0

0
0

文字

分享

0
0
0

「黃金接觸」使低溫石墨烯製造成真

only-perception
・2011/10/15 ・1281字 ・閱讀時間約 2 分鐘 ・SR值 583 ・九年級

-----廣告,請繼續往下閱讀-----

研究者開創出一種方法,不到正常溫度的一半,就能夠製造出高品質的石墨烯。

這種技術為石墨烯的使用開啟了新的良機。石墨烯已被廣泛視為一種有潛力的 21 世紀神奇物質。

來自劍橋大學工程系的研究者,添加非常少量的金到生長石墨烯的鎳薄膜表面。所產生的合金,使他們能在攝氏 450 度的溫度下生長石墨烯,相較之下,正常溫度為攝氏 1000 度。

該團隊,由該系 Hofmann 研究小組中的 Robert Weatherup 與 Bernhard Bayer 所領導,也能找到更多石墨烯如何在此過程中形成的相關資訊。

-----廣告,請繼續往下閱讀-----

“只要我們發展出石墨烯如何生長的圖像時,我們就能夠開始調整生長並以合理的方式修改催化劑 — 鎳 — 以改善它,” Weatherup 說。”從科學的觀點來看,理解這件事很有趣,不過利用這項知識來改善生長過程則已是我們研究中真正有用的結果。”

石墨烯是一種非常薄的物質 — 基本上只有二維存在。那由單個原子厚的碳原子薄片構成,以六角形晶格的方式排列。

使科學家感到振奮的是其一系列優異特性。石墨烯非常強健、透明且具高傳導性。這意味著其能為各種應用所用,包括能被使用者穿戴的彈性(可撓式)電子產品、快速寬頻、高效能運算以及飛機和其他機器的輕量化元件。

為了要使這些可能性當中的任一種被實現,需要一種可靠的方法來製造高品質的石墨烯。迄今最佳選項涉及使用化學氣相沈積(CVD)的科學家。在此過程中,一張催化劑薄膜 — 在某些例子中是鎳,其他則是銅 — 於高溫下,暴露在含碳氣體中。石墨烯接著會在薄膜表面組裝。

-----廣告,請繼續往下閱讀-----

到目前為止,需要大約攝氏 1000 度的溫度使石墨烯生長。這產生一個問題,因為高生長溫度將嚴重損壞許多通常用於製造電子裝置的材料,這表示石墨烯無法直接與將被用在電子產品的電路整合。

Weatherup 與 Bayer 在鎳薄膜上用了少量的金(不到1%),藉由將生長溫度減少到攝氏 450 度,從而開啟這種可能性。這種合金亦減少石墨烯在薄膜上生長的位址數量,因為金阻礙石墨烯生長。

這意味浮現出來的每一塊石墨烯小薄片(flake)要長得更大,而且要更長的時間,才會與其它小薄片結合。因為電子在石墨烯內到處遊走,所以(生長)不常受到薄片間結合的擾亂,因此石墨烯的傳導性改善了。結果是,石墨烯能在大幅減半的溫度下製造,同時仍保有未來應用所需的高品質。

在生長過程中亦利用專業技術來「感測」一個原子厚的石墨烯層。研究者們能明確證明,石墨烯生長並非只發生在基質冷卻時(如同某些學者先前所以為的),而且其生長也並非只受到催化劑薄膜的表面影響,還包括薄膜底下(underneath)的區域。

-----廣告,請繼續往下閱讀-----

研究者廣泛預測,石墨烯從科研領域移動到業界只是遲早的問題,然而商業化發展仍有一段距離。

“在理想上,我們喜歡讓石墨烯直接在絕緣基質上生長,不過目前,生長好的石墨烯在開始被應用前,需要將合金移除,” Weatherup 說。”問題是絕緣體在將含碳氣體轉換成高品質石墨烯上,天生就不良。”

“石墨烯生長仍是一個非常年輕的領域,不過其進展速度難以置信地快。利用催化劑的合金化(alloying of the catalyst),如同我們在這裡進行的,在改上製程上是一種全新方法,而且我們預期,進一步的研究將有可能導致改善過的石墨烯產物,甚至是在更低的溫度下辦到。”

