寶寶。圖靈建議利用獎勵和懲罰機制,引導機器重複某些行為和避免某些行為,最後機器自然會發展出一套自己的判斷方式。

分析機概論的翻譯者
分析機概論的翻譯者愛達·勒芙蕾絲,被後人公認為第一位電腦程式設計師。 Source: wiki/Ada Lovelace

但圖靈的批評者指出,即使機器真能模擬人類思考,仍然不具備真正的意識。當參與圖靈測試的人類使用文字時,會把文字連結到真實世界代表的意義、情感、經驗和知覺,機器則不然。然而如果缺乏這樣的連結,語言就完全脫離意義,只是一場遊戲。

對圖靈測驗最歷久不衰的挑戰,正是由這類反對意見引發的:1980 年,哲學家瑟爾(John Searle)提議進行一項名為「中文房間」的想像實驗。進行實驗時,房間裡有個人只會講英語,對中文一竅不通,他拿到一本完整的中文指南,教他在面對任何中文字組合時,如何依照規則形成新的中文字組合,然後把答案遞出房間。只要教學手冊寫得夠完整,這個人或許能讓提問者信以為真,以為他真的懂中文。儘管如此,他完全不了解自己的答案究竟在說什麼,也沒有展現任何意圖。套用愛達的說法,他完全說不上有任何原創力,只不過聽命行事罷了。同樣的,無論圖靈模仿遊戲中的機器能多麼逼真的模仿人類反應,機器仍然不了解、也無法意識到自己在說什麼。所以,說機器懂得「思考」,就好像說那個照著中文指南依樣畫葫蘆的人懂中文一樣。

針對於瑟爾的觀點,反對者辯稱,即使這人並非真的懂中文,中文房間裡的整套系統,包括這個人(處理單位)、中文指南(程式)和充滿中文字的檔案(資料),加總起來可能真的理解中文。這很難有定論。的確,圖靈測驗和反駁圖靈測驗的論點,迄今仍是認知科學領域最火熱的爭辯主題。

-----廣告,請繼續往下閱讀-----

圖靈在完成〈計算機器與智能〉幾年後,似乎十分樂於參與這場他挑起的爭論。對於那些一味嘮叨著十四行詩和意識問題的批評者,他以反諷式的幽默挑撥他們:「有朝一日,女士會帶著電腦在公園裡散步,互相閒聊著:『今天早上,我的電腦說的事情好好!』」他在1951 年如此戲謔的說。他的老師紐曼後來指出:「他說明自己的想法時,會用種種好笑但聰明的比喻,和他聊天十分愉快!」

有別於機器,性慾和情感欲望在人類思考中扮演的角色,是許多人和圖靈討論時一再提及的題目,而且不久之後就引發悲劇性的回響。1952 年1 月,BBC 在電視上播出圖靈與腦外科醫師傑弗遜的辯論,這場辯論會由紐曼和科學哲學家布瑞斯維特(Richard Braithwaite)一起主持。「人類的興趣大體上是由欲望、渴求、衝動和本能所決定,」布瑞斯維特指出。他認為,要創造出真正能思考的機器,「似乎必須讓機器擁有相當於欲望的東西。」紐曼插話指出,機器的「欲望很有限,感到尷尬時也不會臉紅。」傑弗遜更進一步,不斷拿「性衝動」為例,提及「人類與性相關的情感和本能」。他說,男人飽受「性衝動」所苦,「有時可能讓自己出醜」。他大談性慾如何影響人類思考,以致於BBC 不得不剪掉一部分內容之後才播出,包括他提到除非親眼見到機器去摸另一部女性機器的大腿,否則他不相信機器也能思考。

圖靈當時仍小心隱瞞自己的同性戀傾向,在討論到這部分時,一直沉默不語。這個節目在1952 年1 月10 日播出,而圖靈在辯論會錄影前幾個星期忙的事情可說充滿人性,遠非機器所能理解。由於剛完成一篇科學論文,圖靈在他寫的短篇故事中談到他打算如何慶祝:「事實上,他孤家寡人好一段時間了,自從去年夏天在巴黎遇見那個大兵以來,就一直無人作伴。既然論文已經完成,或許他理當找個同志作伴,而他很清楚到哪兒可以找到適當人選。」

turing, PanSci
倫敦奧運聖火傳遞,圖靈100歲冥誕。Source: Cen2s2s

圖靈在曼徹斯特的牛津街上,挑上了工人階級出身的十九歲流浪漢默瑞(Arnold Murray),兩人開始交往。錄完影回來,他邀請默瑞搬到他家。一天晚上,圖靈告訴年輕的默瑞,他曾經幻想和一部兇惡的電腦對弈,而他因為成功引發電腦展現怒氣、開心和自以為是,而擊敗電腦。接下來一段時間,兩人的關係變得愈來愈複雜,有一天晚上,圖靈回家時發現家裡曾遭竊賊闖入,犯案者是默瑞的朋友。圖靈向警方報案時,透露自己和默瑞的性關係,於是警方以猥褻罪名逮捕圖靈。

