Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

一段粉末與孔洞的故事:開口大小和粉末堆積的關係

黃誠熙(Sky Huang)
・2015/05/02 ・2328字 ・閱讀時間約 4 分鐘 ・SR值 553 ・八年級

source:nile
source:nile

文/黃誠熙(Sky Huang),目前為UCLA材料系博士候選人

當我們往罐子中倒入粉末,像是把奶粉灑進奶粉罐裡、把鹽倒進鹽罐裡,或是將較大的顆粒,像是把咖啡豆倒入咖啡機之中,是否有注意過這些粉末、顆粒在罐底的樣子呢?當我們稍微觀察它們,會發現這些粉末在罐子底部堆積,像沙漏一般的形成了一個小山丘。

然而,當我們把畫面放大,觀察粉末的微觀的狀況,會發現這些看似堆積得相當緊實的粉末,其實之間有非常多的空隙!如果我們把這些粉末當成成許多顆同樣大小的球,罐子就像是小朋友的球池,而我們就像高大的巨人,把球倒入球池中,就不難想像在這些小球之間存在這許許多多的空隙了。

在我們的生活當中,有時候會希望增加或減少空隙的比例:譬如說,我們把米倒入米桶中,會希望米桶可以裝的米越多越好,也就是希望空隙的比例越少越好。在工業上這些空隙的控制也就更為重要,若是空隙的比例過少,粉末就可能會產生結塊。

-----廣告,請繼續往下閱讀-----

因此,我們可能會想知道,有什麼因素會影響空隙的比例呢?也就是說,我們會想知道如何可以讓粉末堆積得比較緊密,或是比較蓬鬆。

這種現象能以電腦模擬的方法來研究,稱為離散單元法(Discrete Element Method, DEM)[1][2][3]。這種模擬是從分子動力學模擬(Molecular Dynamics Simulations)演進而來的。

飄下的粉末被考慮成一顆一顆性質相同的圓球,當兩顆球碰撞在一起的時候,會藉由給定的作用力互相作用,這些作用力用來模擬兩顆球碰撞之後彈開,遠離彼此,或是兩顆球表面互相摩擦而減緩彼此的速度。罐子、瓶子等容器則被模擬成一個空心的圓柱體,使用類似於圓球的作用力和撒入的球作用。藉由這種電腦模擬方法,我們可以研究使用不同撒入粉末的方法對於顆粒間緊密程度的影響。

Kang, et al., Computers and Geotechnics 39, 98 (2012) [4]
Kang, et al., Computers and Geotechnics 39, 98 (2012) [4]

可能會影響顆粒間緊密程度的其中一種因素是撒粉末的撒入口大小。想像粉末是從一個開口「流」入容器中,那開口的大小就有可能影響緊密程度。因此,我使用離散單元法,做了一系列的模擬,研究撒粉末的開口大小對於粉末堆積的緊密程度的影響。

-----廣告,請繼續往下閱讀-----
Landry et al., PRE 67, 041303 (2003) [1]
Landry et al., PRE 67, 041303 (2003) [1]

模擬的計算是使用LAMMPS分子模擬套裝軟體進行模擬[5]。模擬情況就像上圖所示。圓柱罐子的半徑為10,而撒入的開口為一圓盤型的空間,分別使用四種不同的開口半徑r=2, 4, 6, 8撒入20000顆圓球。在此模擬中,空氣阻力造成的影響忽略不考慮。以下是實際模擬過程的影片:

r=2 (較小開口)

r=6 (較大開口)

從影片中可以發現開口變大的時候撒顆粒的速度比較快。下面一張圖為圓柱內顆粒數目隨時間的變化的圖,橫軸是時間,縱軸是數目。由於撒入的顆粒數目均為20000顆,因此四個模擬都在一樣的數目停止。然而,到達所花的時間不同:r=2噴嘴小,花的時間大約是r=8的16倍(半徑差4倍,面積差16倍),符合直覺。

-----廣告,請繼續往下閱讀-----

fwrf

 

接著我們就可以來研究緊密程度。首先必須要定義緊密程度:在材料科學上,緊密的程度是藉由堆積因子(Packing Factor)來描述。

我們知道所有的體積=球佔有的體積+空隙的體積,因此,我們可以定義堆積因子= 球佔有的體積 / 總體積,這個堆積因子越大,球堆積的情況就越緊密。最緊密的一種堆積方式稱為最密堆積(Close Packed),其堆積因子約為0.74,堆疊方式如下圖:

維基百科圖片 [6]
維基百科圖片 [6]

下圖為噴撒結束後堆積因子隨堆疊粉末高度的變化過程,橫軸是不同的高度,從0~100顯示越來越高,縱軸是區域內的堆積因子,而四種不同顏色的線條分別代表不同大小的開口大小,左下方小圖則是放大高度0~60之間。

fgerg

首先看到堆積因子大概是在0.58左右,是合理的情況,因為粉末是隨機的堆積,因此無法達到最密堆積的緊密程度。接著發現在高度大約50的位置曲線急速下降至0,是粉末的累積的高度。

-----廣告,請繼續往下閱讀-----

來比較不同開口半徑的堆積因子,發現開口越大緊密程度越高,例如說r=8足足比r=2大了0.02。這結果似乎蠻符合直覺的,從影片中我們可以看到,開口小的情況下掉落的顆粒會先落在中間區域失去了動能慢慢滾落旁邊區域,所以沒有足夠的穿透空隙能力;如果一次掉落很多顆粒到表面,那動能很大的球會互相穿透空隙而填滿孔洞。