資料來源:PHYSORG:Golden touch makes low-temperature graphene production a reality[October 12, 2011]

-----廣告,請繼續往下閱讀-----

轉載自only-perception

-----廣告,請繼續往下閱讀-----
文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

0

0
0

文字

分享

0
0
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3286字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

2
2

文字

分享

1
2
2
超壓縮的水會變成冰?!二維奈米薄冰能在室溫下穩定存在嗎?有什麼用途?——專訪中研院原分所謝雅萍副研究員
研之有物│中央研究院_96
・2024/03/10 ・4907字 ・閱讀時間約 10 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|張琬婷
  • 責任編輯|簡克志
  • 美術編輯|蔡宛潔

水能被擠壓成冰?

水在攝氏零度以下會結冰。然而,當水被擠壓到極限時,會形成二維的奈米薄冰,不僅室溫下穩定存在,還有從未見過的鐵電特性(Ferroelectricity),而石墨烯則是實現這種擠壓條件的關鍵。中央研究院「研之有物」專訪院內原子與分子科學研究所的謝雅萍副研究員,她與我們分享了實驗室如何意外發現這層特殊的二維薄冰,以及團隊如何利用二維薄冰的鐵電特性製作有記憶電阻功能的奈米元件,研究成果發表在科學期刊《自然通訊》(Nature Communications)。

奈米尺度下,物質特性會跟著改變?

謝雅萍的主要研究題目之一就是合成新穎的二維材料,這是奈米科技的領域。奈米是什麼?奈米(nanometer)是長度單位,即 10-9 公尺,一根頭髮的直徑長度約為 1 奈米的十萬倍。奈米尺度之下,很多物質的特性會隨之改變,最常見的例子是「蓮花效應」,因為蓮花葉上具有奈米等級的表面結構,為蓮葉賦予了疏水與自我清潔的特性,髒污與水珠都不易附著在蓮葉上。

電腦模擬圖(左)和實際照片(右),蓮葉上密集的微小突起,讓大顆的水珠和灰塵不易附著,這讓蓮葉具有疏水與自我清潔的特性。
圖|William ThielickeGJ Bulte

奈米材料(nanomaterial)是指三維尺寸的材料,至少有一個維度的尺寸小於 100 奈米。只縮小一維,就是平面的二維材料(2D),例如石墨烯;縮小兩個維度,就是奈米線(1D);三維都縮小,就是零維的奈米顆粒(0D)。

奈米科技(nanotechnology)的概念最早可追溯到 1959 年美國物理學家理查費曼(Richard Feynman)在演講中提出的願景「為什麼我們不能把大英百科全書全部寫在一根針頭上呢?」。1974 年日本科學家谷口紀男則是首度創造「奈米科技」這個詞的人,他認為奈米科技包括原子與分子層次的分離、固定與變形。

-----廣告,請繼續往下閱讀-----

過去有不少科學家嘗試奈米材料的研發,但受限於製造技術不成熟,而無法順利製作出精細製程的奈米材料。1981 年,在掃描隧道顯微鏡(Scanning Tunneling Microscope, STM)發明之後,不僅有助於材料的微觀分析,操縱單個原子和分子也成為可能,奈米科技也逐漸實現。

2013 年 IBM 研究人員使用 STM 顯微鏡將上千個一氧化碳分子製作成原子等級的動畫「男孩與他的原子」,目前是金氏世界紀錄最小的定格影片。

無處不在的奈米科技?

我們生活周遭的奈米科技俯拾即是,從大賣場商品到半導體產業的電子元件都有。謝雅萍舉例:防曬霜之所以是白色,是因為裡面有二氧化鈦的奈米顆粒;許多塗料與噴漆亦會以奈米添加物,來增進耐蝕、耐磨、抗菌與除汙的特性,例如汽車鍍膜或奈米光觸媒;羽球拍或牙醫補牙會使用奈米樹脂,讓球拍和補牙結構更堅固。

至於半導體產業,奈米科技更是關鍵。透過縮小元件尺寸以及調整奈米元件的幾何形狀,以便於在單一晶片上乘載更多電晶體。「當今的電晶體大小皆是奈米等級,製作電子元件就等同在處理奈米科技的問題」,謝雅萍說道。

IBM 展示 5 奈米技術的矽奈米片電晶體(nanosheet transistors),圖中堆疊起來的一顆顆橢圓形結構是電子通道的截面,IBM 設計立體結構以因應愈來愈小的元件尺寸。
圖|IBM

實驗中的難題,反而促成驚奇發現?

