0

3
2

文字

分享

0
3
2

霍金和黑洞:霍金一生的追尋讓我們知道了哪些事?

賴昭正_96
・2018/05/25 ・6723字 ・閱讀時間約 14 分鐘 ・SR值 543 ・八年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

「我曾認為資訊將在黑洞中被銷毀,這是我最大的錯誤──至少是我在科學上的最大錯誤。」

──史蒂芬 ‧ 霍金

source:Lwp Kommunikáció @Flickr

 早在 1783 年英國的天文學家教士米歇爾(John Michell)就透過簡單計算(見本文末之「脫離地球的臨界速度」)說道:如果某些天體的密度與太陽一樣,但其直徑超過太陽的 500 倍,則物體需具超過光速才能脫逃其表面。1796 年拉布拉斯(Pierre-Simon LaPlace)也獨立地預測巨大發光體可能因為這一關係,而變成了我們看不見的「暗星」。

天文學家曾經非常高興可能偵測到此一不放光、但可透過重力影響其他附近星球的巨大物體。但到了 19 世紀初期,科學家漸漸了解到光是一種波動,因而懷疑其會受重力的影響,而漸漸淡忘了此一種大物體存在的可能性。

一個位於銀河系中心的黑洞。 圖/NASA

連光也逃不走的「黑洞」

1915 年愛因斯坦發表了時空會因重力而變形的普遍相對論(general theory of relativity)。11 月,自願從軍、在蘇俄前線負責計算砲彈軌跡之德國天文物學家蘇瓦玆德(Karl Schwarzschild)大概是太無聊了,在讀完了愛因斯坦的論文後,竟然將它應用到只有一個不旋轉之星球的宇宙上,用他的特別坐標體系,精確地解出愛因斯坦的重力場方程式1

德國天文物學家蘇瓦玆德。 圖/wikipedia

他 12 月 11 日寫信給愛因斯坦說:

「儘管在猛烈的烽火下,這戰爭(第一次世界大戰)對我還是蠻寬厚的:它讓我能夠遠離一切,並且馳騁在你的見解上。」

愛因斯坦回信道:

「我對你的論文非常感興趣,我從沒想到可以這麼簡單精確地解決這一個問題。我非常喜歡你對這一題目的數學處理。下星期四我將稍加解釋地將你的論文介紹給(普魯士)科學院。」

蘇瓦玆德在該論文裡發現,宇宙中的所有星球將因為重力的關係,內縮崩潰到密度為無窮大的一中心點:重力場方程式在該處是無解 ( 像”2÷0”)。蘇瓦玆德及愛因斯坦都不相信這樣的星球可能存在,他們認為那只是數學上的奇異點(singularity);在星球縮小到這點之前一定會有我們現在尚不清楚之物理發生。

除了中心點外,在現在稱為「蘇瓦玆德半徑」(Schwarzschild radius)

Rs=2 GM/c2

之處(式中 M 為星球質量G 為重力常數,c 為光速)也出現無解;物理學家對其物理意義以及是否會在自然界中出現爭辯了幾十年。1958 年美國物理學家分克斯坦(David Finkelstein)終於了解到了該半徑球面代表「事件地平線」(event horizon):任何掉進去的物體⎯⎯包括光⎯⎯再也永遠跑不出來了!因為連光線都跑不出來,,故由外界看視將永遠只是一個黑球。

1967 年,聽說在一位學生的建議下,理論物理學家惠洛(John Wheeler)開始採用「黑洞」(black hole)這一後來被廣泛採用的名詞。

恆星的命運:在漆黑宇宙中隱身

雖然早在 1783 年天文學家就已經在銀河系內發現散射微弱白光之星球,但到了 20 世紀初他們才摸清我們之所以只看到微光,是因為它們體積很小又遠的關係。事實上這些星球是很重的(其密度高到非常難以令人相信),且其表面溫度也可能高到 100,000 度──因此之後被稱為白矮星(white dwarf)。1926 年英國劍橋大學教授福勒(Ralph H. Fowler)率先用當時漸趨成熟之量子力學來解釋:這些星球在融核燃料用盡後,因重力的關係而繼續其內縮崩潰,壓縮電子可存在的空間,但因為包利不相容原則(Pauli exclusion principle2),這些電子便群起反抗,產生電子簡併壓力(electron degeneracy pressure),阻止了內縮崩潰而達到了一個平衡狀態的白矮星3

1931 年,利用印度政府獎學金到劍橋大學留學的 19 歲千桌沙卡(Subrahmanyan Chandrasekhar,亦譯作錢德拉塞卡)將電子質量因運動而變重的相對論效應考慮進去,預測了如果星球的質量小於太陽的 1.44 倍(現在稱為千桌沙卡界限,Chandrasekhar limit4),那麼白矮星便是該星球不可避免的命運。福勒與千桌沙卡師徒兩人因在這方面的貢獻而獲得 1983 年諾貝爾物理獎。

圖/LoganArt @Pixabay

白矮星內部因不再進行核融反應製造能量,其溫度將慢慢降低而由白轉棕,變成棕矮星(brown dwarf),最後變成黑矮星(black dwarf)而在漆黑的天空中失跡(是我們將看不見、而不是真正的消失)。如果星球的重量大於 1.44 倍太陽的質量呢?那重力將大於電子簡併壓力,使得星球繼續內縮崩潰,將電子及質子壓成中子。因中子也像電子一樣,須服從包利不相容原則,故繼續壓縮的結果將產生中子簡併壓力來反抗重力。如果星球的質量大約只有太陽質量的 2∼3 倍,則重力及中子簡併壓力將達到一個平衡形成中子星(neutron star)。如果星球的質量更大呢?那就沒有什麼我們現在已知之物理能阻止它繼續壓縮成黑洞!

該如何發現黑洞?

當壓縮到事件地平線後,因為任何資訊都沒有辦法從裡面跑出來,對外界的我們來說,這個星球等於從此從宇宙中消失,只在宇宙空間中留下了一個半徑為蘇瓦玆德半徑的圓球黑洞;任何掉進去裡面的物體均將如石沉大海,也沒有外人能知道它到底怎麼了!

事實上依據普遍相對論,時間在重力場下將變慢(重力場越強,時間越慢),因此歐本海默(J. Robert Oppenheimer)及學生史納德(Hartland Snyder)1939 年時在美國發表了一篇論文,講述對一個站在蘇瓦玆德半徑外的人來說,星球的內陷好像在蘇瓦玆德半徑處停住了,需要無限長的時間才能通過,而一個隨它內陷的人(或者任何掉進去的東西)將好像永遠處出於自由落體的狀態。所以許多天文學家均認為,小於蘇瓦玆德半徑的黑洞在宇宙誕生時就必須發生,並稱之原始黑洞(primordial black hole)。有趣的是:愛因斯坦當年也在德國發表了一篇論文,證明黑洞是不可能存在的!