-----廣告,請繼續往下閱讀-----

這個案子在1952 年3 月審判,圖靈當庭認罪,但說自己並不後悔。紐曼出庭擔任品格證人。圖靈被定罪並剝奪參與機密計畫的資格,同時還面臨兩個選擇:入獄服刑,還是接受荷爾蒙治療以獲得緩刑,藉由注射合成雌激素抑制性慾,彷彿他是化學藥物控制的機器。圖靈選擇後者,忍受了一年的荷爾蒙治療。

圖靈起初從容面對打擊,後來卻在1954 年6 月7 日,吃下沾了氰化物的蘋果自殺。他的朋友指出,〈白雪公主〉故事中,邪惡王后把蘋果浸在毒藥中的畫面,一直很令他著迷。圖靈被發現時躺在床上,口吐白沫,體內有氰化物反應,身旁有一顆咬了一半的蘋果。機器會做出這樣的事情嗎?

創新者們,泛科選書

 

本文摘自《創新者們:掀起數位革命的天才、怪傑和駭客》,由天下文化出版。

 

 

 

延伸閱讀

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
3

文字

分享

0
3
3
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

賴昭正_96
46 篇文章 ・ 59 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此獲有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪,IBM顧問研究化學家退休 。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
驅動未來科技創新的運算平台領導廠商—Arm
鳥苷三磷酸 (PanSci Promo)_96
・2023/10/26 ・2594字 ・閱讀時間約 5 分鐘

本文由 Arm 委託,泛科學企劃執行。

Arm(安謀)是一家來自英國提供處理器 IP 架構設計的矽智財公司,你可能不清楚 Arm 在做什麼?但你可能在最近的新聞中聽過它,而且,你可能每天都在使用他們的產品!

實際上,90% 的智慧型手機使用的 CPU 晶片,其指令架構集(ISA)都是採用 Arm 架構,例如部分蘋果產品所使用的晶片、Android 手機常見的驍龍系列,以及聯發科技推出的天璣系列晶片,Arm 都是這些處理器架構的主要供應商。

每片 CPU 上,都有 ISA。圖/pixabay

不過這個指令架構集(ISA)到底是什麼?為什麼每台手機甚至電腦都要有呢?

-----廣告,請繼續往下閱讀-----

什麼是指令架構集(ISA)?

指令集架構(ISA)是電腦抽象模型的一部分,它定義了 CPU 如何被軟體控制。ISA 作為硬體和軟體之間的介面,既規定了處理器能夠執行的任務,又規定了如何執行這些任務。ISA 提供了使用者與硬體互動的唯一途徑。ISA 可以被視為程式設計師的手冊,透過 ISA,組合語言程式設計師、編譯器編寫者和應用程式程式設計師方能與機器溝通。

處理器的構建和設計稱為微架構(micro-architecture),微架構告訴您特定處理器的工作原理,例如,Arm Cortex-A53 和 Cortex-A73 都是 Armv8-A 架構的實現,這意味著它們具有相同的架構,但它們具有不同的微架構。

目前常見的 ISA 有用於電腦的 Intel/AMD x86_64 架構,以及在行動裝置是主流的 Arm 架構。而 Arm 本身不製造晶片只授權其架構給各個合作夥伴,授權的架構也被稱為「矽智財」(Semiconductor intellectual property core,簡稱 IP),並由合作夥伴依據規格打造合規的矽晶片。

Arm 成為全球關注的焦點

今年九月,Arm 在美國紐約那斯達克交易所掛牌上市,吸引大量投資者的目光,除了節能的設計,Arm 持續提升產品效能,使得 Arm 架構具有強大的競爭優勢,讓 Arm 的技術和產品,除了在行動裝置與物聯網應用佔據了重要地位,也在後續發展的其他產品持續協助產業推動技術革命。