鐵電性是什麼?二維奈米薄冰有哪些可能的應用方式?

對謝雅萍來說,發現二維的奈米薄冰是個意外的驚喜。最初謝雅萍團隊其實是要製作以石墨烯為電極的開關,畢竟石墨烯是實驗室的主要研究項目,理論上當兩層石墨烯很靠近時,分別給予兩端電壓會是導通的「ON」狀態,沒電時就是斷開的「OFF」狀態。

-----廣告,請繼續往下閱讀-----

然而,實驗過程中團隊卻發現當電壓為零時,石墨烯開關仍會導通,甚至要給予負電壓時才會成為 OFF 狀態。這個奇特的現象讓研究團隊苦惱許久,嘗試思考了各種可能性,但都無法完善的說明此現象。

「原本以為實現石墨烯開關應該是一件能夠很快完成的題目,沒想到過程中卻出現了這個意料之外的難題,因此這個研究比預期多花了一兩年」,謝雅萍無奈地笑道。

靈感總是突如其來,某次謝雅萍在與朋友討論研究時,突然想到一個可能的方向:「一直以來都有人猜測水是否為鐵電材料,但都沒有真正證實。臺灣氣候潮濕,開關關不緊會不會就是水的影響?」

設計實驗跑下去之後,謝雅萍團隊終於擺脫了一直以來的疑雲。原來,兩層石墨烯結構中,真的有水分子的存在!「一般水分子用手去捏,還是會維持液體的狀態。但是我們發現,當水被兩層石墨烯擠壓到剩下原子厚度時,水分子就會變成具有鐵電特性的二維薄冰!」,謝雅萍開心地說道。

-----廣告,請繼續往下閱讀-----

換句話說,當極限擠壓之下,水會結成冰,而這層超薄的平面奈米薄冰會轉變成鐵電材料,而且可以在室溫下穩定存在!

示意圖,當水受到兩層石墨烯的極限擠壓之下,會形成單原子厚度的二維奈米薄冰,這層薄冰是鐵電材料,而且可以在室溫下穩定存在。
圖|之有物(資料來源|謝雅萍)

鐵電材料乍聽之下很抽象,謝雅萍表示:「相較於會吸磁鐵的鐵磁材料,大多數人對鐵電材料比較不熟悉,其實概念十分相似」。她說,鐵磁材料經過外加磁場的「磁化」之後,即使不加磁場仍可維持原本的磁性。相對地,鐵電材料經過外加電場的「極化」之後,即使不加電場仍可維持原本的電荷極化方向。

謝雅萍團隊發現的二維冰具有鐵電性,這意味著水分子的正負極在外加電場之下會整齊排列,形成一個永久的電偶極,並且在電場消失後保持不變。

鐵電材料經過外加電場的「極化」之後,即使不加電場仍可維持原本的電荷排列方向。圖片顯示為順電狀態,極化方向和外加電場相同,箭頭表示每一小塊區域(Domain)的平均極化方向。
圖|之有物(資料來源|Inorganics

接著,謝雅萍發現,二維冰的鐵電性只存在於單層原子,增加多層原子之後,鐵電性會消失,變成普通的冰,這是因為多層原子的交互作用會打亂原本的極化排列。因此研究團隊發現的二維冰,是非常特殊的固態水,不是手搖飲加的冰塊那麼簡單。

因為石墨烯的擠壓和固定,二維冰可以在室溫下穩定存在,不會蒸發。謝雅萍團隊實驗發現,要升溫到攝氏 80 度,被夾住的二維冰才會變成水。如此大範圍的操作溫度,這讓謝雅萍開始思考將二維冰作為鐵電材料使用的可能性。