電影《星際效應》中的黑洞影像。圖/IMDb

在許多的科幻小說裡,黑洞常被形容成一個宇宙的清道夫:吞噬所有周遭的一切東西──包括星球。但事實上黑洞只像是一個看不見的微小太陽(如果太陽能內陷成黑洞,其蘇瓦玆德半徑大約只有 3 公里),只是重力吸引力強大多了而已。只要不跑進事件地平線內,任何物體都可以在其外面流蕩或像地球繞日一樣運轉的。但是因為完全看不見,所以我們只能「間接地」證明黑洞的存在。

現在天文學家都認為 1972 年在天鵝座(Cygnus the Swan)所發現之極強 X光光源是某一個黑洞造成的。霍金於 1974 年與加州理工學院的索恩(Kip Thorne,因發現重力波而獲 2017 年諾貝爾物理獎)賭那現稱為 Cygnus X-1(天鵝座 x-1,離地球約 6000 光年)的光源不是一個黑洞;1990 年在許多新資料的支持下,他終於認輸了。雖然「已經知道」的黑洞大約只有 50 個,但天文學家估計整個宇宙可能有上千萬的黑洞;星系(galaxy)中心也都可能有超級質量黑洞(supermassive black hole,太陽質量的百萬倍)存在。

天鵝座 x-1 的影像與想像圖。左圖紅色方框中的白點就是天鵝座 x-1 ,右圖則是根據科學家的研究所描繪的天鵝座 x-1 黑洞運作狀態。天鵝座 x-1 已被證實為黑洞,並持續將周邊物質拉入其中。圖/NASA

2015 年 9 月 14 日,雷射干涉儀重力波觀測站(LIGO, laser interferometer gravitational wave observatory)所偵測到的重力波5不但被認為是黑洞相撞而產生的,也被認為是首次「直接」觀測到黑洞存在的證據:因為用黑洞特性模擬出來的數據,最符合實驗觀測到的結果。觀測站科學家們(1012位團隊成員6)估計那兩顆黑洞的質量分別約為太陽的 29 倍及 36 倍,相撞時所放出的能量大約為所有宇宙恆星所放出之能量的十倍!

在「愛因斯坦的最大錯誤──宇宙論常數」一文裡7,筆者提到了早在 30 年代,就有天文學家從星群的運動中,懷疑到宇宙中尚存在有其它看不到的「暗物體」(dark matter)!科學家也像世俗人一樣喜歡追風隨俗,一旦有人提出「暗物體」,其存在的證據便開始排山倒海地出現,只是到現在除了知道這些「暗物體」是看不見及具有重力作用外,尚沒有人知道它們到底是什麼「東西」!據估計,這些暗物體大約為宇宙中可見物體的五倍!黑洞不是也看不見且具有重力作用嗎?黑洞可能就是「暗物體」嗎?「暗物體」是在宇宙生成時就產生的,因此已有科學家懷疑它們可能正是「原始黑洞」──在一些合理的假設下,「原始黑洞」群的相撞也可符合偵測到之重力波的數據!

黑洞其實沒那麼黑:霍金輻射

英國劍橋大學教授霍金(Stephen Hawking)。source:Flickr

黑洞雖然不是一個宇宙的清道夫,但它真的是一個只進不出的垃圾桶嗎?1974 年,英國劍橋大學教授霍金(Stephen Hawking)將普遍相對論的時空彎曲現象用到量子場論(quantum field theory)內,竟然發現了一震驚整個理論物理學界的結論:「黑洞並不是如我們所描畫的那麼黑」,而是不停的在輻射能量!

重力場論(普遍相對論)及量子場論(量子力學)是近代物理的兩大成就;但前者似乎僅適用於巨觀世界,而後者則僅適用於微觀世界。這對於不相信上帝是會那麼笨手笨腳的物理學家來說,簡直是一個侮辱,因此統合它們是近代物理的一大目標。霍金是第一位將它們在宇宙論裡結合的物理學家,因此許多人認為他是愛因斯坦以後最偉大的天才8

黑洞(中)在大麥哲倫星雲前面的假想模擬圖。請注意重力透鏡的影響,產生了放大的,但高度扭曲的星雲的兩個影像。在頂部的銀河系盤面扭曲成一個弧形。 圖/Alain r [CC BY-SA 2.5] via wikipedia

在近代物理裡,真空已不再是真的什麼都沒有9。依量子力學之測不準原理,真空事實上是不停地在產生成對的粒子及反粒子⎯⎯但它們又立即結合互毀將能量還給真空⎯⎯的場所。如果產生於事件地平線附近的反粒子掉進去了黑洞,那它便無法再與粒子相結合,粒子將帶能量往反方向跑掉:羊毛出在羊身上,這些能量當然只好由黑洞提供。霍金計算發現這些能量的分佈正如熱物體之黑體輻射,其溫度與黑洞質量成反比,我們現在稱此一黑洞輻射為「霍金輻射」(Hawking radiation)。

所以原則上黑洞是會因霍金輻射而蒸發掉的;但因太陽大小之黑洞的霍金溫度大約只有 10-7 °K,而宇宙背景的溫度為 3°K,所以一般的黑洞還是會淨賺(吸熱比放熱多)而越來越大的;只有在宇宙剛生成就存在的原始黑洞(只原子一般的大小)才會迅速地蒸發掉。霍金曾希望還有一些原始黑洞在宇宙中流浪;如被發現,他說「(我)將可獲得一個諾貝爾獎」;另外一個或許能發現原子般大小的黑洞的地方是歐洲的強子對撞機(Large Hardron Collider)內。霍金於今年 3 月 14 號不幸逝世⎯⎯將與牛頓、達爾文等一代科學宗師一樣,葬在英國君主安葬或加冕登基之西敏寺。因諾貝爾獎是不發給在天堂之人,他的諾貝爾獎是無望了,我們只能在此為他扼腕。

黑洞資訊悖論

雖然黑洞因現在之宇宙條件可以暫保生命,但原則上它們遲早都要蒸發掉的:這將造成一個現在被稱為「黑洞資訊」遺失的「悖論」(black hole information paradox)。量子力學雖然「推翻」(嚴格來說應該是「修正」)了古典的因果論,但它還是像古典力學一樣具有時間的對稱性10:分不出過去與將來,因此資訊是不滅的。比如讀者將筆者之兩本巨著《量子的故事》及《我愛科學》燒成灰,原則上我們還是可以循原來之軌跡,重新尋回那兩本書之內容的!──顯然那兩本書的灰是不一樣的,它們還保持著原來之資訊。可是如果灰是一樣呢?那兩本書的資訊顯然在燃燒的過程中丟失了,我們再也回不去了!