模擬中沒有考慮空氣阻力影響,如果加入了空氣阻力,那小球的質量就會影響結果(註一)。加入空氣阻力之後,我們就可以研究若是開口不是垂直向下,而是有一個側向的角度時,堆疊的緊密程度的變化。

另一個相關的研究議題是所謂「巴西豆效應」。人們發現一個裝著巴西豆和麥片的罐子,若是將其上下搖動,巴西豆會慢慢地往上移動,最後上層會全部充滿巴西豆,而麥片則是會沉在底部。其原理是在輕微震盪的過程中較小的顆粒會順著大顆粒中的縫隙「沉」下去,而大顆粒就因此而浮了起來。然而,真正的機制目前科學家仍然不是完全了解。

  • 註一:在沒有空氣阻力的情況下,重力、反彈力,以及摩擦力都正比於質量,因此在模擬中作用力其實是可以互相比較,因此質量m就可以互相消掉而不是決定因素;空氣阻力則和質量沒有關係,僅和物體運動的速度有關。因此,加入空氣阻力之後質量就不能互相消掉,而成為一個因素。不同的質量會造成降落中的球體有不同的「終端速度」,而因此,使用不同顆粒質量將會大幅改變撒粉過程中觀察到的現象,以及堆疊的結果。

參考資料:

-----廣告,請繼續往下閱讀-----
  • [1] James W. Landry, Gary S. Grest, Leonardo E. Silbert, and Steven J. Plimpton, “Confined granular packings: Structure, stress, and forces”, Physical Review E 67, 041303 (2003)
  • [2] Leonardo E. Silbert, Deniz Ertas, Gary S. Grest, Thomas C. Halsey, Dov Levine, and Steven J. Plimpton, “Granular flow down an inclined plane: Bagnold scaling and rheology Leonardo”, Physical Review E 64, 051302 (2001)
  • [3] Leonardo E. Silbert, Deniz Ertas, Gary S. Grest, Thomas C. Halsey, and Dov Levine, “Geometry of frictionless and frictional sphere packings”, Physical Review E 65, 031304 (2002)
  • [4] Dong Hun Kang, Tae Sup Yun, Yun Man Lau, Yu Hsing Wang, “DEM simulation on soil creep and associated evolution of pore characteristics”, Computers and Geotechnics 39, 98 (2012)
  • [5]LAMMPS Molecular Dynamics Simulator
  • [6]Cubic crystal system/ wiki
-----廣告,請繼續往下閱讀-----
文章難易度
黃誠熙(Sky Huang)
5 篇文章 ・ 0 位粉絲
黃誠熙(Sky Huang), 目前為UCLA博士候選人。

0

0
0

文字

分享

0
0
0
LDL-C 正常仍中風?揭開心血管疾病的隱形殺手 L5
鳥苷三磷酸 (PanSci Promo)_96
・2025/06/20 ・3659字 ・閱讀時間約 7 分鐘

本文與 美商德州博藝社科技 HEART 合作,泛科學企劃執行。

提到台灣令人焦慮的交通,多數人會想到都市裡的壅塞車潮,但真正致命的「塞車」,其實正悄悄發生在我們體內的動脈之中。

這場無聲的危機,主角是被稱為「壞膽固醇」的低密度脂蛋白( Low-Density Lipoprotein,簡稱 LDL )。它原本是血液中運送膽固醇的貨車角色,但當 LDL 顆粒數量失控,卻會開始在血管壁上「違規堆積」,讓「生命幹道」的血管日益狹窄,進而引發心肌梗塞或腦中風等嚴重後果。

科學家們還發現一個令人困惑的現象:即使 LDL 數值「看起來很漂亮」,心血管疾病卻依然找上門來!這究竟是怎麼一回事?沿用數十年的健康標準是否早已不敷使用?

膽固醇的「好壞」之分:一場體內的攻防戰

膽固醇是否越少越好?答案是否定的。事實上,我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(High-Density Lipoprotein,簡稱 HDL)和低密度脂蛋白( LDL )。

-----廣告,請繼續往下閱讀-----

想像一下您的血管是一條高速公路。HDL 就像是「清潔車隊」,負責將壞膽固醇( LDL )運來的多餘油脂垃圾清走。而 LDL 則像是在血管裡亂丟垃圾的「破壞者」。如果您的 HDL 清潔車隊數量太少,清不過來,垃圾便會堆積如山,最終導致血管堵塞,甚至引發心臟病或中風。

我們體內攜帶膽固醇的脂蛋白主要分為兩種:高密度脂蛋白(HDL)和低密度脂蛋白(LDL)/ 圖片來源:shutterstock

因此,過去數十年來,醫生建議男性 HDL 數值至少應達到 40 mg/dL,女性則需更高,達到 50 mg/dL( mg/dL 是健檢報告上的標準單位,代表每 100 毫升血液中膽固醇的毫克數)。女性的標準較嚴格,是因為更年期後]pacg心血管保護力會大幅下降,需要更多的「清道夫」來維持血管健康。

相對地,LDL 則建議控制在 130 mg/dL 以下,以減緩垃圾堆積的速度。總膽固醇的理想數值則應控制在 200 mg/dL 以內。這些看似枯燥的數字,實則反映了體內一場血管清潔隊與垃圾山之間的攻防戰。

那麼,為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。我們吃下肚或肝臟製造的脂肪,會透過血液運送到全身,這些在血液中流動的脂肪即為「血脂」,主要成分包含三酸甘油酯和膽固醇。三酸甘油酯是身體儲存能量的重要形式,而膽固醇更是細胞膜、荷爾蒙、維生素D和膽汁不可或缺的原料。