-----廣告,請繼續往下閱讀-----

於是,謝雅萍團隊嘗試開發新型的電子元件,他們將二維冰與石墨烯整合成機械式的奈米開關。由於二維冰具有鐵電特性,在施加不同外加電壓之後,元件可以維持上次操作的電阻值,並保留至下次操作,有這種特性的元件稱為「憶阻器」(memristor)。

憶阻器這個詞是由記憶體(memory)與電阻(resistor)組合而成,字面上的解釋便是:具備記憶先前電阻值的能力。

謝雅萍表示:「我們可以藉由不同的外加大電壓寫入電阻值,再以微小電壓讀取之前的電阻值,允許快速存取」。而單獨一個二維冰奈米開關可以記住 4 個位元的資料,具備未來記憶體的發展潛能。

此外,二維冰奈米開關也是很好的開關裝置,團隊驗證導通電流和截止電流的比值可以達到 100 萬,開路和斷路的功能極佳,並且允許雙向操作。而開關的功能經過 1 萬次循環還不會衰減,相當穩定。

謝雅萍團隊是全世界第一個證實二維薄冰鐵電性的團隊,並實現第一個以石墨烯為架構的二維冰機械式憶阻器。她的團隊將往新穎二維材料的方向繼續邁進,目前實驗室有和台積電(TSMC)合作,希望透過產學合作,將更多奈米技術的應用落地實現。

-----廣告,請繼續往下閱讀-----
謝雅萍與研究團隊用意外發現的二維奈米薄冰,以石墨烯為架構,做出了全世界第一個機械式的憶阻器。
圖|之有物

與二維材料實驗的相遇?

謝雅萍目前除了是中研院原分所的副研究員,同時也是國立臺灣大學 MY Lab 實驗室的共同主持人,她和人生伴侶 Mario Hofmann 教授共同指導的 MY Lab 發揮了 1+1>2 的效果,創意與想法的激盪和交流,是產生傑出研究的關鍵。

回到碩博士時期,謝雅萍都在臺大物理所,鑽研材料的光電性質與新穎光電元件的機制。她回憶:「當時我們都要向化學系要材料,他們給什麼我們就得用什麼,但難以了解整個材料製造的細節。」後來她體認到,擁有製造材料的調控能力才能真正突破元件設計上的侷限。

謝雅萍在博士班時申請到了千里馬計畫,讓臺灣博士生獲得國科會補助前往國外頂尖研究機構,進行為期約半年至一年的研究。「我認為這個計畫非常好,也可以幫助學生建立重要人脈!」在指導教授引薦下,謝雅萍因緣際會進入美國麻省理工學院(MIT)的二維材料實驗室,自此與二維材料結下不解之緣,她認為:「好材料與好元件是相輔相成的,前瞻材料更是如此。」

「我到了 MIT 之後,深刻體悟到他們做研究的態度與臺灣學生的不同。臺灣學生像是把研究當作一份工作,然而我在 MIT 時就感受到他們學生對於自身研究的熱忱。討論風氣也非常盛行,學生之間會互相分享自己的研究內容,互相幫忙思考、激盪出新想法」,謝雅萍分享自己在 MIT 時期的觀察。

-----廣告,請繼續往下閱讀-----

當年二維材料還在萌芽階段,她所在的 MIT 實驗室已是此領域的佼佼者,她也因此立下了目標:「希望未來我有能力時,能夠自己掌控自己的材料做出好元件!」如今,謝雅萍正走在自己目標的道路上,過去認識的朋友也都是各頂尖大學的二維材料實驗室主持人,直到現在都還會互相幫忙。

從物理到二維材料,身處這些男性為主的學術環境,謝雅萍顯得自在,而且積極參與討論和交流。「我發現女科學人會把自己變得較中性,讓自己融入整個以男性居多的環境中,才不會在團體中有突兀的感覺」,她分享道。

謝雅萍的實驗室 MY Lab,是與臺大物理系 Mario Hofmann 教授共同主持的奈米科技實驗室,他們除了是工作上的夥伴,更是人生中的最佳拍檔!當初兩人就是在美國麻省理工大學 MIT 相識,再一起回到臺灣。

讓「研之有物」團隊好奇的是:這種共同主持的模式與一般實驗室相比,是否有特別之處?

