0

0
0

文字

分享

0
0
0

蠶絲-神的祝福-有機薄膜電晶體(OTFT)新發現(電子紙系列報導)

活躍星系核_96
・2011/10/09 ・1321字 ・閱讀時間約 2 分鐘 ・SR值 544 ・八年級

五苯環

有機薄膜電晶體(OTFT)之新發現,清華大學材料系黃振昌教授與博士班研究生王中樺、謝兆瑩2009年利用蠶絲做為介電層的材料,並成功開發出蠶絲成型技術發表在學術期刊上(Advanced Materials)並同時申請專利。蠶絲製作在低電壓的高性能五苯環有機薄膜電晶體,效率比以往使用的材料快上20倍,未來可讓電子紙或有機發光二極體螢幕具有相當程度的撓曲性。

什麼是有機薄膜電晶體呢(organic thin film transitor OTFT)?

「有機」,是在超市看到定義”有機”天然無添加人工色素的食物?不!那是吃的有機物,而「有機」薄膜電晶體,比較貼近以前在高中化學中對有機物和無機物的分類定義。

在軟性電子元件上,作為主動層(Active layers)的有機薄膜有很多種類,目前介紹的五苯環(Pentacene)是普遍被應用在OTF上的有機薄膜主動層之一。主動層運用的有機材料有小分子「五苯環」 (pentacene)又稱並五苯、高分子及有機金屬錯合物,五苯環熔點是攝氏300度,沸點是攝氏529度,製成薄膜時為可透光的藍紫色,因為結構緊密,且五苯環的材質可以幫助電子移動速度變快,採用五苯環電晶體來製造元件,可以透過有機溶劑,直接鍍在作為電子紙張基板的塑膠表面。用五苯環電晶體控制電子墨水開關的元件,沒有五苯環電子紙就無法運作,此外,減少另外加上去的電路複雜度,產品的成本能降到最低。近年來都被應用在太陽能電池及可撓曲式的電子顯示器或電子紙上。

-----廣告,請繼續往下閱讀-----

和氧化物半導體和非晶矽的薄膜電晶體的基板幫助電子紙呈現動靜態影像的差異,OTFT基板注重製造成本低廉、耐衝撞及具有可撓曲的優勢,並能提升電泳電子紙pixel解析度3倍,解析度達150dpi,長遠來看,OTFT是未來電子紙主要使用的元件。

神的賜福-蠶絲

蠶絲,也是製作電子產品的絕佳材料!清華大學材料系師生兩年前意外發現,從蠶絲萃取出蠶絲蛋白,製成蠶絲膜,可當作閘極介電層材料;最近又成功製成可在低電壓操作的高性能五苯環有機薄膜電晶體,未來可應用在電子紙或有機發光二極體螢幕的彎曲功能。

清華大學材料系黃振昌教授表示:「使用蠶絲做介電層材料,是個非常意外的事情,我們經過許多次考驗,最終獲得突破。使用蠶絲可以比原本的速度快上20倍,由這種蠶絲膜製成的電子書或電子紙,翻頁速度會快很多。」,譬如以時速80公里的車速從台北到高雄要4.5小時,現在只要12分鐘。

蠶絲的製作成薄膜的過程,是先將蠶絲都丟到量杯裡煮滾成,拿去烘乾,烘乾後再切成小小塊,再丟入溶劑裡煮成蠶絲蛋白,最後將蠶絲蛋白塗抹在電晶體體的介電層部分。

-----廣告,請繼續往下閱讀-----

因為有機電子正夯!或許電子紙的研究會因此發現更多可能性,清華大學材料系黃振昌教授所研發的蠶絲做介電層的材料,或許會對軟性有機電子紙產生相當深遠的影響,甚至會大大改變現今對電子紙的研發的可能性。

國科會科技新聞寫作班深度報導 楊瓊蘭 / 嚴巧珍 / 林姿吟

電子紙系列報導:

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 127 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
1

文字

分享

0
1
1
揭密突破製程極限的關鍵技術——原子層沉積
鳥苷三磷酸 (PanSci Promo)_96
・2024/08/30 ・3409字 ・閱讀時間約 7 分鐘

本文由 ASM 委託,泛科學企劃執行。 

以人類現在的科技,我們能精準打造出每一面牆只有原子厚度的房子嗎?在半導體的世界,我們做到了!