-----廣告,請繼續往下閱讀-----

最早,Arm 架構是為了依靠電池運作的產品而設計的,隨著這十多年來的轉變,行動裝置成為主流,而 Arm 架構也成為了行動裝置的首選。

除了 Arm 原本行動裝置的通用 CPU 領域,Arm 亦著手開發專用 CPU 的架構,這些專用 CPU 的使用情境包含雲端基礎設施、車用和物聯網(IoT)。

現在 Arm 除了在手機處理器上有超過 90 % 的市占率外,在物聯網與嵌入式應用上有 65% 的市占率,目前車用晶片也逐步轉向由軟體來定義汽車的電子電氣架構,這凸顯了軟體在未來汽車架構的重要性。「嵌入式邊緣裝置使用的可擴充開放架構 (Scalable Open Architecture for Embedded Edge;SOAFEE) 」建立以雲原生的系統架構,透過雲端先行開發軟體,協助汽車產業業者在產品正式商品化前,能在基於 Arm 架構的晶片上進行虛擬環境測試,目前 Arm 在車用晶片上,市佔率超過四成。

由感測器至智慧製造系統設計,Arm 與生態系密切合作,推動技術創新

在雲端運算上,Arm 也推出了 Arm Neoverse 技術平台來協助雲端伺服器的晶片設計,並配合新推出的 Arm Neoverse 運算子系統(CSS),來簡化專用晶片的設計複雜性,減少晶片設計花費的時間。

-----廣告,請繼續往下閱讀-----

在 Arm 日益完整的產品組合下,透過與廣大生態系合作,能為市場提供許多軟硬體解決方案。首先,在行動裝置上,Arm 近乎霸占市場。而在 AI 發展與網路速度持續提升的趨勢下,許多運算都可以在雲端完成,最近的實例為 Nvidia 的 GeForce Now,只需一台文書機,就能暢玩 3A 大作,或是 Google 的 Colab,讓 AI 能在文書機上完成運算,造福了沒有高級顯卡的使用者。

未來,邊緣運算將陸續解開雲端運算的束縛,而 Arm 也在前期投入了雲端基礎開發,配合行動裝置的市占率,無論如何 Arm 都將在未來科技業占有一席之地。

Arm Tech Symposia 將在 11 / 1 與 11 / 2 盛大舉辦

2023 Arm 科技論壇(Arm Tech Symposia)即將在 11/1 台北萬豪酒店,11/2 新竹國賓飯店盛大舉辦!這是 Arm 每年最重要的實體活動之一,以【Arm is Building the Future of Computing】為主軸,探討在 AI 時代來臨之際,Arm 最新的技術如何驅動創新科技,為次世代的智慧運算、沉浸式視覺、AI 應用、自主體驗等帶來更多可能性。 

這次 Arm 科技論壇將圍繞在車用、物聯網、基礎設施、終端產品等熱門 AI 應用領域,並邀請台積公司、Cadence、瑞薩電子、新思科技、CoAsia 擎亞半導體等各領域專家,帶來產業第一手趨勢洞察。

-----廣告,請繼續往下閱讀-----

其次,也會分享 Arm 的新技術在 AI 的應用,包含如何透過軟體定義汽車降低汽車電子系統核心 EUC 整合的複雜性,同時維持汽車資安;以及介紹專為特定工作負載而設計的運算方式,如何讓企業不受外在環境與技術影響,處理更大規模的數據。

今年 11/1 在台北場的座談會,主題為 Edge computing on AI,探討邊緣運算在人工智慧上的應用,以及人工智慧對於半導體產業以及晶片研發帶來的影響,邀請 iKala 共同創辦人暨執行長程世嘉、聯發科技執行副總經理暨技術長周漁君,以及 Arm 台灣總裁曾志光與會。

Arm 科技論壇 11 月 1 日台北萬豪酒店。 圖 / Arm 

11/2 在新竹場的座談會主題為 The Keys of Automotive Transformation,探討汽車產業的轉型趨勢,邀請 Anchor Taiwan 執行長邱懷萱、友達光電執行長暨總經理/達擎董事長柯富仁、波士頓顧問公司董事總經理暨資深合夥人徐瑞廷,以及 Arm 台灣總裁曾志光與會。

Arm科技論壇 11月 2 日新竹國賓飯店。 圖 / Arm 

無論你是硬體工程師、軟體開發人員、晶圓代工、晶片設計商、OEM/ODM 還是相關產業人士,都能在這場論壇中互相交流,充實自己。

-----廣告,請繼續往下閱讀-----

2023 Arm 科技論壇報名連結

活動結束後填寫問卷的朋友,還有機會現場抽中 iPhone 15 Pro、 iRobot Roomba j7+ 掃地機器人、Sony WH-1000XM5 無線耳機、Dyson Purifier Big+Quiet Formaldehyde 空氣清淨機等精美好禮喔!

報名截止倒數中,現在就立刻報名吧!

-----廣告,請繼續往下閱讀-----