-----廣告,請繼續往下閱讀-----

「從多個面向而論,我認為都是 1+1>2 的」,謝雅萍說道,「實驗室會有兩倍的資源、儀器、計畫與兩倍的人脈。遇到一個題目,兩個人思考時會從不同的觀點切入。即便是夫妻,我們在研究上看的面向也都不一樣,因此可以激盪出許多有趣的想法」。

她補充,不僅對實驗室本身而言,對學生也有很大的好處,「因為學生的研究必須同時說服我們兩個人,代表學生的研究成果會非常扎實,也可以為學生帶來信心。」重要的是,「學生也會得到兩倍的照顧與關愛,我覺得我們的學生是蠻幸福的」,謝雅萍笑笑地說。

-----廣告,請繼續往下閱讀-----
所有討論 1
研之有物│中央研究院_96
296 篇文章 ・ 3857 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

3
0

文字

分享

0
3
0
【2005 諾貝爾化學獎】歧化 – 一個更換伴侶的舞蹈
諾貝爾化學獎譯文_96
・2022/09/13 ・5122字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

今年的諾貝爾化學獎由三位化學家所共同獲得,他們是法國的 Yves Chauvin,以及兩位美國的學者 Robert H. Grubbs 及 Richard R. Schrock,得獎的原因在表彰他們發展歧化(metathesis)反應在有機合成上的運用所造成的卓越貢獻。得獎者的成就已經在化學工業上成為一項重要的方法,並在合成化合物上開啟了新的機會而將使工業上製造藥物、塑膠以及其它材料的生產更為方便,這些物質的價格會因此降低而且減少對環境的衝擊。

歧化 — 一個更換伴侶的舞蹈

什麼是歧化?

在化學的反應中,原子之間的鍵結會斷裂而新的鍵結會生成。今年諾貝爾化學獎的焦點是稱為"歧化"的反應,這個名詞具有"改變位置"的意義。如(圖1)所示,在烯(一種含有碳-碳雙鍵的化合物)的歧化反應中,形成雙鍵的兩個碳會與另外一組雙鍵的兩個碳交換伴侶,形成另一個新的組合。在所示的反應中,一個丙烯的分子將其中的一個 CH2 基團與另一分子的丙烯中之 CH3CH 交換,結果就產生了丁烯及乙烯。這個反應需要使用一個催化劑(催化劑是一個能使反應加速進行但卻不會成為產物的一部份的分子)才會發生。

(圖1)兩個丙烯藉著催化劑的幫助進行烯的歧化反應,產生兩個新的烯化物即丁烯和乙烯。

其實化學家早就知道可以透過這種反應來製造新的化合物,只是他們並不瞭解催化劑在這個反應中扮演的角色為何。Yves Chauvin 提出的反應機制在對這個反應的認知上跨出了一大步,因為他解釋了催化劑是如何的運作。此時,研究者獲得了一個新的挑戰機會,那就是如何的去創造一個新的且更有效的催化劑。緊接著,Robert H. Grubbs 及 Richard R. Schrock 的基礎研究進場,由於他們的貢獻,才有今日那些非常有用的催化劑可供使用。

有機化合物 — 豐富的多樣性

碳元素能與碳元素以及其它的元素如氫、氧、氯和硫形成很強的鍵結,碳原子能以單鍵、雙鍵或三鍵的方式與其它的原子結合,可得到直鏈或分岔的結構,又可生成具有各種型態和大小的環狀結構。這個領域的化學稱為有機化學,因為在地球上生命的存在都是基於碳的這種多樣性。