霍金雖然證明了黑洞不是全黑,但他卻也證明了天下的「烏鴉」一般黑,因此只要看到一隻烏鴉就等於看到了全部的烏鴉:只要質量、旋轉及電量相同,不管黑洞當初是由什麼東西造成或組成的,最後總是變成同樣的輻射(蒸發掉) 。

source:Wikimedia

又如筆者在「愛因斯坦的最後一搏── EPR 悖論11一文裡所談的:兩個粒子相互作用後便永遠糾纏在一起,形成了一個量子體系(不管他們分開多遠或者多久),因此當我們去量左邊粒子之位置時,右邊的粒子也將立即受到影響崩潰到一固定位置。可是如果其中一個粒子不幸掉進去了黑洞,從此便與外界隔絕,即使黑洞蒸發而完全消失也無法回收其原來資訊,那「量子糾纏態」顯然應該不覆存在了──但這與實驗結果不符!這「量子糾纏態」事實上就在黑洞之事件地平線附近不停地產生霍金輻射的來源。

這資訊在黑洞中永遠遺失的理論違反了基本物理,因此自霍金 1981 年提出後便爭辯不休。好賭的霍金(這次與蘇爾內站在同一線)終於在 1997 年與加州理工學院的另一位教授布利斯基(John Preskill)打了個賭;後者認為正確的重力量子理論出現後,一定可以解釋資訊不會被銷毀的。2004 年,霍金提出事件地平線應會因波動(fluctuate)而泄露出資訊,承認他打賭輸了,如約地買了一本棒球百科全書給布利斯基(霍金說他很想將該書燒成灰以後再給布利斯基──反正所有的資訊都還在那裡)。

現在有關資訊如何可以不遺失的理論可以說是如雨後春筍、俯拾皆是:其中一個說法是因所有事件均在蘇瓦玆德半徑處停住了,因此資訊並沒有遺失,而是保留在地平線表面處;還有一個說法則是資訊將透過時空隧道跑到另一個黑洞去(看來喜歡科幻小說的讀者是有福了)!事實上光霍金本人就有好幾個版本:最後一個版本是於 2016 年元月出現的12

掉進黑洞總是有辦法出去的

此文是有感於霍金之突然辭世而寫。事實上除了科學外,更讓筆者敬佩的是他對生命的熱愛與執著。霍金曾說:

「如果你覺得掉進黑洞裡,(請)不要放棄,總有辦法出去的。」

筆者覺得那是雙關語,除了闡釋黑洞的特性外,可能更是他生活的寫照,以及給世人的鼓舞:遇到挫折不要輕言放棄!

霍金 21 歲時就被診斷出患有慢性運動神經元病(motor neuron disease),醫生說大概只有兩年可活!43 歲時感染了肺炎,不但完全奪去了他說話的能力,還需 24 小時的醫療照顧。後輩子全是靠坐輪椅及透過電腦說話,不但寫了一本全世界最暢銷的科普書「時間簡史」(A Brief History of Time,1988,第二版,2005),還到處演講寫作,成為愛因斯坦之後之另一位家喻戶曉的科學家。

圖/《時間簡史》書影

至於黑洞此後的前途如何,筆者實在也不清楚!在此,我們不妨以加州大學洛杉磯分校天文學教授蓋芝(Andrea Ghez)的一段話來做結束:

「我以為我當初所提出的問題是非常簡單的,那僅是問:『銀河系的中心有沒有巨質的黑洞?』但我之所以喜歡科學的原因之一是:你最終將永遠碰到新的問題。」

註解:

  • [1]:愛因斯坦自己只能做近似解。
  • [2]:「原子的構造」,科學月刊,2010 年 3 月號;「我愛科學」,第 95 頁。
  • [3]:事實上在崩潰成白矮星之前,他們的質量都更大,因此在核燃料用盡之後,極速的重力內陷將使溫度劇增而導致爆炸,將外圍的物質散射到宇宙中(宇宙中重元素的來源),僅留下中心部分繼續內陷收縮。
  • [4]:千桌沙卡的這一「界限」曾被普遍相對論大師、讓愛因斯坦一夜成名之愛丁頓爵士(Sir Arthur Eddington)於 1935 年在倫敦皇家天文學社裡公開取笑。千桌沙卡曾經多次表示那是基於種族歧視之故;因此他不喜歡英國,於 1937 年元月移民到美國,終其一生任教於芝加哥大學。
  • [5]「愛因斯坦其實沒那麼神」,泛科學,2016/3/16;「我愛科學」,第 172 頁。
  • [6]「諾貝爾獎和那些被賣掉的獎牌:科學研究背後的名與利」泛科學,2017/12/3。
  • [7]「愛因斯坦的最大錯誤?──宇宙論常數」,科學月刊,2011 年 12 月號;泛科學,2011/12/11;「我愛科學」,第 162 頁。
  • [8]霍金說那全是「報紙的吹噓」過了頭。1990 年他告訴洛杉磯時報謂:「我符合一位傷殘天才的部分:我至少是傷殘⎯⎯雖然我不是像愛因斯坦一樣天才….. 群眾需要英雄,他們將他捧成一位英雄,現在則將我捧成一位英雄⎯⎯雖然我的條件差得遠。」
  • [9]「以太存在與否的爭辯」,科學月刊,2017 年 5 月號;「我愛科學」,第77頁。
  • [10]「對稱與物理」,科學月刊,2010 年 3 月號;「我愛科學」,第 178 頁。「時間的方向性」,科學月刊,2016 年 2 月號;「我愛科學」,第 200 頁。
  • [11]「愛因斯坦的最後一搏── EPR 悖論」,科學月刊,2016 年 5 月號;「我愛科學」,第 72 頁。
  • [12]霍金認為他這次的理論可以實驗證明的,因此如果他的預測對了,他將可得一個諾貝爾獎。如果讀者也想得一個諾貝爾獎,顯然這是一片等待開發的肥沃土地。

參考資料:

  • 《近代宇宙中的空間與時間》,新竹市國興出版社(1981 年)。
  • 我愛科學》,台北市華騰文化有限公司出版(2017 年 12 月)。本書收集了筆者自 1970 年元月到 2017 年八月間在科學月刊及其他雜誌發表過的文章。

  • 可點擊看詳細內容。

文章難易度
賴昭正_96
34 篇文章 ・ 34 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
2

文字

分享

0
1
2
被吸進黑洞會怎樣?黑洞和一般的洞,哪裡不一樣?——《宇宙大哉問》
天下文化_96
・2022/09/24 ・2414字 ・閱讀時間約 5 分鐘

  • 作者/豪爾赫.陳、丹尼爾.懷森
  • 譯者/徐士傑、葉尚倫

如果我被吸進黑洞會怎麼樣?