-----廣告,請繼續往下閱讀-----

這些血脂對身體運作至關重要,本身並非有害物質。然而,由於脂質是油溶性的,無法直接在血液裡自由流動。因此,在血管或淋巴管裡,脂質需要跟「載脂蛋白」這種特殊的蛋白質結合,變成可以親近水的「脂蛋白」,才能順利在全身循環運輸。

肝臟是生產這些「運輸用蛋白質」的主要工廠,製造出多種蛋白質來運載脂肪。其中,低密度脂蛋白載運大量膽固醇,將其精準送往各組織器官。這也是為什麼低密度脂蛋白膽固醇的縮寫是 LDL-C (全稱是 Low-Density Lipoprotein Cholesterol )。

當血液中 LDL-C 過高時,部分 LDL 可能會被「氧化」變質。這些變質或過量的 LDL 容易在血管壁上引發一連串發炎反應,最終形成粥狀硬化斑塊,導致血管阻塞。因此,LDL-C 被冠上「壞膽固醇」的稱號,因為它與心腦血管疾病的風險密切相關。

高密度脂蛋白(HDL) 則恰好相反。其組成近半為蛋白質,膽固醇比例較少,因此有許多「空位」可供載運。HDL-C 就像血管裡的「清道夫」,負責清除血管壁上多餘的膽固醇,並將其運回肝臟代謝處理。正因為如此,HDL-C 被視為「好膽固醇」。

-----廣告,請繼續往下閱讀-----
為何同為脂蛋白,HDL 被稱為「好」的,而 LDL 卻是「壞」的呢?這並非簡單的貼標籤。/ 圖片來源:shutterstock

過去數十年來,醫學界主流觀點認為 LDL-C 越低越好。許多降血脂藥物,如史他汀類(Statins)以及近年發展的 PCSK9 抑制劑,其主要目標皆是降低血液中的 LDL-C 濃度。

然而,科學家們在臨床上發現,儘管許多人的 LDL-C 數值控制得很好,甚至很低,卻仍舊發生中風或心肌梗塞!難道我們對膽固醇的認知,一開始就抓錯了重點?

傳統判讀失準?LDL-C 達標仍難逃心血管危機

早在 2009 年,美國心臟協會與加州大學洛杉磯分校(UCLA)進行了一項大型的回溯性研究。研究團隊分析了 2000 年至 2006 年間,全美超過 13 萬名心臟病住院患者的數據,並記錄了他們入院時的血脂數值。

結果發現,在那些沒有心血管疾病或糖尿病史的患者中,竟有高達 72.1% 的人,其入院時的 LDL-C 數值低於當時建議的 130 mg/dL「安全標準」!即使對於已有心臟病史的患者,也有半數人的 LDL-C 數值低於 100 mg/dL。

-----廣告,請繼續往下閱讀-----

這項研究明確指出,依照當時的指引標準,絕大多數首次心臟病發作的患者,其 LDL-C 數值其實都在「可接受範圍」內。這意味著,單純依賴 LDL-C 數值,並無法有效預防心臟病發作。

科學家們為此感到相當棘手。傳統僅檢測 LDL-C 總量的方式,可能就像只計算路上有多少貨車,卻沒有注意到有些貨車的「駕駛行為」其實非常危險一樣,沒辦法完全揪出真正的問題根源!因此,科學家們決定進一步深入檢視這些「駕駛」,找出誰才是真正的麻煩製造者。

LDL 家族的「頭號戰犯」:L5 型低密度脂蛋白

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。他們發現,LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷,如同各式型號的貨車與脾性各異的「駕駛」。

為了精準揪出 LDL 裡,誰才是最危險的分子,科學家們投入大量心力。發現 LDL 這個「壞膽固醇」家族並非均質,其成員有大小、密度之分,甚至帶有不同的電荷。/ 圖片來源:shutterstock

早在 1979 年,已有科學家提出某些帶有較強「負電性」的 LDL 分子可能與動脈粥狀硬化有關。這些帶負電的 LDL 就像特別容易「黏」在血管壁上的頑固污漬。

-----廣告,請繼續往下閱讀-----

台灣留美科學家陳珠璜教授、楊朝諭教授及其團隊在這方面取得突破性的貢獻。他們利用一種叫做「陰離子交換層析法」的精密技術,像是用一個特殊的「電荷篩子」,依照 LDL 粒子所帶負電荷的多寡,成功將 LDL 分離成 L1 到 L5 五個主要的亞群。其中 L1 帶負電荷最少,相對溫和;而 L5 則帶有最多負電荷,電負性最強,最容易在血管中暴衝的「路怒症駕駛」。

2003 年,陳教授團隊首次從心肌梗塞患者血液中,分離並確認了 L5 的存在。他們後續多年的研究進一步證實,在急性心肌梗塞或糖尿病等高風險族群的血液中,L5 的濃度會顯著升高。

L5 的蛋白質結構很不一樣,不僅天生帶有超強負電性,還可能與其他不同的蛋白質結合,或經過「醣基化」修飾,就像在自己外面額外裝上了一些醣類分子。這些特殊的結構和性質,使 L5 成為血管中的「頭號戰犯」。