如果將半導體製程比喻為蓋房子,「薄膜製程」就像是在晶片上堆砌層層疊疊的磚塊,透過「微影製程」映照出房間布局 — 也就是電路,再經過蝕刻步驟雕出一格格的房間 — 電晶體,最終形成我們熟悉的晶片。為了打造出效能更強大的晶片,我們必須在晶片這棟「房子」大小不變的情況下,塞進更多如同「房間」的電晶體。

因此,半導體產業內的各家大廠不斷拿出壓箱寶,一下發展環繞式閘極、3D封裝等新設計。一下引入極紫外曝光機,來刻出更微小的電路。但別忘記,要做出這些複雜的設計,你都要先有好的基底,也就是要先能在晶圓上沉積出一層層只有數層原子厚度的材料。

-----廣告,請繼續往下閱讀-----

現在,這道薄膜製程成了電晶體微縮的一大關鍵。原子是物質組成的基本單位,直徑約0.1奈米,等於一根頭髮一百萬分之一的寬度。我們該怎麼精準地做出最薄只有原子厚度,而且還要長得非常均勻的薄膜,例如說3奈米就必須是3奈米,不能多也不能少?

這唯一的方法就是原子層沉積技術(ALD,Atomic Layer Deposition)。

蓋房子的第一步是什麼?沒錯,就是畫設計圖。只不過,在半導體的世界裡,我們不需要大興土木,就能將複雜的電路設計圖直接印到晶圓沉積的材料上,形成錯綜複雜的電路 — 這就是晶片製造的最重要的一環「微影製程」。

首先,工程師會在晶圓上製造二氧化矽或氮化矽絕緣層,進行第一次沉積,放上我們想要的材料。接著,為了在這層材料上雕出我們想要的電路圖案,會再塗上光阻劑,並且透過「曝光」,讓光阻劑只留下我們要的圖案。一次的循環完成後,就會換個材料,重複沉積、曝光、蝕刻的流程,這就像蓋房子一樣,由下而上,蓋出每個樓層,最後建成摩天大樓。

-----廣告,請繼續往下閱讀-----

薄膜沉積是關鍵第一步,基底的品質決定晶片的穩定性。但你知道嗎?不只是堆砌磚塊有很多種方式,薄膜沉積也有多樣化的選擇!在「薄膜製程」中,材料學家開發了許多種選擇來處理這項任務。薄膜製程大致可分為物理和化學兩類,物理的薄膜製程包括蒸鍍、濺鍍、離子鍍、物理氣相沉積、脈衝雷射沉積、分子束磊晶等方式。化學的薄膜製程包括化學氣相沉積、化學液相沉積等方式。不同材料和溫度條件會選擇不同的方法。

二氧化矽、碳化矽、氮化矽這些半導體材料,特別適合使用化學氣相沉積法(CVD, Chemical Vapor Deposition)。CVD 的過程也不難,氫氣、氬氣這些用來攜帶原料的「載氣」,會帶著要參與反應的氣體或原料蒸氣進入反應室。當兩種以上的原料在此混和,便會在已被加熱的目標基材上產生化學反應,逐漸在晶圓表面上長出我們的目標材料。

如果我們想增強半導體晶片的工作效能呢?那麼你會需要 CVD 衍生的磊晶(Epitaxy)技術!磊晶的過程就像是在為房子打「地基」,只不過這個地基的每一個「磚塊」只有原子或分子大小。透過磊晶,我們能在矽晶圓上長出一層完美的矽晶體基底層,並確保這兩層矽的晶格大小一致且工整對齊,這樣我們建造出來的摩天大樓就有最穩固、扎實的基礎。磊晶技術的精度也是各公司技術的重點。

雖然 CVD 是我們最常見的薄膜沉積技術,但隨著摩爾定律的推進,發展 3D、複雜結構的電晶體構造,薄膜也開始需要順著結構彎曲,並且追求精度更高、更一致的品質。這時 CVD 就顯得力有未逮。

-----廣告,請繼續往下閱讀-----

並不是說 CVD 不能用,實際上,不管是 CVD 還是其他薄膜製程技術,在半導體製程中仍占有重要地位。但重點是,隨著更小的半導體節點競爭愈發激烈,電晶體的設計也開始如下圖演變。

圖/Shutterstock

看出來差別了嗎?沒錯,就是構造越變越複雜!這根本是對薄膜沉積技術的一大考驗。

舉例來說,如果要用 CVD 技術在如此複雜的結構上沉積材料,就會出現像是清洗杯子底部時,有些地方沾不太到洗碗精的狀況。如果一口氣加大洗碗精的用量,雖然對杯子來說沒事,但對半導體來說,那些最靠近表層的地方,就會長出明顯比其他地方厚的材料。

該怎麼解決這個問題呢?