很多人似乎都有這個疑問。

如果路上突然出現一個黑洞,會發生什麼事?圖/天下文化提供

「進入黑洞後會發生什麼事呢?」在許多科學書籍中都有提到,也是我們聽眾和讀者經常提出的問題。但是為什麼大家對這問題特別有興趣呢?難道公園裡處處都是黑洞?或是有人計畫在黑洞附近野餐,但又擔心放任他們的孩子在旁邊跑來跑去會發生問題?

可能不是。這個問題的吸睛度與實際上會不會發生無關,而是源自我們對迷人太空物體的基本好奇心。眾人皆知,黑洞是神祕莫測的奇怪空間區域,是時空結構中與宇宙實體完全脫節的「空洞」,任何東西都無法逃脫。

不過,掉入黑洞是什麼感覺呢?一定會死嗎?和掉進普通洞裡的感覺有什麼不同?你會在洞內發現宇宙深處的祕密,還是看到時空在你的眼皮子底下伸展開來?在黑洞裡面,眼睛(或大腦)能正常發揮功能嗎?

只有一種方法可以找到答案,那就是跳進黑洞。所以抓起你的野餐墊,和你的孩子說聲再見(也許是永別),然後牢牢抓緊,因為我們即將深入黑洞公園展開終極冒險。

讓我們跳進黑洞尋找答案吧!圖/天下文化提供

接近黑洞

當你接近黑洞時,注意到的第一件事可能是,黑洞確實看起來就像「黑色的洞」。黑洞是絕對黑色,本身完全不發射或反射光線,任何擊中黑洞的光都會被困在裡面。所以當你觀察黑洞時,眼睛看不到任何光子,大腦會將其解釋為黑色。

黑洞也是個不折不扣的洞。你可以將黑洞視為空間球體,任何進入黑洞的東西都會永遠留在裡面。這是因為已經留在黑洞內的東西所造成的重力效應:質量在黑洞中被壓縮得十分密集,進而產生巨大的重力影響。

為什麼?因為離有質量的東西愈近,重力愈強,而質量被壓縮代表你可以十分靠近質量中心。質量很大的東西通常分布得相當分散。以地球為例,地球質量大約與一公分寬(大約一個彈珠大小)的黑洞等同大小。如果你與這個黑洞距離一個地球半徑長,感受到的重力就如同站在地球表面一樣,都是 1g。

如果你與黑洞距離一個地球半徑長,感受到的重力就如同站在地球表面一樣。圖/天下文化提供

但是當你分別接近兩者中心時,會發生截然不同的狀況。當你愈靠近地球中心點,愈感覺不到地球重力。那是因為地球圍繞著你,把你平均的往各個方向拉。相反的,當你離黑洞愈近,感受到的重力愈大,因為整個地球質量近在咫尺的作用在你身上。這就是黑洞強大的威力,超緊緻質量對周圍事物立即產生巨大影響。

當你離地球中心越近,就越感受不到重力,但當你離黑洞中心愈近,感受到的重力卻越大。圖/天下文化提供

真正緊緻的質量會在自身周圍產生極大重力,並且在一定距離處,把空間扭曲到連光都無法逃脫(請記住,重力不僅會拉動物體,還會扭曲空間)。光不能逃脫的臨界點稱為「事件視界」,在「某種程度」上,事件視界定義了黑洞從何處開始,以此距離為半徑的黑色球體則稱為黑洞。

黑洞的大小會隨著擠進多少質量而發生變化。如果你把地球壓縮得足夠小,會得到一個彈珠大小的黑洞,因為在大約一公分距離內,光再也無法逃脫。但是如果你再壓縮更多質量,黑洞半徑就會更大。例如,你把太陽壓縮變小,空間扭曲程度更高,事件視界更遠,大約發生在距離中心點三公里處,因此黑洞寬度約六公里。質量愈大,黑洞愈大。

黑洞的大小會隨著擠進多少質量而發生變化。圖/天下文化提供

其實,黑洞的大小並沒有理論限制。在太空中我們已探測到的黑洞寬度,最小約有二十公里,最大可達數百億公里。實際上,黑洞形成的限制只有周圍環繞物質的多寡,以及所允許的形成時間。

當你接近黑洞時,可能會注意到的第二件事是,黑洞通常不孤單寂寞。有時你會看到周圍東西掉進黑洞。或者更準確的說,你會看到東西在黑洞周圍旋轉等待落入。

這種東西稱為「吸積盤」,是由氣體、塵埃和其他物質組成。這些物質沒有被直接吸入黑洞,而是在軌道上盤旋等待、螺旋進入黑洞。這景象對於小黑洞而言,可能不是那麼令人印象深刻,但如果是超大質量黑洞,確實值得一看。氣體和塵埃以超高速度飛來飛去,產生非常強烈的純粹摩擦力,導致物質被撕裂,釋放出許多能量,創造出宇宙中最強大的光源。這些類恆星(或稱類星體)的亮度,有時比單個星系中所有恆星的亮度總和還要高數千倍。

超大質量黑洞能釋放出許多能量,創造出宇宙中最強大的光源。圖/天下文化提供

幸運的是,並不是所有黑洞,甚至是超大質量黑洞,都會形成類星體(或耀星體,就此而言,像是吃了類固醇的類星體)。大多數時候,吸積盤並沒有合適的東西或條件來創造如此戲劇化的場景。這也算是一樁美事,否則的話,你一靠近活動劇烈的類星體,可能會讓你在瞥見黑洞之前就氣化了。希望你選擇落入的黑洞周圍有個漂亮的、相對平靜的吸積盤,讓你有機會接近並好好欣賞。

——本文摘自《宇宙大哉問:20個困惑人類的問題與解答》,2022 年 8 月,天下文化,未經同意請勿轉載。

天下文化_96
110 篇文章 ・ 597 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

2
1

文字

分享

0
2
1
一張花了五年的照片:從觀測到成像,重建銀河系中心黑洞影像
研之有物│中央研究院_96
・2022/08/14 ・4831字 ・閱讀時間約 10 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/歐柏昇
  • 美術設計/蔡宛潔

訪問事件視界望遠鏡計畫成員

事件視界望遠鏡(EHT)2022 年 5 月公布人馬座 A 星(Sagittarius A*, Sgr A*)的黑洞照片,終於揭開銀河系中心超大質量黑洞的面紗。黑洞觀測仰賴特長基線干涉技術(VLBI, Very-long-baseline interferometry),從硬體設備的建造到成像工作,每一步驟都大有學問。中央研究院「研之有物」專訪院內天文及天文物理研究所副研究員淺田圭一,他直接參與了本次黑洞影像的工程,以下讓我們一起深入瞭解!

