二○一三年,「去滅絕」觀念在集結分子生物學者、環保主義者與記者的 TED x 去滅絕研討會上廣受接納,與會者討論了讓長毛象、袋狼(Tasmanian tiger)等物種起死回生的可能性。布蘭特在會上發表了一場引人深思的演說,論及生物多樣性的喪失,以及利用丘奇的科技再次賦予滅絕動物生命的機會。他藉著研討會與 TED 平臺推出「基因重現及復原計畫」(Revive and Restore),旨在調查生物滅絕的原因、保存生物學與遺傳上的多樣性,並且應用生物科技修復我們的生態系統。
布蘭特的 TED 演講大受好評,同時卻也令許多人又驚又怒,一些科學家、環保主義者聽到布蘭特想讓滅絕已久的生物死而復生,不禁感到十分驚恐。這可不僅是複製現存的動物那麼簡單——也不是在複製曾經生存在地球上的動物——而是模糊了現存與滅絕動物之間原本分明的壁壘。況且,丘奇也表明自己不僅對長毛象與鴿子感興趣,還想拿尼安德塔人(Neanderthal)的 DNA 來做實驗——他不僅想復活其他動物,甚至想改良人類。
你也許和過去的科學家一樣,認為尼安德塔人是原始的次人類物種,基本上就是粗獷、野蠻版的人類。不過從近期的研究看來,尼安德塔人其實十分聰明,他們不僅建造了有組織的文明,以物種而言也十分成功,存活了二十五萬年。(作為對比,研究者認為最古老的智人〔Homo sapiens〕生存於三十萬年前的地球。)尼安德塔人的身體能有效保溫,因此能在嚴酷的環境生存,而且他們非常強壯——這部分倒是符合人們對他們的刻板印象——卻也擁有良好的精細肌動技能(fine motor skills),能夠做到精細的動作。若製作智人與尼安德塔人(Homo neanderthalensis)的雜交種,或許就能創造較健壯的人類物種,這種新尼安德塔人可能可以面對現代的氣候變遷難題與極端天氣事件,也比較有可能在遷徙至全新環境時存活下來。
目前已經有人定序歐洲與亞洲出土的幾組尼安德塔人化石基因體,接下來科學家便能小片段分析與合成此基因體,在人類幹細胞中拼組出正確的尼安德塔人 DNA 序列,如此一來,理論上就能做出尼安德塔人複製體了。我們來聽聽丘奇的說明吧:
你也許會覺得混合尼安德塔人與智人基因並讓代理孕母生下這樣的融合生物,聽起來完全就是恐怖片或反烏托邦科幻小說的劇情——沒錯,許多虛構作品的確探討了類似的議題,而在大部分故事中,人類試圖改變上帝偉大的計畫時,往往會招致災難。這類作品包括:H.G.威爾斯(H. G. Wells)的《攔截人魔島》(The Island of Dr. Moreau,一八九六)、阿道斯.赫胥黎(Aldous Huxley)的《美麗新世界》(Brave New World,一九三一)、法蘭克.赫伯特(Frank Herbert)的《沙丘》(Dune,一九六五)、娥蘇拉.勒瑰恩(Ursula Le Guin)的《黑暗的左手》(The Left Hand of Darkness,一九六九)、南希.克雷斯(Nancy Kress)的《西班牙乞丐》(Beggars in Spain,一九九一),以及理查.摩根(Richard Morgan)的《碳變》(Altered Carbon,二○○二)。這同時也是《星艦迷航記》(Star Trek)與漫威(Marvel)X戰警(X-Men)系列頻頻討論的議題,後者的反派角色萬磁王(Magneto)甚至打算「讓智人臣服於變種人!」。