眾多的有機化合物中,目前其實只有一小部份被研究過,但即使如此,我們現在已經可以得到各種新的藥物、材料、塗料等等,這是幾年前所無法想像的。

-----廣告,請繼續往下閱讀-----

有機合成

所謂的有機合成就是將不同的化合物以特定的方式反應而製造出其它的化合物;透過有機合成,我們可以從已知的化合物原料製造出新的化合物。許多的工業必需利用有機合成,例如製藥和生技的工業,以及纖維和特用化學品的工業。在(圖2)中,一個在癌症的研究中所需的化合物 A 需要用另一個化合物 B 來合成,而 B 又需要從別的分子來合成。在化合物 B 的結構中具有一個由碳原子所組成的長鏈,其中有一個碳原子被氧原子取代。在合成化合物 A 時,這個長鏈被轉變成了一個大環的結構,這個環狀的結構正是抗癌的活性所必需。

為了製造這個大環,催化性的歧化反應正好派上用場,而其使用的催化劑正是這次的諾貝爾獎得主之一所開發出來的。由化合物 B 的結構中之長鏈兩端的雙鍵(圖中圈出的部分),透過歧化反應可以製造出兩個新的雙鍵,其中一個雙鍵用在結合長鏈的兩端而形成大環,而另一個雙鍵則存在於另一個副產物乙烯當中。如果要用別的方法來形成這個大環,將需要非常複雜而冗長的步驟。

(圖2) 運用一個 Grubbs 催化劑進行的合成。在此透過歧化反應將化合物 B 中的長鏈結合成化合物 A 中的大環。化合物 A 被用在癌症的研究上,其中環狀的結構正是抗癌的活性所必需。

歧化反應是如何發現的

歧化反應的發現可回朔至 1950 年代,正如同許多有機化學反應的發現一般,它源自於工業界,有好些個專利描述了催化性的烯聚合反應,其中的一篇專利是由美國杜邦公司的 H. S. Eleuterio 在 1957 年所提出的,它描述了得到不飽和的碳鏈(鏈上具有許多雙鍵)的方法;在此之前,由乙烯聚合成聚乙烯只會得到飽和的碳鏈(鏈上不具雙鍵)。這個出人意外的發現造成了深遠的影響。

在同年,另一份專利顯示,當使用一個由三異丁基鋁(triisobutyl aluminum)與氧化鉬(molybdenum oxide)依附在氧化鋁上的催化系統時,丙烯可轉變成丁烯及乙烯,這個在(圖1)所示的反應被稱為菲利浦公司的三烯製程(Phillips triolefin process)。這兩個專利都成功的在工業界中使用。

-----廣告,請繼續往下閱讀-----

在許多年之後,這兩個發現的關聯性才被固特異輪胎及橡膠公司的 N. Calderon 發現,他指出,在上述的兩種製程中所發生的是同一種型態的反應,並稱之為烯的歧化反應(olefin metathesis),只不過在分子的層次,其中的催化劑之結構及其運作的機制在當時仍屬未知,因而由此所啟動之精采的催化劑獵捕行動,只能在黑暗中透過隨意擲擊四處碰觸的方式盲目的摸索。

Chauvin 的機制

越來越多的化學家開始注意到到歧化反應可能提供給有機合成的高度潛力,不過可能沒有人料想到它會成為如此的重要。雖然有許多的研究者提出各種歧化反應如何發生的可能機制,但真正的突破要等到 1970 年 Yves Chauvin 所發表的一份研究報告,他和他的學生 Jean-Louis Herrison 指出其中的催化劑是一個金屬碳烯(metal carbene),這種化合物具有一個金屬與碳形成的雙鍵。在之後的文獻中,金屬碳烯也被稱為金屬亞烷基(metal alkylidine)。在更早些年 E. O. Fisher(1973年諾貝爾化學獎)也發現過一些其它的金屬碳烯。Chauvin 也提出了一個嶄新的機制來解釋這個金屬化合物在反應中扮演何種功能。他們所進行的一些新的實驗結果完全符合這個新機制的運作,而無法用之前所提出的各種機制來解釋。在(圖3)(a )中,一個金屬亞甲基做為催化劑,造成兩個雙鍵上的亞烷基之交換,導致兩個新的雙鍵生成(圖中金屬 M 上所用的中括號代表金屬除了與碳之間有一個雙鍵之外其上還有其它的基團)。