淺田圭一副研究員向研之有物團隊解說黑洞影像的處理細節。圖/研之有物

首先介紹淺田圭一(Keiichi Asada)副研究員,他是事件視界望遠鏡計畫的成員,2009 年延攬來臺灣中研院天文所,從事次毫米波段的 VLBI 研究。

淺田圭一對於 EHT 陣列的格陵蘭望遠鏡(GLT)貢獻良多,完整參與了 GLT 望遠鏡的選址與建造,目前他在計畫中負責管理黑洞觀測。此外,淺田圭一也是人馬座 A 星成像團隊的一員,因此對於影像處理的細節相當瞭解,我們將透過訪問,逐漸揭開銀河系中心黑洞照片背後的秘密。

人馬座 A 星是銀河系中央的超大質量黑洞,事件視界望遠鏡合作團隊成功重建此黑洞的影像。圖/ESO

會隨著時間改變結構的銀河系黑洞:人馬座 A 星

早在 2017 年,事件視界望遠鏡就同時完成 M87 和人馬座 A 星兩個黑洞的觀測。為何 M87 黑洞影像在 2019 年就公布,然而人馬座 A 星卻要多等三年呢?

淺田圭一說,研究團隊在 2018 年取得數據的時候,很快就發現 M87 的數據處理容易得多。人馬座 A 星的成像之所以困難,其中有個關鍵因素,是它的周圍結構隨著時間變化非常迅速。

電波干涉儀觀測的原理,是利用望遠鏡之間兩兩一組構成的「基線(baseline)」,測量訊號抵達的時間差,來建構出天體的長相。觀測的時候,每條基線可填入一個資料點。由於地球會自轉,隨著時間的推移,望遠鏡以不同角度接收天體訊號,資料點也愈來愈多,就像是相機長曝光一樣,可以填入愈來愈多的資訊,提高影像品質。

淺田圭一解釋,長曝光的時候目標不應該移動;如果曝光過程中,觀測目標變化很大,就會很難成像,而人馬座 A 星就是這種情況。

淺田圭一說明,同一個天體的訊號,會在不同時間分別抵達兩個測站,而此時間差可用來還原天體的樣貌。圖/研之有物

一張花費五年的照片,科學家在做什麼?

這張黑洞影像的產生耗費了五年,是個浩大的工程。淺田圭一說明,從觀測到產出這張照片,共歷經四個階段的主要任務:觀測(observation)、訊號相關(correlation)、校準(calibration)、成像(imaging)。

黑洞影像的產生流程,大致分為觀測、訊號相關、校準和成像四個階段。圖/研之有物

觀測(observation)

2017 年,八座望遠鏡共同完成了人馬座 A 星的觀測,而中研院參與了其中三座望遠鏡的建造與營運。

觀測的時候,望遠鏡接收宇宙中傳來的電磁波,轉換為數位訊號(00、01、10、11),記錄在硬碟中。由於事件視界望遠鏡的各個測站距離遙遠,必須先分別將數據儲存下來,用飛機運送到美國麻省理工學院(MIT)和德國馬克斯·普朗克研究所(Max Planck Institutes)。這兩個機構擁有超級電腦,可進行下一步的運算。

為何要用飛機傳送數據呢?淺田圭一開玩笑說:「當然也可以用船!」真正的原因是黑洞的觀測資料非常龐大,每座望遠鏡每秒可生成 4 GB 的資料,一次觀測的資料總量高達 5 PB。加上有些測站地理位置偏遠,網路傳輸非常不便。例如其中一個測站是南極望遠鏡,只有非常慢的衛星網路,於是這麼龐大的資料只能靠飛機實體傳輸。

黑洞觀測的龐大數據儲存在氦氣填充硬碟(helium-filled hard disk drives; HDDs)內。圖/淺田圭一

訊號相關(correlation)

研究機構收到飛機運來的硬碟之後,利用超級電腦進行「訊號相關」的步驟。電波干涉需要計算多組望遠鏡之間接收訊號的時間差,因而需把來自各地的數據關聯在一起。

這個步驟在 2018 年完成,大約花了一年時間。淺田圭一說,研究團隊不希望有任何錯誤,所以每個步驟都很仔細檢查,不斷發現問題,又回去修正,因此耗費很多時間。

校準(calibration)與成像(imaging)

完成訊號相關之後,還需要校準,將原始數據轉換為能量的物理單位。研究團隊使用兩種不同的指令流程來校準(註1),確認結果一致。

電波干涉儀所測得的數據,並不是直接的「照片」,而是影像經由傅立葉轉換後的結果。下圖稱為 uv 平面(uv plane),用來表達電波天文影像經傅立葉轉換後的空間。

若要直接解出影像,電波觀測的數據需要完全填滿 uv 平面,但是現實中無法做到,只能盡可能取得 uv 平面上的資訊,進而根據既有資料,運用模擬來還原影像。總之,成像是個需要技巧的艱難任務。

uv 平面是指電波天文影像經傅立葉轉換後的空間,上圖為銀河系中心黑洞影像的觀測結果。uv 平面上一個資料點,表示一條基線(望遠鏡兩兩一組的連線)所觀測到的數據。用不同顏色來表示不同望遠鏡組別的基線,並且隨著地球自轉,各條基線在 uv 平面上的覆蓋範圍也越多。天文學家需要有足夠的 uv 覆蓋範圍,才能妥善地還原天體的影像。圖/事件視界望遠鏡合作團隊

重建黑洞影像:步驟複雜的艱難任務

淺田圭一說明,重建影像的方法很多,並且有眾多參數可調整。以 VLBI 觀測黑洞,uv 平面的數據肯定無法收滿,故一開始的觀測數據可產生非常多種影像,其中有些是環狀,有些是點狀。面對這麼多種可能性,科學家如何理出頭緒?