-----廣告,請繼續往下閱讀-----
CVD 容易在複雜結構出現薄膜厚度不均的問題。圖/ASM

材料學家的思路是,要找到一種方法,讓這層薄膜長到特定厚度時就停止繼續生長,這樣就能確保各處的薄膜厚度均勻。這種方法稱為 ALD,原子層沉積,顧名思義,以原子層為單位進行沉積。其實,ALD 就是 CVD 的改良版,最大的差異在所選用的化學氣體前驅物有著顯著的「自我侷限現象」,讓我們可以精準控制每次都只鋪上一層原子的厚度,並且將一步驟的反應拆為兩步驟。

在 ALD 的第一階段,我們先注入含有 A 成分的前驅物與基板表面反應。在這一步,要確保前驅物只會與基板產生反應,而不會不斷疊加,這樣,形成的薄膜,就絕對只有一層原子的厚度。反應會隨著表面空間的飽和而逐漸停止,這就稱為自我侷限現象。此時,我們可以通入惰性氣體將多餘的前驅物和副產物去除。在第二階段,我們再注入含有 B 成分的化學氣體,與早已附著在基材上的 A 成分反應,合成為我們的目標材料。

透過交替特殊氣體分子注入與多餘氣體分子去除的化學循環反應,將材料一層一層均勻包覆在關鍵零組件表面,每次沉積一個原子層的薄膜,我們就能實現極為精準的表面控制。

你知道 ALD 領域的龍頭廠商是誰嗎?這個隱形冠軍就是 ASM!ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商,自 1968 年,Arthur del Prado 於荷蘭創立 ASM 以來,ASM 一直都致力於推進半導體製程先進技術。2007 年,ASM 的產品 Pulsar ALD 更是成為首個運用在量產高介電常數金屬閘極邏輯裝置的沉積設備。至今 ASM 不僅在 ALD 市場佔有超過 55% 的市佔率,也在 PECVD、磊晶等領域有著舉足輕重的重要性。

-----廣告,請繼續往下閱讀-----

ASM 一直持續在快速成長,現在在北美、歐洲、及亞洲等地都設有技術研發與製造中心,營運據點廣布於全球 15 個地區。ASM 也很看重有「矽島」之稱的台灣市場,目前已在台灣深耕 18 年,於新竹、台中、林口、台南皆設有辦公室,並且在 2023 年於南科設立培訓中心,高雄辦公室也將於今年年底開幕!

當然,ALD 也不是薄膜製程的終點。

ASM 是一家擁有 50 年歷史的全球領先半導體設備製造廠商。圖/ASM

最後,ASM 即將出席由國際半導體產業協會主辦的 SEMICON Taiwan 策略材料高峰論壇和人才培育論壇,就在 9 月 5 號的南港展覽館。如果你想掌握半導體產業的最新趨勢,絕對不能錯過!

圖片來源/ASM

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
212 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

0
0

文字

分享

0
0
0
【成語科學】抽絲剝繭:尼龍發明前的超耐磨繩材——柞蠶絲!
張之傑_96
・2023/09/13 ・1032字 ・閱讀時間約 2 分鐘

中國人是世界上最早養蠶的民族。根據可考的資料,至少有 5000 千年之久,難怪中國又有「絲國」之稱。

蠶是唯一馴化的昆蟲,所以稱為家蠶。人們長期養蠶,自然而然產生了許多和蠶或蠶絲有關的成語,譬如鯨吞蠶食、作繭自縛、抽絲剝繭、破繭而出、一絲不掛等等。讓我選擇「抽絲剝繭」作為樣本,來談談蠶繭和蠶絲吧。

圖/Wikimedia

蠶卵孵化後,吃著桑葉長大。經過三眠或四眠,開始吐絲結繭,把自己裹起來。蠶在繭裡化蛹,羽化後變成蠶蛾。蠶蛾從口中吐出鹼性液體,讓蠶繭一端軟化,就可以破繭而出,飛出去尋找配偶,產生下一代。

蠶結繭時,抬著頭不停地繞著身體吐絲。若非受到干擾,吐的絕不間斷,一根絲竟然長達 500-1000 公尺!人們養蠶的目的,就是為了取得蠶絲。那麼怎麼將蠶繭上的絲抽出來呢?

-----廣告,請繼續往下閱讀-----

抽絲時要把蠶繭放在水裡煮,讓蠶絲間的膠質溶化,然後找出絲頭,才能將每個蠶繭上的絲抽出來,最後只剩下已被煮死的蠶蛹。抽絲時,同時抽取好幾個蠶繭,撚成一股絲線,這個過程稱為繅絲。

蠶繭。圖/Wikimedia

繅絲時,絲得一根一根地抽,繭得一層一層地剝。成語「抽絲剝繭」,比喻由表及裡,細緻地分析,以發掘真相。讓我們造兩個句吧。

這宗刑案,經過警方抽絲剝繭,終於真相大白。

在我抽絲剝繭之下,這道數學難題終於解開了。

家蠶屬於鱗翅目、蠶蛾科。鱗翅目分為蛾類和蝶類兩大類,牠們是完全變態昆蟲,一生分為卵、幼蟲、蛹和成蟲等 4 個階段。蛾類和蝶類有若干差異,包括蛾類的觸鬚呈羽狀,蝶類呈棍棒狀;蛾類大多夜間活動,蝶類大多白晝活動。此外還有一個差異,就是蛾類會結繭;蝶類不結繭,牠們的蛹有個硬殼保護。

由於蛾類會結繭,所以除了家蠶,還有幾種野蠶可養來抽絲。最有名的野蠶是柞蠶,屬於天蠶蛾科,以殼斗科的植物為食。柞蠶起源於中國北方,現已傳播到韓國、日本、印度等地。篦麻蠶,屬於天蠶蛾科,起源於印度,現已傳播到中國、日本及義大利等地。

-----廣告,請繼續往下閱讀-----

這兩種野蠶都採野放的方式,也就是在野外飼養,結繭時到樹上採收。野蠶絲的織品,不如家蠶絲細緻,但堅韌耐磨。尼龍沒發明前,降落傘的繩索就是柞蠶絲製的。

-----廣告,請繼續往下閱讀-----
張之傑_96
103 篇文章 ・ 224 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。

1

1
1

文字

分享

1
1
1
葡萄酒變酸了?這可不能忍!巴斯德揪出「乳酸菌」,成功拯救法國的釀酒業──《厲害了,我的生物》
聚光文創_96
・2022/09/12 ・2154字 ・閱讀時間約 4 分鐘

國安危機!為什麼葡萄酒變酸了?

在上一集中,我們聊到了十七世紀,荷蘭科學家 aka 手作達人雷文霍克,以他那充滿手工溫度的兩百五十臺顯微鏡,以及一百七十二塊鏡片,為世人展示了「微型動物」(微生物)的世界。

然而在雷文霍克之後,除了斯巴蘭札尼神父曾經投以關愛的眼神,做了一些相關的實驗與研究,微生物似乎逐漸被眾人遺忘。

一直到微生物學的奠基者,巴斯德(Louis Pasteur)的出現,微生物的存在終於開始閃閃發光。一開始,巴斯德是打算進行「自然發生說」的相關實驗,沒想到,一個可能動搖國本的問題卻找上了他。

巴斯德(Louis Pasteur)被譽為微生物學的奠基者,也是研發出狂犬病疫苗的科學家。圖/Wikipedia

在浪漫優雅的法國,飲酒文化與釀酒事業同樣歷史悠久,然而,當時的酒商與釀酒廠負責人卻天天急得跳腳,一點也浪漫不起來。

-----廣告,請繼續往下閱讀-----

原來,釀酒這門手藝太過精細,只要一不小心,酒廠生產的酒很可能就會酸化變質,不僅造成商譽與營運的巨大損失,也會影響市場供應的穩定性。

生活不能缺少微醺的感覺,釀酒業的危機,簡直就是國安危機,巴斯德義無反顧的決定伸出援手。

於是,巴斯德拿出科學家的精神,仔細研究了整個釀酒過程,收集、觀察製程中,不同時間的發酵液,並且分析、比較這些酒液的不同。

經過一次一次的培養與試驗,巴斯德終於發現,在顯微鏡下,正常的發酵液中,有一種形狀圓圓的球體小生物(也就是酵母菌);而那些發酵失敗、變酸的酒液中,則可以看見一種又細又長的桿狀小生物(乳酸菌是也)。

-----廣告,請繼續往下閱讀-----
乳酸菌平常也許是不錯的東西,但要是跑到酒裡面可就不好了。圖/envatoelements

抓出讓酒精變質的小小兇手

一八五七年八月,巴斯德發表了他的研究成果,這篇論文,可以說是現代微生物學的開山之作。論文中指出,發酵,是涉及某些特定的細菌、黴菌、酵母菌等微生物的活動。

這些研究不僅拯救了釀酒業,也影響著食品業與醫藥產業。當時的科學界一度認為,發酵與食物腐敗、傷口發炎等現象,是可以畫上等號的,因此啟發了一名外科醫師的抗菌革命之路(這段故事我們後面再聊,先賣個關子)。

回到釀酒業的危機處理之上,雖然揪出了讓酒變酸的凶手,但巴斯德的工作還沒有完成,還得找出一勞永逸的方法,才算是功德圓滿。

經過一番苦思冥想,巴斯德最後採用的是加熱滅菌法,這種方法,如今也被稱為「巴斯德消毒法」(pasteurization)。

-----廣告,請繼續往下閱讀-----

我們都知道,加熱是個有效的滅菌方式,巴斯德將釀好的酒,短暫、而且小心翼翼的加熱,直到攝氏五十至六十度,藉此殺死那些可能讓酒變質的細菌。如此一來,不僅能讓酒長斯保存,也不會犧牲酒的口感,是不是很讚!

感謝巴斯德讓我們今天能喝到沒有壞掉的酒。圖/聚光文創

陷入絕境的養蠶業:蠶寶寶為什麼會生病?

感謝飛天小女警,啊不,是巴斯德的努力,一天又平安的過去了,釀酒業終於恢復了平靜。然而,一八六五年,法國農村再次遭遇危機。

雍容華貴的絲綢,是廣受貴族喜愛的高級布料,養蠶、攪絲、織布,也是當時法國農村的一大主力產業。沒想到,一種傳播快速、並且容易致死的疾病,卻在蠶寶寶界蔓延開來,蠶農們對此束手無策,養蠶業因此陷入絕境。

在昔日師長的建議之下,巴斯德決定投身於蠶病研究,為蠶寶寶尋得一線生機。

-----廣告,請繼續往下閱讀-----

在此之前,他並沒有養過蠶,也缺乏相關知識。於是他動身前往法國南部,花了五年的時間,在第一線的蠶病疫區進行研究。

透過顯微鏡,巴斯德在病蠶的身體裡,發現了一些微小的病原體。

不曉得大家小時候有沒有養過蠶寶寶呢?圖/envatoelements

同樣的,溯源之後還得找出根治方法,巴斯德除了研究鑑定方法,以幫助蠶農辨認染病的蠶寶寶之外,也建議蠶農對病蠶進行隔離。

篩檢與隔離,加上選擇性育種與提高蠶群的清潔度,巴斯德提出的「蠶界防疫新生活」,不但拯救了無數蠶寶寶的性命,也讓瀕臨崩潰的法國絲綢獲得喘息。

-----廣告,請繼續往下閱讀-----

在釀酒業與養蠶業分別取得成功之後,巴斯德於是將目光從經濟產業轉向醫療產業。

這些肉眼看不見的微生物,既然可能讓酒變酸,也可能讓蠶生病,是不是也可能引發人類的疾病?如果真是如此,只要知道如何躲避生物的攻擊,或許就能增加戰勝疾病的可能性。

大家努力待在家防疫的時候也別忘了記得動一動。圖/聚光文創

──本文摘自《厲害了,我的生物》,2022 年 9 月,聚光文創,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 1
聚光文創_96
6 篇文章 ・ 6 位粉絲
據說三人出版社就算得上中型規模,也許是島嶼南方太過溫暖,我們對出版業的寒冬始終抱持著浪漫與天真。 作者們說,出版市場很艱困,但我們依然想在翻譯領軍的文學市場中,為本土的作者、原創故事發聲。 喜歡做為升學孩子減輕壓力的書,不要厚重百科類型、沒有艱澀的專有名詞,很多重大發現的背後故事更值得我們好好品味。