桃莉羊成功複製出來時,全球各地無數人召開了緊急會議與記者會,幾乎無人注意到桃莉羊計畫明文道出的宗旨:增進我們對生物發育過程中細胞變化的瞭解。人們迅速做出了極端負面的反應,密蘇里大學聖路易斯分校(University of Missouri in St. Louis)醫學倫理學者隆納.孟松(Ronald Munson)博士對《紐約時報》表示:「精靈已經從神燈裡放出來了。」他接著質問道:下一步會是什麼,難道要用十字架上的一滴血把耶穌基督也複製出來?波士頓大學(Boston University)公共衛生學院公衛法律系主任喬治.安納斯(George Annas)教授也對生物學與遺傳學界表示譴責。「正確的反應該是驚恐才對。」他說道,並聲稱按邏輯推演,下一步想必就是複製人類了。「父母並沒有權利收集孩子的細胞,做出那個孩子的複製品。大眾對於複製人的反對聲浪是對的。」蘇格蘭教會甚至正式頒布教令,要求聯合國通過具約束力的禁令,禁止複製生物行為。該教會引用《舊約》的《耶利米書》(Jeremiah)1:4-5,表明人類不可取代上帝:「耶和華……〔說〕:『我未將你造在腹中,我已曉得你;你未出母胎,我已分別你為聖。』」美國總統比爾.柯林頓特地舉辦一場活動並安排電視轉播,在活動上宣布禁止聯邦政府提供經費給任何複製人類相關的研究計畫。
中村友輝表示,「我們注意到植物的 FT 蛋白質 3D 結構,跟人體中與脂質結合的蛋白質很像,這個蛋白質是磷脂醯乙醇胺(Phosphatidylethanolamine-binding protein,簡稱 PEBP 蛋白質)。雖然 FT 位在植物、PEBP 位在人體,但兩者構造相當相似。我們心想,既然人體的 PEBP 蛋白質可以跟磷脂質結合,植物的 FT 蛋白質是不是也能跟 PC 結合呢?PC 會不會跟調控開花有關? 」
脂質真的會影響開花嗎?用代謝切換工程實驗看看!
為了證實這個推測,研究團隊開始進行各種實驗,透過代謝切換工程去調控植物體內的 PC 磷脂質含量,觀察當 PC 變多或變少時,會如何影響 FT 蛋白質的功能,以及開花速度會變快或變慢。
具體應該怎麼做呢?首先要有關鍵酵素「PECT」,只要抑制 PECT 的合成,就會連帶減少 PC 的合成量,進而觀察對 FT 蛋白質的影響。目前是以人工方式製作一段 amiRNA(Artificial microRNA,人工微型核酸),送進植物體內後,它能跟 PECT 的 mRNA 互補並結合,導致 PECT 無法合成。
-----廣告,請繼續往下閱讀-----
另一個方法是使用人工合成的啟動子(promoter,簡稱 p),啟動子是一段能讓特定基因進行轉錄的核酸片段。不同啟動子的功能不太一樣,例如啟動子 pFD,只有在頂芽裡才會驅動 FT 蛋白質合成;還有啟動子 pSUC2(Sucrose Transport 2),只在葉子維管束伴細胞(Vascular companion cells)裡才會驅動 FT 蛋白質合成,它專門跟一種藥物結合,實驗時可以透過藥物來控制。
團隊透過上述這些方法來控制 FT 蛋白質只在特定器官產生,再調控 PC 磷脂質含量增加或減少,藉此觀察脂質對開花的影響。
結果發現,如果在頂芽處讓 PC 磷脂質增加的話,的確可以促使開花。
此外,還發現 PC 構造會隨日夜變化,白天時,PC 磷脂質主要是飽和脂肪酸,容易和 FT 蛋白質結合,促進開花;晚上時,PC 磷脂質主要是不飽和脂肪酸,難與 FT 蛋白質結合,不促進開花,開花時間延遲。
-----廣告,請繼續往下閱讀-----
至於團隊有實際拍到 FT 蛋白質和磷脂質結合的模樣嗎?中村友輝說:「我們目前是用電腦模擬的方式,將 FT 蛋白質和磷脂質兩個分子的 3D 模型放在一起比對、計算,得知兩者最可能的結合方式。之前有嘗試用冷凍式電子顯微鏡(Cryo-electron microscopy)拍攝,但可能是 FT 蛋白質本身太小,沒有成功 ,希望未來有機會。」
這篇論文於 2014 年刊登於「自然通訊」(Nature Communications)期刊,之後陸續有些科學家也在研究脂質對開花的影響,有的發現在維管束的脂質也會影響 FT 蛋白質傳送,有的發現水稻的開花素運作模式,跟本次實驗所用的模式植物阿拉伯芥類似。