成像工作的重點,在於有技巧的「逆推」。為了找出 uv 數據和黑洞影像的相關性,要先「訓練」一個優秀的影像重建模型。訓練模型要先找出優良的參數,使得影像和數據結果最吻合,尋找優良參數需要依靠電腦模擬,從假設的幾何結構產生假想的數據。

在分析真實數據之前,研究團隊先拿電腦生成的假想數據來「訓練」重建影像的程式。這個「訓練」過程會嘗試非常多的參數組合,並檢驗程式生成的影像是否符合原先假設的幾何結構,藉此挑選出一些優良的參數組合。

找出優良的參數之後,再將這些參數套用在真實觀測數據上,開始重建真實的黑洞影像。

研究團隊假設黑洞有環狀、盤狀、點狀等不同幾何結構,運用電腦生成假想的觀測數據,藉這些數據訓練成像的程式,找出優良的參數。圖/事件視界望遠鏡合作團隊

經由模擬找出的優良參數仍然不只一組,於是就有許多種和觀測數據吻合的影像。研究團隊並不是從中挑出唯一的影像,而是根據結構形狀把影像分為四種類型,並且取平均,得到最終公諸於世的那一張黑洞影像。

與數據吻合的銀河系中心黑洞影像數量繁多,研究團隊將最貼近觀測數據的影像分成四種類型。圖/EHT
圖為銀河系中心黑洞影像,最終的黑洞影像是多種影像平均後的結果。四種類型影像旁的長條圖,代表該類型在所有優良參數影像中所佔的比例。圖/事件視界望遠鏡合作團隊

由於成像並非直觀的過程,所以科學家們各有不同的想法來成像。淺田圭一說,大家都知道成像很困難,雖然本質是國際合作,但是想法本身都是來自個人,所以這項任務也像是國際競爭,看誰能找出最好的解法。

2018 年取得數據之後,科學家嘗試很多方法來成像。大約在 2019 年底,就產生和最終結果多少相似的影像,但是研究團隊沒有十足把握,所以繼續微調、反覆確認,直到今(2022)年初,才終於得到有把握的黑洞影像。

對於事件視界望遠鏡的團隊而言,這幾年是個辛苦的歷程。他們每週都有橫跨亞洲、歐洲、美洲的線上國際會議,為了配合所有國家的時區,會議時間通常都在亞洲的晚上。淺田圭一說,對於年輕同事真是感到抱歉,他們週五晚上經常無法去放鬆 Happy,必須參與國際會議。

黑洞影像的背後,除了眾人之力,還需要先進的儀器

黑洞照片的產出仰賴眾多科技。除了軟體技術之外,若沒有先進的硬體設備,如此精密的觀測無法完成。淺田圭一認為,中研院在黑洞觀測的硬體設備上有兩大貢獻:

第一是數位轉換器(digitizer)。望遠鏡接收到的電磁波,需轉成數位訊號,才能進行下一步的數據處理。所有測站的數位轉換器都是由中研院完成,幕後功臣是天文所的江宏明研究技師。

第二是位於智利的阿塔卡瑪大型毫米及次毫米波陣列(ALMA)。事件視界望遠鏡大部分的靈敏度都來自 ALMA,遠遠超過其他望遠鏡。

ALMA 本身是個由數十座望遠鏡構成的干涉儀,但是黑洞觀測要把 ALMA 當作單一的一座望遠鏡,和其他測站共同組成更大的干涉儀。欲達成此目標,需要添加特殊功能,確保 ALMA 內部每一個望遠鏡所接收的電磁波對齊。這就是國際合作的 ALMA Phasing Project 的任務,早在事件視界望遠鏡合作團隊組成之前,中研院天文所就參與了這個計畫。

由於電波干涉儀的基本原理,是運用各個測站訊號抵達的時間差,來還原天體影像,因此需要非常精確地測定時間。事件視界望遠鏡的同步器(synchronizer)是運用氫邁射(hydrogen maser)的原子鐘,每秒鐘具有 10-13 的精確度,各個測站都需要裝設此配備。

原子鐘需要放置在很穩定的溫度和磁場下,以及無震動的環境中。氫邁射原子鐘的外面需要包裹三層的容器,確保設備高度穩定。事件視界望遠鏡的每個測站,都有專門放置原子鐘的位置。淺田圭一笑著說:電波望遠鏡放置原子鐘的房間裡有張椅子,那是他最喜歡的工作地點,因為最不容易受到干擾!

事件視界望遠鏡各個測站以原子鐘測定時間。原子鐘(粉色箱子處)受到層層保護,放置在高度穩定、不受干擾的環境中。圖片為技術人員與 ALMA 陣列操作場地的原子鐘合影。圖/ALMA

黑洞影像是眾多科學家協力完成的鉅作。精密硬體設備的每個部分,都是黑洞觀測不可或缺的利器。人馬座 A 星黑洞觀測完成之後,數據分析的工作也相當艱辛,耗費五年的時間才成功重建影像。一張「黑洞照」,絕不是曝光之後就會自動跑出來,而是集合眾人之力,以嚴密科學方法達到的成就。

註解

註 1:EHT 研究團隊使用兩套指令流程來校正數據:the CASA-based rPICARD pipeline、the HOPS-based EHT-HOPS pipeline

延伸閱讀

研之有物│中央研究院_96
253 篇文章 ・ 2195 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
2

文字

分享

0
1
2
你想知道的黑洞 QA 大集結:為什麼拍到銀河系中心的黑洞很重要?如何能看到黑洞?
研之有物│中央研究院_96
・2022/08/13 ・6097字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/簡克志
  • 美術設計/蔡宛潔

有限的資源,不可能的任務

2022 年 5 月 12 日是個大日子,這天人類終於獲得了第二顆黑洞的觀測影像!這顆黑洞稱為人馬座 A 星(Sagittarius A*, Sgr A*),它就位於我們銀河系家園的中心。為了成功拍到 Sgr A* ,天文學家必須克服重重困難,包含黑洞周圍的環繞物質變動太快,或是宇宙塵埃與星雲的雜訊干擾等。不過,黑洞和我們日常生活有關嗎?為什麼看見黑洞這麼重要?科學家又是如何找到這顆黑洞呢?中央研究院「研之有物」專訪院內天文及天文物理研究所通信研究員賀曾樸院士,請他解答我們對於黑洞的各種好奇!

中研院天文所通信研究員賀曾樸院士,曾擔任中研院天文所所長 10 年,至今仍持續推動天文學進展,積極提攜後進。圖/研之有物

仰望銀河系的中心:一個超大質量的緻密天體

天文學家很早就開始有系統地觀察銀河系中心的電波訊號。在 1933 年 Karl Jansky 透過他架設的天線裝置,首次記錄到位於人馬座的銀河系中心有 20 MHz 的未知電波發射源。因此,後續的電波天文學研究,對於銀河系中心一直很感興趣,並且把這個電波源稱為人馬座 A 星(Sagittarius A*, Sgr A*)。

賀院士在訪談中提到,中研院天文所的前籌備處主任(所長)魯國鏞院士,在 1985 年讀博士時,對銀河系中心電波源做了最早的干涉儀測量,當時魯院士推測這個來源可能是個大質量黑洞。

接著 1992 年開始,兩位天文學家 Andrea Ghez 和 Reinhard Genzel,利用先進干涉儀器觀測銀河系中心周圍的恆星運動長達 20 多年,他們發現這些恆星的橢圓軌道似乎都圍繞著一個共同的焦點(如下圖)。

試問宇宙中有「誰」重力這麼大、空間範圍卻又這麼小呢?超大質量黑洞是最合理的解釋。這也讓 Ghez 和 Genzel 獲得 2020 年諾貝爾物理獎的榮耀,原因是「發現銀河系中心是一個超大質量的緻密天體」;另一位得獎主是 Roger Penrose,原因是「證明廣義相對論能夠可靠地預測黑洞的形成」。