當 L5 出現時,它並非僅僅路過,而是會直接「搞破壞」:首先,L5 會直接損傷內皮細胞,讓細胞凋亡,甚至讓血管壁的通透性增加,如同在血管壁上鑿洞。接著,L5 會刺激血管壁產生發炎反應。血管壁受傷、發炎後,血液中的免疫細胞便會前來「救災」。

-----廣告,請繼續往下閱讀-----

然而,這些免疫細胞在吞噬過多包括 L5 在內的壞東西後,會堆積在血管壁上,逐漸形成硬化斑塊,使血管日益狹窄,這便是我們常聽到的「動脈粥狀硬化」。若這些不穩定的斑塊破裂,可能引發急性血栓,直接堵死血管!若發生在供應心臟血液的冠狀動脈,就會造成心肌梗塞;若發生在腦部血管,則會導致腦中風。

L5:心血管風險評估新指標

現在,我們已明確指出 L5 才是 LDL 家族中真正的「破壞之王」。因此,是時候調整我們對膽固醇數值的看法了。現在,除了關注 LDL-C 的「總量」,我們更應該留意血液中 L5 佔所有 LDL 的「百分比」,即 L5%。

陳珠璜教授也將這項 L5 檢測觀念,從世界知名的德州心臟中心帶回台灣,並創辦了美商德州博藝社科技(HEART)。HEART 在台灣研發出嶄新科技,並在美國、歐盟、英國、加拿大、台灣取得專利許可,日本也正在申請中,希望能讓更多台灣民眾受惠於這項更精準的檢測服務。

一般來說,如果您的 L5% 數值小於 2%,通常代表心血管風險較低。但若 L5% 大於 5%,您就屬於高風險族群,建議進一步進行影像學檢查。特別是當 L5% 大於 8% 時,務必提高警覺,這可能預示著心血管疾病即將發作,或已在悄悄進展中。

-----廣告,請繼續往下閱讀-----

對於已有心肌梗塞或中風病史的患者,定期監測 L5% 更是評估疾病復發風險的重要指標。此外,糖尿病、高血壓、高血脂、代謝症候群,以及長期吸菸者,L5% 檢測也能提供額外且有價值的風險評估參考。

隨著醫療科技逐步邁向「精準醫療」的時代,無論是癌症還是心血管疾病的防治,都不再只是單純依賴傳統的身高、體重等指標,而是進一步透過更精密的生物標記,例如特定的蛋白質或代謝物,來更準確地捕捉疾病發生前的徵兆。

您是否曾檢測過 L5% 數值,或是對這項新興的健康指標感到好奇呢?

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
3

文字

分享

0
3
3
減碳新招:二氧化碳再利用!光觸媒材料可以把二氧化碳還原成工業化學原料?——專訪中研院原分所陳貴賢特聘研究員
研之有物│中央研究院_96
・2023/11/03 ・5793字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|簡克志
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

降低碳排還不夠,奈米材料幫你直接減少二氧化碳!

氣候變遷問題日益嚴重,2023 年 9 月成為全球有史以來最熱的月份,臺灣夏天飆破 38 ℃ 的頻率逐漸增加。為了避免地表升溫超過工業化前水準的 +1.5 ℃,世界各國訂出 2050 年淨零排放的目標,設法減少大氣中的溫室氣體。減碳解方除了低碳電力之外,直接減少二氧化碳也是一條路徑。中央研究院「研之有物」專訪院內原子與分子科學研究所陳貴賢特聘研究員,他的研究專長是奈米能源材料,我們將介紹一種複合光催化材料:硫化鋅(ZnS)/硫化銦鋅(ZnIn2S4,簡稱 ZIS),在太陽光照射下,此材料表面發生的氧化還原反應,會將二氧化碳還原成有用的工業化學原料!

為了避免全球升溫超過工業化前水準的 +1.5 ℃,我們需要減少碳排放與開發負碳技術,並盡量在 2050 年左右達到全球溫室氣體淨零排放量的目標。所謂的「工業化前水準」是指 1850-1900 年的平均溫度。
圖|iStock

地球「保冷」計畫——減碳是關鍵

我們每天排放多少二氧化碳?根據 Our World in Data 的人均二氧化碳排放數據,2021 年全球每人排放的二氧化碳為 4.69 噸,而燃燒 1 公升的汽油大概會產生 2.3 公斤的二氧化碳。換算一下,每人每天排放二氧化碳約為 12.8 公斤,相當於每人每天消耗 5.6 公升的汽油!

根據聯合國政府間氣候變化專門委員會(IPCC)的特別報告「全球暖化 1.5 ℃」,人類活動排放的溫室氣體,已經讓地球表面平均溫度上升了 1 ℃。若以人類目前經濟模式發展下去,碳排放量可預期將不斷上升,大量溫室氣體將讓暖化現象與極端天氣事件更加劇。

氣候科學家警示,地球表面平均溫度需控制在 +1.5 ℃ 以內 註 1,否則將有不可逆的後果,例如生物多樣性大幅度降低的風險。因此,世界各國有了 2050 年淨零排放的共同目標,並不是說都不排碳了,而是要設法讓溫室氣體的碳排放量和碳減少量相互抵消,達到「淨零」的目標。

-----廣告,請繼續往下閱讀-----

要達到淨零的目標,除了尋找與開發減碳電力之外,直接減少二氧化碳也是一個方法。想像一下,如果可以像植物一樣,只要照太陽光,就把二氧化碳變成有價值的碳氫化合物,聽起來不錯吧?但是二氧化碳做為燃燒後的產物已相當穩定,要如何以人工方式讓二氧化碳再次參與反應?

我們可運用「陽光」與「光催化材料」(又稱光觸媒,photocatalyst),不僅可以減碳,還能產生有價值的碳氫化合物,是一種「一舉兩得」的方法!

光觸媒(光催化)材料是什麼?

在談到光催化材料之前,先複習一下「催化劑」這個概念,催化劑不參與化學反應,但是它讓原先不可能的化學反應變得可行!陳貴賢分享,這就像過去從臺北到宜蘭需要翻過雪山,經過九彎十八拐的北宜公路;但如今有了「雪山隧道」之後,就大大降低臺北到宜蘭的時間與難度。「雪山隧道」就是臺北通往宜蘭的催化劑。

除此之外,催化劑也可以說是推進人類歷史發展的重要角色!在過去,農作物施肥只有天然氮肥可以使用,產量有限。而肥料意味著糧食增加與生產力增加,《巫師與先知》這本書就提到位於秘魯的鳥糞島嶼成為各家跨國公司必爭之地。另一方面,波斯人也在各地建造供鳥類休息的高塔,用來收集當肥料用的鳥糞。

-----廣告,請繼續往下閱讀-----

到了近代,陳貴賢提到在 20 世紀初,德國科學家哈伯(Fritz Haber)透過催化劑,在高溫高壓的條件下,以鐵粉做為催化劑,讓氮氣和氫氣轉換成氨。這讓人工固氮成為可能,人類不用再依賴緩慢的生物固氮反應就可以合成化學氮肥,農作物產量也大幅提昇。

本文主角「光催化材料」,顧名思義就是協助光化學反應的催化劑,但光催化材料與一般催化劑不同的地方在於,其化學反應通常發生在固態的表面環境,目標反應物、光子和電子都有參與反應。

比起光催化材料,你可能更常聽到它的同義詞「光觸媒」,例如某某產品宣稱具有「奈米光觸媒消毒」的功能,其實就是照射足夠的光,讓材料表面的氧化還原反應把細菌分解。而之所以光觸媒需要做到奈米尺寸,這是因為奈米小顆粒可以改變物質的電子能量結構,且大幅增加反應的表面積,讓光催化反應更有效率。

陳貴賢:「一個高表面積的奈米粉末,它的表面積可能是薄膜的一萬倍,甚至於十萬倍。」

給你電子,還你原形!光催化材料上的氧化還原反應是怎麼發生的?

光催化材料之所以能夠減少二氧化碳,是因為照光後材料表面發生「氧化還原反應」,氧化反應會失去電子,還原反應會得到電子。陳貴賢與團隊開發的複合光催化材料:硫化鋅(ZnS)/硫化銦鋅(ZnIn2S4,簡稱 ZIS),可以讓二氧化碳還原成甲醇(CH3OH)和乙醛(CH3CHO),這兩種產物都是工業常用的化學原料。反應式如下:

-----廣告,請繼續往下閱讀-----

要持續減少二氧化碳,就要持續發生上述還原反應,持續供給電子。不過,我們要怎麼讓電子快速又順利的補充到材料表面?這裡就開始涉及到半導體的核心問題:電子與電洞的產生、分離和傳輸

陳貴賢與團隊開發的複合光催化材料:ZnS/ZIS,是結合兩種奈米半導體材料,透過水熱法合成,將 0 維的 ZnS 奈米顆粒沉積在 2 維的 ZIS 奈米片之上,形成 0D-2D 結構的 ZnS/ZIS 複合物,就像製作巧克力豆餅乾,不過要複雜得多。

陳貴賢團隊將 0 維的 ZnS 奈米顆粒沉積在 2 維的 ZIS 奈米片之上,就好像做巧克力豆餅乾一樣,形成複合的異質半導體,做為光催化材料用途。左圖是示意圖,右圖是電子顯微鏡下的照片,Zn:In 比例為 1:0.46。
圖|研之有物(資料來源|Nano Energy

既然 ZnS/ZIS 是半導體,當受到光照之後,原來的價帶(valence band)電子會被光激發成導帶(conduction band)電子,原本價帶電子佔據的位置則留下一個空位,就是電洞。電子和電洞的遷移,就是半導體形成電流的原因,因此電子和電洞都稱為「載子」(charge carrier)

還記得上面的還原反應嗎?

-----廣告,請繼續往下閱讀-----

對光催化材料來說,為了在光照環境下把二氧化碳還原成乙醛和甲醇,必須獲得穩定的電子來源,材料內部要迅速補充電子到表面,因此:

照光產生的電荷載子數量越多越好;產生的電子和電洞要傾向分離,分得越遠越好;電子和電洞越快移動到表面參與反應越好。

載子輸送要快速穩定,首先照光產生的載子要多,就有更多電子和電洞參與反應。分離載子是為了避免復合,照光產生的電子和電洞很容易復合,一旦復合,等同於減少載子。再來是載子越快移動到表面越好,可以讓每次的氧化還原反應都是最佳效率。

尋找最有效的光催化材料

陳貴賢團隊總共做了 4 種不同比例的 ZnS/ZIS 光催化材料,依照 Zn:In 比例 1:0.12、1:0.26、1:0.46 和 1:0.99,分別標記為 ZnS/ZIS-1、ZnS/ZIS-2、ZnS/ZIS-3 和 ZnS/ZIS-4。其中,ZnS/ZIS-3 的光催化效果最好,可以有效減少二氧化碳,產生最多的乙醛和甲醇(如下圖)。

水熱法製備的 ZnS/ZIS-3 光催化效果最好,可以有效減少二氧化碳,產生最多的乙醛和甲醇。最右邊是將 ZnS 和 ZIS 簡單物理混合的對照組,沒有介面效應的輔助,催化效果不佳。
圖|研之有物(資料來源|Nano Energy

為了驗證光催化材料產生有效載子的效率,陳貴賢團隊計算了 ZnS/ZIS-3 的總 AEQ 值(apparent quantum efficiency),用來評估「照到光催化材料上的每顆光子數量,產生了多少實際參與催化反應的電子數」。測量之後,ZnS/ZIS-3 的 AEQ 值為 0.8%,量子效率比單獨的 ZnS 材料提高了將近 200 倍!

-----廣告,請繼續往下閱讀-----

這也是為什麼陳貴賢團隊要使用兩種不同的材料結合,因為單一半導體材料照光產生的電子和電洞有很高的復合機率,選擇兩種不同的半導體材料組合,讓兩種材料形成特殊的「能量階梯」就可以有效分離電子和電洞,並且把電子送到它該去的材料表面。

此外,使用兩種半導體材料的好處還有「二次激發電子到更高能階」,以符合光催化反應的能量門檻,自由電子掙脫 ZnS 的束縛之後,繼續往 ZIS 跑,光的能量會繼續把電子往上送到更高能級的材料表面,還原二氧化碳的反應在此發生。

Z 字形跑比較快!控制材料之間的微應變提升氧化還原效率

關於光催化材料的二次激發,陳貴賢提到:「材料低能階,然後光子進來後,把電子激發到高能階去做反應,太陽能電池也是這樣。但是呢,有時候沒那麼剛好,例如激發後的能階不夠高,雖然激發上去了,但電子沒有辦法跟二氧化碳做反應。那我把兩個材料拼在一起,電子上去以後又下來,然後再吸收第二個光子上去,那就變得很高了,高了以後它的反應效率就提升很多。」

如果我們把光催化材料的二次激發過程畫成示意圖,如下圖所示,電子在 ZnS 束縛區受到第一次光子的激發,變成自由電子,接著經過設計完善的材料介面,先降到較低的 ZIS 束縛區,受到第二次光子的激發,再次變成自由電子,跑到光催化材料的表面,和二氧化碳發生還原反應,將二氧化碳變成可再利用的乙醛和甲醇。

-----廣告,請繼續往下閱讀-----

看看電子走過的路,如果向左歪著頭看,是不是就是一個 Z 字呢?科學家把這個過程稱為「直接 Z 方案」(Direct Z-scheme)。「直接」的意思是,電子從 ZnS 跑到 ZIS 的過程,不需要再經過一個中間地帶,降低電子和電洞復合的機會。

為了將二氧化碳轉換成可用化學原料,電子在材料內部能階走 Z 字路徑,過程中受到光的二次激發,最後到達材料表面。電子參與還原反應,將二氧化碳變成乙醛和甲醇。電洞參與氧化反應,將水變成氧氣。
圖|研之有物(資料來源|Nano Energy

為什麼陳貴賢團隊設計的「直接 Z 方案」光催化材料,電子可以不需要中間的「轉接站」,直接轉移到另一個材料上呢?這裡也有一個巧思:不同材料之間的「微應變」

不同材料的晶體排列規律是不一樣的,當兩種材料接在一起時,接面處會發生「晶格不匹配」,也就是兩種材料的原子會互相卡到、晶格微微變形。但是,如果我們可以控制微應變(Strain)的程度,就可以控制兩種材料「能量階梯」的相對位置,微應變可以讓材料接面自動帶有「轉接站」的功能,進而形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。

總之,陳貴賢團隊開發的這套材料組合,是有微應變誘導的直接 Z 方案光催化材料,可做為未來量產光催化材料的研發設計參考,同時也是減碳的解方之一。

-----廣告,請繼續往下閱讀-----
ZnS 奈米顆粒接在 ZIS 奈米片上,兩邊的晶格排列方式不一樣,發生「晶格不匹配」,接面處晶格會微微變形。如果控制微應變(Strain)的程度,就可以微調材料能階的相對位置,微應變可以讓接面帶有「轉接站」的功能,形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。
圖|研之有物(資料來源|Nano Energy
ZnS 奈米顆粒接在 ZIS 奈米片上,兩邊的晶格排列方式不一樣,發生「晶格不匹配」,接面處晶格會微微變形。如果控制微應變(Strain)的程度,就可以微調材料能階的相對位置,微應變可以讓接面帶有「轉接站」的功能,形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。
圖|研之有物(資料來源|Nano Energy

綠能趨勢——光催化材料未來可期

陳貴賢表示,目前表面科學和材料是中研院原分所的主要研究領域,他的實驗室選擇能源材料作為研究主軸,有太陽能電池和熱電材料,同時團隊也專注研究可還原二氧化碳的光催化材料,以及與燃料電池相關的催化劑。

陳貴賢看好將來能源材料的發展,因為在 2050 淨零排放之前,有愈來愈多企業紛紛加入「RE100 倡議」的行列,企業必須承諾最晚於 2030 年前使用 100% 再生能源。最著名案例是科技巨頭蘋果Google 和微軟等公司都已宣布其全球供應鏈將符合 RE100 的要求。其中,台積電為蘋果主要供應商,2020 年也加入 RE100,目前為臺灣再生能源的主要買家

可以預見,將來風能、太陽能與燃料電池的相關材料有其市場需求,而能夠減少二氧化碳的光催化材料,也將成為全球減碳的利器。陳貴賢提到,當前光催化材料還在基礎研究階段,目前的人工光合作用效率約 1%,接近大自然效率,而團隊希望提升到至少 5% 到 10% 以上,方能有其實用價值。

陳貴賢進一步強調,未來效率提高之後,能夠轉化二氧化碳的光催化材料就會有很大的經濟價值,不僅轉化後的燃料可以賣錢,處置二氧化碳原料亦可以收取負碳費用,是一種前所未有的概念。

陳貴賢強調,未來效率提高之後,能夠轉化二氧化碳的光催化材料就會有很大的經濟價值。
圖|研之有物

註解

  1. 根據 IPCC 的資料,如果要將全球暖化幅度控制在 +1.5 °C 以內,必須在 2050 年左右達到二氧化碳的淨零排放目標,同時也要大幅度降低非二氧化碳的溫室氣體排放,特別是甲烷。
-----廣告,請繼續往下閱讀-----
研之有物│中央研究院_96
296 篇文章 ・ 3657 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

2
0

文字

分享

0
2
0
黏得住還是黏不住?如何找出最適合的接著劑?
鳥苷三磷酸 (PanSci Promo)_96
・2023/06/20 ・3791字 ・閱讀時間約 7 分鐘

本文由 LOCTITE® 樂泰 委託,泛科學企劃執行。

「結構接合」這個詞雖然很陌生,卻存在於我們四周!

只要能將兩塊材料黏在一起,拿起來不會散掉,都能被稱作「結構接合」,像是傢俱或電器產品上,就有許多螺絲把兩塊零件固定起來,另外,工業上「複合材料」的製作,也是一種「結構接合」,像是自行車、飛機,或手機殼所使用的「碳纖維」,就是將碳纖維纏繞在塑膠上,再用接著劑固定所形成的複合材料。

簡而言之,這就是結構工程師的活兒!

結構接合的三種方法

一般來說,結構接合可以粗分為三種方法。

1. 螺栓(bolting):也就是傢俱家電上的螺絲釘,用額外零件來把兩塊材料鎖緊,這種作法是最方便的,鑽個洞、鎖進去、大功告成,但最大的問題是受到的應力,會全集中在螺絲的洞口上,就像是你撕開用釘書機釘起來的文件,輕輕一扯,訂書針附近就會裂開,文件就會脫落。

-----廣告,請繼續往下閱讀-----

2. 焊接(welding):兩片金屬或熱塑性塑膠,可以局部加熱使材料熔化再冷卻後固定,或是用熔點較低的「焊料」加熱後直接接合,另外也有不需要加熱到熔點,透過外力敲打來接合的「鍛焊」,日本刀的刀身,是由「刀心」、「刃金」與兩塊「鐵皮」,藉由鍛焊的方式接合在一起。焊接雖然不會像螺栓一樣應力集中在洞口,但也會讓應力集中在焊接線上,此外,也不是所有材料都能用焊接加工。

日本刀的刀身結構。圖/wikipedia

3. 黏接(Bonding):用膠水、三秒膠……等「接著劑」塗在兩塊材料的表面,形成「膠體」後黏在一起,好處是不會有上面提到的應力問題,但必須考慮接著劑的適用範圍,因此接著劑有非常多的不同型號,來應對不同材料或使用情境。由於黏接的應力問題最少且使用方便,因此在工業上被大量使用,除了取代原有螺栓與焊接,在「碳纖維」等複合材料製作上,接著劑可說是唯一的解決方案。

怎麼測量接著劑的效果?

測量接著劑的效果,相當於測量膠體什麼時候會斷裂。在材料力學上,通常會討論「拉伸(Tensile)」、「擠壓(Compression)」、「剪切(Shear)」這三種行為,對材料造成的影響。

要測量上述三種情況,我們可以用機器以特定方式,對受測物整體均勻緩慢施力,直到兩片材料分離,就能得到「理論上」膠體能承受的最大力量大小。這種均勻緩慢施力的測量方式,稱為「靜態分析」。

為什麼「靜態分析」得到的結果是「理論上」呢?這是因為真實世界的受力狀況,大多都不是均勻緩慢的。像是撞車就是「非均勻且快速」的衝擊,車子受力會集中在某個點上,且作用時間很短。

-----廣告,請繼續往下閱讀-----

而針對接著劑的真實效果,通常會著重討論「膠體被撕開」的狀況,這包含了「劈裂(Cleavage)」與「剝離(Peel)」兩種情況,「劈裂」是撕開較為堅硬的材料時遇到的狀況,而「剝離」則是較有彈性的材料,基於接著材料的彈性差異,膠體斷裂的方式會不一樣。

上圖是劈裂與剝離的示意圖,會發現無論是劈裂還是剝離,膠體的受力都不是均勻的,會全部集中在裂縫邊緣上,我們無法用「靜態分析」來評估膠體的真實狀況,因此必須使用「動態分析」來確認。

經典動態分析—夏比衝擊試驗(Charpy impact test)

動態分析就是更接近真實狀況的分析(廢話),其精隨主要是在分析方法上,靜態分析是做「力」分析,而動態分析則改做「能量」分析,那為什麼改成「能量」分析就能更容易解決真實問題呢?

我們先想一個情況,當你用槌子把釘子釘到木板上時,突然想知道自己對釘子施了多少力。這時,你有兩個方法可以得到答案:

  1. 用「力」分析:錄下槌子撞到釘子的過程,分析撞擊過程的受力狀況,包含槌子的運動軌跡、落下的角度、速度改變的過程。
  2. 用「能量」分析:透過木板的阻力係數與釘子釘進木板的長度,回推撞擊的力量大小。

大家應該都會選第二種方法來算答案吧?因為比第一種來得簡單!這就是用「能量」的好處,我們可以不用考慮施力方向或運動變化,以更簡單的方式來得到相同的結果。

在動態分析中,最經典的分析方式就是「衝擊試驗」,大家直覺想到的可能是汽車的衝擊試驗,看安全氣囊會不會正常運作或是車體結構的受損狀況,這的確也是動態分析的一種,但今天,我們會從更基礎的夏比衝擊試驗(Charpy impact test)來說起。

-----廣告,請繼續往下閱讀-----
夏比衝擊試驗的器材。圖/wikipedia

夏比衝擊試驗會把左邊的擺錘當作衝擊力的來源,當擺錘拉高到一定高度後(h’),我們就能透過重力位能公式(Eg = mgh),知道他初始的能量是多少(Wh’),而樣本會擺在下方,之後釋放擺錘衝擊樣本。

結構圖。圖/wikipedia)

當樣本被擊破了之後,擺錘會繞到另一邊並有一定的高度(h),透過這個高度我們能知道擺錘殘餘的能量有多少 (Wh),這時只要 Wh’ – Wh,就能得到作用在樣本上的能量有多少了!

衝擊試驗的好處是,我們可以在同樣能量的情況下,透過改變樣本的形狀與撞擊點等條件,模擬出更接近真實的狀況。

LOCTITE® 樂泰:眼見為憑 – Seeing is Believing!

LOCTITE® 樂泰是全球接著劑的龍頭,自開業初期,就秉持著「眼見為憑(Seeing is Believeing)」的理念,不僅在客戶面前直接實驗演示產品效果,更創建了「移動實驗室」,巡迴各地協助客戶分析與排除接著劑的使用問題。

-----廣告,請繼續往下閱讀-----

自 1964 年以來 LOCTITE® 樂泰的移動實驗室一直有效地指導客戶和培訓銷售人員 – 拍攝於 Newington, Connecticut (美國康乃狄克州的紐因頓)。

如今 60 年過去,LOCTITE® 樂泰仍秉持著「眼見為憑」的精神,為客戶解決問題。

LOCTITE® 樂泰出品的接著劑,除了有做「膠合收縮測試」,也輔以其他「動態分析」來測試產品特性,幫助客戶快速取得不同材料接合的有效數據,以下是漢高 LOCTITE 樂泰實驗室在  PIDC 塑膠中心發表複合材料的部分實驗結果。

第一部分:碳纖維複合材料的動態測試報告

實驗材料大小為 2.5 x 114.3 x 1.6 mm,材料上下表面貼上「3K 碳纖維製成的 45° 單向布」,每一層碳纖維重(FAW)為 175 g/m2,材料表面粗糙度以算術平均數(Ra)取得的數值為 50 ~ 60 𝜇m。兩片材料以水平的方式上下堆疊,並用 5 種不同的接著劑,接合上下表面。

-----廣告,請繼續往下閱讀-----

實驗方法為試驗衝擊,使用擺錘撞擊受測物體的接合處直到材料分開,來測試接著劑的抗衝擊性能,為了數據呈現的易讀性,我們將衝擊能量(Impact Energy)的大小,化約為衝擊參數(Impact index)。

實驗結果分為上接著劑後壓緊接著,中間沒有膠體空隙(Gap 0mm)的藍色數據;以及使用 Spacer 控制,有 0.17mm 的膠體空隙的紅色數據,我們可以發現在 3 號接著劑上,有著最好的抗衝擊性能。

第二部分:可回收熱塑型複合材料的動態測試

實驗材料為長興材料的可回收熱塑型複合材料 —— TP032C – U52。

材料大小為 2.5 x 100 x 1.6 mm,複合材料外部包覆的碳纖維是台麗朗的 TC36P,包覆的碳纖維重(FAW)為 110 g/m2,共包覆 8 層,材料表面粗糙度以算術平均數(Ra)取得的數值為 50 ~ 60 𝜇m。

-----廣告,請繼續往下閱讀-----

實驗方法為垂直撞擊,透過改變高度與負重,來控制衝擊能量大小。

實驗結果為 4 號接著劑對可回收熱塑型複合材料的效果最好,但如果我們回頭看接著劑本身的特性,會發現 4 號也許沒有那麼適合,因為 4 號接著劑的固化溫度很高,已經超過熱塑形複材的熱穩定溫度上限,這樣的溫度很可能會讓熱塑型複合材料變形,因此固化溫度較低又有一定強度的 3 號或 1 號接著劑,才會是熱塑型複合材料的首選。

最後,LOCTITE® 樂泰也做了生動有趣的影片,來演示接著劑在不同狀況下的效果。

在影片中,LOCTITE® 樂泰先是用接著劑黏接兩個治具——S45C中碳鋼的單邊,並對有接著劑的單邊進行正向力測試,發現直到 6298 公斤重,都還不會分開,但只要從沒有接著劑的部分拉扯,只要 1124 公斤重,膠體就會剝離破壞。而這也正反映到前面所說的,必須對各種使用情境去做動態分析,才能知道接著劑的真正能耐!

-----廣告,請繼續往下閱讀-----

延伸閱讀

LOCTITE®樂泰品牌官網

歡迎加入 LOCTITE®樂泰 Fanclub 工業用接著劑交流社團 交流專業接著知識!

-----廣告,請繼續往下閱讀-----