(圖3) (a)由金屬亞甲基做為催化劑的烯歧化反應。產物是兩個新的烯化物:乙烯及一個含有兩個 R’ 基團的烯化物,這兩個 R’ 基團分別接在雙鍵的兩個碳上,曲折線代表它們可以在雙鍵的同邊或反邊。 (b)Chauvin 提出的烯歧化反應機制。在這個催化的循環中,會生成一個含有三個碳和一個金屬的四元環。

(圖3)(b)所示為此反應的機制,在反應的第一階段,金屬亞甲基與一個烯形成一個四元環,這個環含有一個金屬和三個碳,相互以單鍵結合。在下一個階段,其中的兩個單鍵斷裂並形成一個新的烯(即乙烯)和一個新的金屬亞烷基。在第三步驟,這個新的金屬亞烷基又與原先的烯結合成一個新的四元環。在最後的步驟中,這個含有金屬的四元環裂解產生歧化的產物並同時重新得回原先的金屬亞甲基,這個重新得回的金屬亞甲基又繼續投入另一個歧化反應的循環當中。這個反應的最終結果就是兩個烯的分子交換了它們的亞烷基,也就是進行了歧化反應(圖3)(a)。Chauvin 的機制一舉解釋了所有早先文獻中的結果,他的機制也得到了 Robert H. Grubbs、Thomas J. Katz 以及 Richard R. Schrock 等研究團隊的實驗之強烈支持,現已廣為大家所接受。

(圖4)一個有趣的歧化之舞。

上面所描述的 Chauvin 機制可以視為一種舞蹈(圖4),其中催化劑與烯這兩組在舞蹈中交換舞伴。金屬和他的舞伴雙手相牽,當碰到烯隊時這兩組人馬結合成一個圈圈跳舞,隔了一會兒,他們與原先的同伴鬆手然後與新的伴侶湊成一對共舞。現在新形成的金屬隊又開始尋找新的烯隊,再次組成圈圈跳舞,換句話說,金屬隊成為一個分歧化的媒介者。

-----廣告,請繼續往下閱讀-----

研發新的催化劑

到此時更多的化學家開始體認到,如果能找到更有效而可靠的催化劑,將可以使得這個反應在有機合成上成為一個極為重要的方法。早先所使用的催化劑結構並不明確,對空氣及濕氣極為敏感,穩定度很差而只能短暫的存在。一個好的催化劑必須是穩定的,並具有確定的結構,其化學活性要能針對需要而做調整,此外它們必須具有選擇性,也就是說只會與雙鍵反應而不會作用到分子上的其它部位。Chauvin 的研究結果顯示了有效率的催化劑可以如何的建立,但問題是在所有結構很明確的已知金屬亞烷基中,沒有一個可以成功的運用在烯的歧化反應上。雖然有好些位化學家在研發歧化反應的催化劑及其運用,並且也有重要的貢獻,不過,在此研究領域中關鍵性的進展則出自於 Robert H. Grubbs 及 Richard R. Schrock 的團隊。

Schrock 的第一個實用的催化劑

Schrock 在 1970 年代初期開始研究新的金屬亞烷基錯合物,但是到底哪一種金屬最適合製造出最有效的催化劑呢?他嘗試了含有鉭(tantalum)、鎢及鉬的催化劑,逐漸的掌握了哪些金屬可以使用以及它們如何的運作。對 Schrock 而言,鎢及鉬很快的顯示出是最適當的金屬,雖然用這些金屬合成了一些催化劑,但對於在金屬上到底要放上什麼基團才能製造出穩定而活性又高的催化劑仍不確定。在 1990 年,Schrock 的團隊終於得到突破而發表了一系列活性又高而結構又很明確的含鉬之催化劑(圖5)。

(圖5)一個 Schrock 的含鉬催化劑。藉著選擇適當的基團接在金屬上可以得到極高的化學活性。在此 i-Pr 代表異丙基,Ph 代表苯基。

由於他的發現,化學家開始體認到烯的歧化反應可以普遍的運用在有機合成上,歧化反應越來越受到那些活躍的有機合成化學家們的注意,他們發現歧化反應可以取代許多傳統的合成方法,而在同時也提供了一種嶄新的方式來合成有機化合物。在(圖5)中所示的含鉬催化劑雖然對氧氣及濕氣是很敏感的,但只要透過適當的處理方式,不失為一個在有機合成上威力強大的工具。

一種由 Grubbs 所研發的通用催化劑

另一個突破則發生在 1992 年,Robert Grubbs 的研究團隊報導了他們所發現的一個含釕(ruthenium)的催化劑,它在空氣中是穩定的,表現出很高的化學選擇性,但是化學活性較 Schrock 的催化劑為低,這個新的催化劑可以在醇、水及有機酸的存在下催化歧化反應(參考圖2),在此之後 Grubbs 進一步的改進了他的催化劑,在(圖6)中所示的是幾個很有效而又容易合成的催化劑中的一個。

-----廣告,請繼續往下閱讀-----
(圖6) 一個由 Grubbs 開發的含釕的催化劑。在此 Cy 代表環己基。

Grubbs 的催化劑已成為在普通的實驗室中,被普遍使用在歧化反應上,而且功能明確的催化劑。在(圖6)中所示的催化劑被稱為 Grubbs 催化劑,並成為一個被其它新的催化劑用來比對的標準。Grubbs 催化劑的通用性導致其後在有機合成上新的展望。Grubbs 對催化劑的設計是基於詳細的反應機制研究,他持續的開發以釕為基礎的催化劑,朝著製造合成上最具威力的催化劑而努力,這些合成包括了具有特殊性質的聚合物。

運用以及影響

這幾位諾貝爾獎得主所發展的合成方法,已經在學術研究上迅速的成為普遍使用的工具。為了製造新化合物所設計的工業製程,在這方面也有熱烈的發展,利用催化性的歧化反應可以縮短合成的步驟,得到更高的產率及更少的廢物,這導致更乾淨而對環境衝擊較小的製程。這種反應開啟了更多的機會去探索更多樣性的有機分子。除了他們之外,許多其他的研究者也提供了重要的貢獻,並持續的為了解決特定的問題例如合成複雜的天然物及其類似物,而開發新的歧化反應催化劑。

歧化反應在製藥工業、生技工業及食品工業上具有極大的商業潛力;新的催化劑亦可廣泛的運用在聚合物的合成上,雖然截至目前許多最有用的聚合物仍然是用傳統的方式來合成,但最近在聚合物合成的研究顯示,某些歧化反應催化劑在合成具有特殊性質的聚合物方面具有光明的前景。

雖然 Schrock 與 Grubbs 所發展的催化劑問世不過短短數年,但是他們所發展的應用性之深入的確是令人驚訝,這包括了昆蟲費洛蒙、除草劑、聚合物和燃料的添加劑、具有特殊性質的聚合物以及各種在藥物發展上很有潛力的各種分子之合成。有關一些可以對付各種人體疾病所發展的各種分子尤其值得一提,因為許多的研究者正投入於製造可能的藥物來治療各種狀況,例如細菌感染、C 型肝炎、癌症、阿茲海默症、唐氏症、骨質疏鬆、風濕、發炎、纖維症、HIV/AIDS、偏頭痛等等,歧化反應也因此成為一項重要的武器來尋找新的藥物以治療這世界上許多主要的疾病。

-----廣告,請繼續往下閱讀-----

參考資料

蔡蘊明譯自諾貝爾化學獎委員會公佈給大眾的參考資料:

http://nobelprize.org/chemistry/laureates/2005/info.html

若要參考更深入的說明請見:

http://nobelprize.org/chemistry/laureates/2005/adv.html

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
諾貝爾化學獎譯文_96
15 篇文章 ・ 24 位粉絲
「諾貝爾化學獎專題」系列文章,為臺大化學系名譽教授蔡蘊明等譯者,依諾貝爾化學獎委員會的新聞稿編譯而成。泛科學獲得蔡蘊明老師授權,將多年來的編譯文章收錄於此。 原文請參見:諾貝爾化學獎專題系列