天文學家 Andrea Ghez 和 Reinhard Genzel,利用先進干涉儀器觀測銀河系中心的恆星運動長達 20 多年,他們發現這些恆星的橢圓軌道都圍繞著一個共同的焦點,超大質量黑洞是最合理的解釋。資料來源/UCLA Galactic Center Group

至此,科學家已經得知銀河系中心黑洞可能存在,接下來就需要找到黑洞存在的直接證據:看見黑洞。

事件視界望遠鏡(Event Horizon Telescope, EHT)聯盟於 2017 年創立,串連全世界研究人員一同構建出足以觀測黑洞的電波望遠鏡陣列,同年(2017)完成兩個超大質量黑洞的初步觀測——銀河系中心黑洞 Sgr A* 與 M87 星系中心黑洞,當時有 8 座電波望遠鏡一同貢獻解析力,中研院就參與了 3 座望遠鏡(SMA、JCMT、ALMA)的研發、建造與運作。

2019 年 4 月 10 日,人類獲得了史上第一張黑洞的照片!首次看見 M87 星系中心的超大質量黑洞,有明確的中心陰影和周圍明亮的環狀結構。

2022 年 5 月 12 日,我們終於揭開銀河系中心黑洞的秘密,獲得人馬座 A 星的直接影像證據,這是我們可觀察到距離最近的黑洞,也是目前唯二能夠觀測到的黑洞!

銀河系中心的黑洞影像,又稱為人馬座 A 星(Sgr A*)。資料來源/EHT

質量高達太陽的 4 百萬倍?銀河系「小」巨獸,人馬座 A 星

人馬座 A 星(Sgr A*)就像一隻「小」巨獸,說它巨,是因為 Sgr A* 的陰影直徑為太陽的 43 倍,質量高達太陽的 4 百萬倍,這是住在地球的我們難以想像的。不過和 M87 黑洞一比,Sgr A* 又顯得很「小」,因為 M87 黑洞陰影直徑為 Sgr A* 的 2,000 倍,質量是 Sgr A* 的 2,000 倍!(如下圖)。

人馬座 A 星(Sgr A*)和 M87 黑洞的大小比較,M87 黑洞直徑是 Sgr A* 的 2,000 倍,質量也是 Sgr A* 的 2,000 倍。資料來源/中研院天文所

奇妙的是,如果從地球上觀測人馬座 A 星和 M87 黑洞,兩個黑洞看起來會差不多大!Why?這是因為人馬座 A 星距離地球的距離,又比 M87 黑洞近了約 2,000 倍。從地球上看這兩個黑洞,剛好在天空形成一樣大的張角[註 1]

從圖片可以看到,人馬座 A 星和 M87 黑洞的結構很類似,周圍都有發光的環狀結構(吸積盤)、中心陰影也都很明顯。不過,要如何在地球上看見黑洞呢?

首先,不能用光學望遠鏡,必須使用電波望遠鏡看黑洞。電波和可見光的主要差別是波長,可見光的波長平均 0.5 微米左右,EHT 的電波望遠鏡觀測波長則約 1 毫米,兩者大約相差 2,000 倍。

賀院士強調,為了接收到遙遠星系的訊號,必須選擇不受塵埃影響的波長,電波的波長比灰塵要大得多,因此可以穿透塵埃,收到來自銀河系中心的訊號。反之,可見光很容易就會被塵埃擋住。

為了接收到遙遠星系的訊號,必須選擇不受塵埃影響的波長,電波的波長比灰塵要大得多,因此可以穿透塵埃,收到來自銀河系中心的訊號。資料來源/EHT、中研院天文所

不過,就算是銀河系中心,還是離我們很遠,要如何看得清楚?

賀院士說,波長和電波望遠鏡的「視力」(角解析度)有關,波長愈小、角解析度越好。因此波長也不能太大,否則會導致最終影像解析度不足,並影響天線精確度。

在技術和建置成本考量下, EHT 選擇次毫米波波長(0.5 毫米~1 毫米),1 毫米是目前最適合的觀測波長,可輸出黑洞影像解析度 3*3 像素。

咦?圖片解析度只有 3*3 像素?其實電波望遠鏡的「視力」(角解析度)已經非常高!這次觀測到人馬座 A 星的陰影直徑張角約 50 微角秒,是天空張角一度的一億分之一,相當於從地球看月球上一塊甜甜圈的大小。未來,EHT 觀測波長將使用 0.5 毫米(660 GHz)來獲得更高解析度,預計可達 15*15 像素。

未來在格陵蘭望遠鏡(GLT)和高頻觀測的技術支援下,黑洞照片解析度可望提升到 15×15 像素,圖片中為 M87 黑洞。資料來源/研之有物

除了波長之外,電波望遠鏡口徑也是影響角解析度的因子,口徑越大、角解析度越好。但是我們不可能做出和地球一樣大的望遠鏡,為了讓地表有限的電波望遠鏡模擬出巨大望遠鏡的效果,必須使用特長基線干涉(Very-long-baseline interferometry, VLBI)技術,讓不可能化為可能。

VLBI 技術採用口徑合成(Aperture synthesis)的方式,當地球自轉時,地表上的望遠鏡可以在不同時間逐漸涵蓋訊號接收範圍,目的是讓世界各地的 EHT 望遠鏡陣列產生等同於地球直徑般的巨大望遠鏡效果,請參考以下影片。

事件視界望遠鏡協作方式。資料來源/中研院天文所、EHT

這意味著我們要從有限的視野去看黑洞,因此科學家使用原子鐘、同步器來確保每個望遠鏡的訊號同步,每個望遠鏡內有超導體接收器來準確接收訊號,因為電波訊號溫度相當低(僅 3K)。最關鍵的是,研究人員要非常瞭解可能產生的偏誤,例如地球自轉、大氣層影響、星際散射等,逐步修正數據。

特別是銀河系中心黑洞 Sgr A*,除了要排除眾多塵埃和星雲的干擾之外,由於 Sgr A* 距離地球較近,尺寸又小,所以周圍物質繞一圈的時間比 M87 黑洞快很多,地球自轉速度跟不上。因此,當我們在地表使用 VLBI 技術去觀測 Sgr A* 時,就好像在拍一隻不斷快速追著尾巴跑的狗狗,增加了影像分析的困難。

目前天文學家已經有一套成熟的除錯方法,將混亂的原始資料校正梳理成我們看到的黑洞影像。2017 年收到初步觀測數據之後,研究團隊需要排除眾多干擾和錯誤訊號,因此直到 2022 年才能正式公開影像。本次取得的銀河系中心黑洞影像,無疑將人類對黑洞的認知更往前推進。

有關黑洞的 QA 集結!

接下來,「研之有物」編輯團隊為讀者收集了一些有趣的問題,一起來看賀院士如何回答吧!

為什麼拍到黑洞很重要?科學家為何高度關注?

黑洞是宇宙中重力最強的地方,在事件視界之內,光和資訊都無法逃脫,我們如果可以拍到想像中「看不到」的黑洞將會非常有趣。

2022 年的人馬座 A 星和 2019 年的 M87 黑洞都屬於超大質量黑洞,也就是質量有太陽的幾十萬到幾十億倍以上。這類黑洞存在各個星系中心,我們目前還不知道這類黑洞如何形成,因此需要更多黑洞影像的直接證據做確認,例如溫度多高、密度多少等。

從理論上來看,黑洞的觀測證據也有助於我們驗證愛因斯坦的相對論是否正確。

為什麼目前只拍到兩個黑洞?其他黑洞呢?

因為宇宙中很多小型的黑洞還無法觀測到,以目前 EHT 的角解析度來說,我們可以拍到最大的黑洞是 M87 黑洞,最近的黑洞是人馬座 A 星。在未來 10 年內,當提高角解析度時,將能夠捕捉到其他星系中的超大質量黑洞照片。

為什麼每個星系中心都會有一個超大質量黑洞呢?

天文學家還不知道這種超大質量黑洞如何形成,以及為什麼會位於星系的中心。目前只知道,超大質量黑洞位於每個星系重力位能井的中心。然而,超大質量黑洞有可能在宇宙誕生初期就已經形成,成為星系生成的「種子」。

天文學家如何定位銀河系的中心?

因為在一個星系中,所有恆星都會圍繞著星系的中心旋轉,就像我們太陽系的行星也會繞著太陽旋轉一樣。因此,我們可以從旋轉運動去找到銀河系最中心的位置。獲得諾貝爾物理獎的 Genzel 和 Ghez,他們就是去觀測銀河系中心附近快速旋轉的恆星,精準確認位於軌道焦點的超大質量緻密天體(也就是黑洞)之位置。

為什麼銀河系中心的黑洞會有三個特別亮的區域?為何 M87 黑洞周圍沒有這三個亮區呢?

人馬座 A 星周圍環狀結構的三個亮點,可能與周圍物質快速旋轉的擾動有關。這些亮點存在的時間尺度約在數分鐘至數小時,我們的觀測解析度可以捕捉到這些變化。而 M87 黑洞的環狀結構,也有可能存在這些亮點,但是 M87 黑洞構造的時間變化尺度更長,我們目前的觀測解析度還無法看到。

為什麼觀測銀河系中心黑洞和 M87 黑洞時,黑洞的旋轉軸都是對著地球呢?

黑洞的旋轉軸是由黑洞在形成過程中所累積的總角動量來決定。因此,黑洞轉軸可以是任意方向,取決於這顆黑洞過去的歷史。不過,因為黑洞旋轉軸剛好和我們的視線垂直的機率很低,因此我們很可能總是看到黑洞旋轉軸以某種角度指向地球。

黑洞影像是人去上色的,為什麼選溫潤的紅橘色而不是藍色呢?

因為幾乎所有的天文數據都是用可見光以外的波長去取得,所以儀器收集到的光其實人眼並不可見。在 EHT 計畫中,我們看到的是次毫米波長的光(波長約 1mm),天文學家使用具有代表性的顏色為圖像「上色」。

使用紅橘色來表示黑洞環狀結構,是為了傳達一個概念:環的溫度非常高,黑洞周圍的吸積物質溫度比太陽熱得多。雖然在天文學上藍色天體溫度更高,但我們採用一般大眾熟知的「紅 = 熱」的概念。

黑洞的「背面」看起來會如何?會和目前照片類似嗎?

從宇宙的另一端,我們也會看到環狀結構,因為黑洞中心強大的重力場,會讓光線像穿過「透鏡」一般產生彎曲,這就是「重力透鏡效應」。

然而,從背面觀測還是有不太一樣的地方。以 M87 黑洞為例,從地球看過去,黑洞環比較亮的底部區域,是由都卜勒加速(Doppler boosting)造成,環的亮部正在向觀察者移動。

反之,如果從 M87 黑洞的「背面」看過去,環的底部區域將遠離觀察者,頂部區域會向觀察者移動,因此黑洞「背面」的觀察者將看到環的頂部區域特別亮。

黑洞會吸收能量和排放能量嗎?吸收的量是否等同排放的量?

無論是愛因斯坦的理論預測和觀測結果都指出,在黑洞陰影內的所有輻射,都將向黑洞中心彎曲,黑洞陰影的邊界約為事件視界的 2.5 倍大。

所謂事件視界,就是所有光和物質都被黑洞吸進去的邊界,光和物質的能量會被黑洞吸收。在事件視界和陰影邊界的中間地帶,光和物質則被黑洞「捕捉」在一個緊密的軌道上。在陰影之外,光和物質才得以逃脫。

因此實際上,黑洞只會吸收輻射,不會放出輻射[註 2]。我們看到的輻射(光環),以及看不到的輻射(被黑洞吸入事件視界),這些輻射都來自黑洞周圍的吸積物質。

黑洞和人類的生活有什麼關係呢?(比如太陽、月亮就影響地球人類的生活:潮汐、晝夜等)

黑洞都離地球相當遠,作為恆星終結狀態的小黑洞亦然。因此黑洞透過輻射或重力對地球的影響,與太陽相比之下幾乎可以省略不計。然而,也正是人馬座 A 星的超大質量,讓銀河系盤面上的恆星都繞著銀河系旋轉,公轉一圈約需 2 億年。因此,我們在地球天空看到的恆星和星系也是在這個時間尺度內不斷變化。

另外,在純理論考量之下,如果人類可以利用物質落入黑洞周圍吸積盤所釋放的能量,將會比核能發電更有效率。這是因為釋放的能量接近於物質的質量當量,而來自核分裂或核融合的核能僅釋放出質量當量的很小一部分。雖然現在聽起來有點科幻,但是當年瑪麗居禮(Marie Curie)首度發現放射性材料之後,人類其實很快就能夠製造出核反應爐。

註解

  • 註 1:因此,雖然 Sgr A* 黑洞比 M87 黑洞距離地球還要近,但是因為直徑也更小,故兩者最終圖片解析度都是 3*3 像素。
  • 註 2:理論上,黑洞會釋放相當微弱的「霍金輻射」(Hawking radiation),但過程會非常非常緩慢。目前天文學家尚未觀測到霍金輻射。

延伸閱讀

研之有物│中央研究院_96
253 篇文章 ・ 2195 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook