Loading [MathJax]/extensions/tex2jax.js

0

0
1

文字

分享

0
0
1

從「已知用火」到駕馭太陽 紀念光研究一千年

劉珈均
・2015/02/02 ・6349字 ・閱讀時間約 13 分鐘 ・SR值 545 ・八年級

-----廣告,請繼續往下閱讀-----

SchallerChristian_PlakatLicht.indd
奧芬堡大學媒體資訊傳播系學生為光之年製作的海報。 Christian Schaller© Offenburg University cc

一千年前的1015年,生於今日伊拉克南部的阿拉伯學者伊本海瑟姆(Ibn al-Haytham)寫了七冊《光學之書》(Kitab al-Manathir,英文Book of Optics),為人類首篇光學研究,敘述眼睛構造、視覺理論與光的物理特性。海瑟姆被視為第一個科學家,因其所得皆透過謹慎的實驗與紀錄而來。海瑟姆提出人能觀看,是因為光線照射到物體後反射至眼睛,而非過往認為的眼睛發出光線照亮物體;他也提出大氣使光偏折,研究出光在曲面折射的數學公式,並試圖做實驗解釋彩虹、日食與月食等現象。

一千年後,人類發明各種光源點亮夜晚、發射衛星捕捉星光、用光纖網路串聯起全世界,短短一百多年的時光,光學科技改造了人類的文明與生活,也改變了運作千萬年的地球生態。

一千多位科學家與各方人士1月19、20日齊聚「光之城」(City of Light)巴黎,正式為「國際光之年(International Year of Light, IYL)」拉開序幕。聯合國教科文組織(UNESCO)將2015定為國際光之年,以此紀念千年來人們在光領域的研究足跡及各種光技術的發展。2015恰逢許多光學里程碑的周年:1015誕生首篇光學研究、1815菲涅爾提出光的波動性、1865年馬克士威發表光電磁傳播理論、1905愛因斯坦提出光電效應與1915廣義相對論、1965彭齊亞斯與威爾遜測量到宇宙微波背景輻射。

包含台灣在內,全球共71個國家地區共襄盛舉光之年,用一整年時間舉行光學科技相關的演講與活動,提醒光在人類生活扮演的重大角色,並討論如何以光科技解決當前問題。

-----廣告,請繼續往下閱讀-----
海瑟姆的光學之書。(圖:維基)
海瑟姆的光學之書。(圖:維基)

從「已知用火」到光纖網路、駕馭太陽:光科技與人類文明

夜幕降臨,華燈初上,人工光源徹底改變了人類的夜晚活動型態。在夜晚光源只有星星和月亮的年代,夜晚的可見度大約只有幾公尺,對人們而言,晚上意味著一天的勞動與社交互動告一段落,所有人都要從戶外回到屋內,會在外遊蕩的只有危險與不良份子。晚上出外遊走這件事最早可追溯到17世紀法王路易十四頒布法令,將巴黎街頭掛上燈籠,接下來的公共照明系統還有燃燒鯨魚油的燈具、19世紀出現的煤氣燈、刺眼的弧光燈,直至19世紀末電燈登場。隨著工商時代發展,漸漸地人們在夜晚工作、從事娛樂活動、發展各式24小時服務。

medium_2571896883
photo credit: prashant maxsteel [ read profile ] via photopin cc

LED是另一波照明革命,三位日本科學家赤崎勇、天野浩與中村修二於1990年代開發出高品質藍光LED,在此之前的半世紀只有紅光與綠光LED,藍光的加入得以配製出白光LED,延伸應用於照明、液晶螢幕、手機面板螢幕的背光晶片等。LED照明節省了90% 的能源,發光效率可達每瓦200流明,壽命可輕而易舉達到幾萬小時,遠遠長於其他照明技術(一般白熾燈泡發光效率約每瓦24流明,平均壽命約1000小時),三位科學家也因此貢獻共同獲得2014諾貝爾獎。

「醫學影像技術的突破從光學開始。」台大光電工程所教授孫啟光說,光學望遠鏡讓人類往天空探索,從此知道地球非宇宙中心;而光學顯微鏡是第一個醫學影像儀器,讓人開始了解人的內部組成,也造就了細胞病理診斷。醫學影像技術讓醫師觀察人體內部構造、協助診斷與分析病情,其他常見的醫學影像儀器還有核磁共振、X光、電磁斷層掃描(CT)等等,除核磁共振外,也都與光有關,只是並非一般所看到的可見光。

1960年梅曼(Theodore Harold Maiman)製出第一台雷射,雷射發明逾半世紀,在醫療到消費性電子產品、通訊、軍事科技等領域皆扮演舉足輕重的角色,例如運用雷射治療眼科、皮膚科與牙科疾病;常見的用品如DVD播放器、條碼讀取機;軍事武器以雷射標定瞄準等。雷射也是尖端研究的重要工具,目前有十幾位諾貝爾獎得主的研究與雷射有關,除了雷射本身,還有全像片、雷射冷卻、玻色─愛因斯坦凝聚態。

-----廣告,請繼續往下閱讀-----
medium_1747920810
photo credit: Twistiti via photopin cc

現代生活大量依賴的網路、雲端服務,就靠光纖傳送大量訊息,1966年高錕研究發現,減少玻璃雜質,便能解決光藉著玻璃全反射傳送的途中,訊號嚴重衰減的問題,進而達到長程通訊,此研究克服了光通訊長久以來的障礙。光纖具有體積小、訊號衰減低的優點,且光纖不受電磁干擾,每條光纖可用不同波長的頻段獨立傳送訊息,因此光纜能傳送的訊號大量而準確,被譽為光纖之父的高錕獲2009諾貝爾獎。

人類一直嘗試駕馭太陽的能量,早在1839年,法國物理學家貝克雷(Alexandre-Edmond Becquerel)就發現了光伏效應,即某些材料照到光時會產生微小電流,但要等到一百多年後的1954,三位貝爾實驗室的科學家才發明出第一個能有效將太陽能轉換為電能的矽基太陽能電池,當時該電池在太陽直射下的效率只有6%左右,現在先進的太陽能電池已可達到40%。太陽能發電的應用觸角開始延展,例如太陽能車、海水淡化系統等。現今太陽能應用尚未成為主流,但氣候變遷的威脅愈來愈緊迫,帶動替代能源的需求,國際能源總署(IEA)估計,到2060年,太陽能科技可望提供世界三分之一的能源。

情歌與舞蹈的顏色:光與藝術

medium_5508100799
photo credit: Sam Breach via photopin cc

光也撩撥著人們的情感。畫家以光影描繪情感的氛圍與張力;自4世紀開始,彩繪玻璃將自然光化為燦爛奪目的藝術品,教堂、古蹟、清真寺常以彩繪玻璃述說古老的傳說故事,光彷彿是具有生命的精靈,觸碰人們靈魂深處的悸動;演唱會、主題樂園,常見雷射光激發高昂情緒與驚呼聲;攝影與電影捕捉當下的光,讓時空與光線永恆駐足。而若要說以玩弄光影為業、融會各種藝術元素的魔術師,大概莫過於劇場燈光設計師,自15世紀的文藝復興時期,便開始有藝術家認知燈光設計的重要,利用燈光調節影響觀眾情緒。

「其實我比較看重的是影子,未必是光,」劇場燈光設計師車克謙說:「光的角度或是光在物件上造成的陰影對我吸引力比較大。我觀察影子的構成,去發現光源是什麼。」車克謙經驗豐富,曾操刀高雄世界運動會主場的開閉幕式、幾米音樂劇《向左走,向右走》、《地下鐵》等各式戲劇與大型戶外展演。

-----廣告,請繼續往下閱讀-----

「光可以幫助一個物件,也可以毀了它。」而燈光設計就是讓觀眾看到想讓他看見的細節,隱藏不想讓人注意到的地方。運用燈光的亮度與色澤導引、加強觀眾的情緒是設計師的基本功。舞台上的演員在說故事,燈光也在說故事,燈光協助帶出戲劇的動線,有時也暗示戲劇的隱喻與伏筆,車克謙笑著說:「有時候燈光還要克制表演慾,不要太『愛講話』。」過多過強的光會失去焦點,或讓觀眾一片昏花,什麼也看不到。不同展演需要的光不一樣,如舞蹈表演大部分只有簡單布幕,幾乎全靠光影創造出山林、海洋、竹林等意象,帶領舞者與觀眾穿梭不同空間。

車克謙說,平常會強迫把眼睛當照相機,從環境中記錄光的狀態和屬性,如冬天的光、紐約城市的光、午後咖啡店的光。對聲音的感受也是創作靈感來源,聽著旋律,車克謙便不自覺在腦中編織場景的顏色與氛圍,他舉例,例如搖滾樂大概就是紅色、黃色、橙色加上一些閃爍效果,情歌則要看是男聲或女聲、或熱戀或憂鬱,紫色、藍色、粉色都有可能。

「No light, there is no space.(少了光,就沒有空間存在)」知名劇場設計師羅伯˙威爾森(Robert Wilson)常將這句話掛在嘴邊。他認為,「因為有光,黑暗才真的變黑。因為黑暗,才感受得到光線的明亮。這就是空間的基本概念,也是空間的原理。」光決定了許多事物,形成敘事結構與節奏,「它可以跟音樂合作或是對抗,讓事物變得明顯或晦暗,為動作定下秩序。」[1]

全球光害地圖的反思:我們正在失去夜晚

夜晚地球(2)
夜晚的地球。photo credit: NASA Goddard Photo and Video via photopin cc

燈光點亮了人類的文明與生活方式,我們用人造燈光點亮夜晚至今不過一百多年,已顛覆了人類與生態經過千萬年演化而適應日夜交替的習性,人工照明改變人類生活型態,但也帶來各種問題,一些國際組織與研究單位發起各式活動呼籲大眾正視光汙染。

-----廣告,請繼續往下閱讀-----

國際暗空協會(International Dark-Sky Association, IDA)致力於保護夜間環境、推動適當照明,IDA將光害定義為:「所有人工照明的負面影響,包括天空輝光(sky glow)、刺眼的強光(glare)、無端闖入的光線(light trespass)、雜亂的光線(light clutter)、夜晚受損的能見度以及浪費的能源等。」光汙染的影響層面不只是我們再也看不到經典老歌所唱的「Starry Starry Night」,光害也代表著浪費能源、干擾生態,全世界至少有三成左右的脊椎動物、六成左右的非脊椎動物屬於夜行性,再加上習於暮色或清晨出沒的生物,就不難想像光害的影響層面有多廣闊。[2]

IDA製作的影片〈Losing the Dark〉:

美國國家光學天文台(National Optical Astronomy Observatory, NOAO)也發起國際性的公民科學家活動「全球光害地圖計畫(Global at Night)」,介面有20幾種語言,號召全球公民上傳資料,描述自己所在地區的夜空明亮度、天氣狀況,藉此蒐集全球光汙染資料。去年2014共有來自94個國家、17,500次的觀測數據,八年下來已從115個國家累積了近十萬筆觀測數據。[3]

中央大學光電系教授孫慶成說,照明的服務對象是眼睛,但我們現在有許多照明發出的光都是不必要的,而這些多餘的光就四處亂竄,闖入夜空、干擾視線等,例如一般路燈,有五分之一的光浪費在打往水平或天空方向,造成天空輝光。要解決光害其實沒那麼困難,孫慶成說,要達到適度照明,透過調整照明裝置設計就能改善,孫慶成帶領的中央大學團隊設計的LED照明可讓98%的光與能源都貢獻於照亮街道,而非照亮夜空,節能達40%至60%。孫慶成認為,良好的照明應該是:「照亮回家的路,也將天空留給星辰。」

-----廣告,請繼續往下閱讀-----
照明設計對照
(上)一般常見的路燈照明;(下)改良後的照明。(圖/孫慶成提供)

現實生活中也有類似例子,國立科學博物館植物園的燈光造景即是一例,每天入夜後兩個小時半,植物園外的LED燈將七彩變幻光芒投射到八層樓高的溫室桁架與玻璃帷幕,周末的燈光秀以234組燈具將植物園妝點為光雕藝術品。這些LED燈來自回收燈具,一天電費不超過新台幣35元,且燈光照射角度經過設計,光線只落在建築物上,不會進入夜空,也不會進入溫室影響植物作息;舊金山一家叫作民間暮光(Civil Twilight)的公司讓路燈隨月亮光線而自動調節亮度,讓夜間的亮度維持平衡,尋回夜晚自然氛圍,並減少四分之三的照明費用。

讓光更人性:光對人體的影響

光之年海報(2)
奧芬堡大學媒體資訊傳播系學生為光之年製作的海報。photo credit:Waldemar Schmidt © Offenburg University cc

「光對人類有直接、長遠、且重要的影響,光無所不在。」孫啟光說,首先就是視覺,人類如何看到萬物便是藉由光線照射物體後,反射進入眼睛的視網膜、視神經,到大腦解讀。他開玩笑地說,他不清楚一般人如何感受光,他自己被太陽曬的時候就很有感覺。

孫啟光研究專長為非侵入式的生醫影像,他說,開發光電醫材必須確認許多事情,才能進到臨床實驗、對病人負責。現在許多生醫影像技術使用的是與雷射手術差不多波段的光源,但作為非侵入式觀測人體與動手術(破壞組織的)的光源應該要分開,使用不同顏色(波段)的光。「身為一個科學家,我想要了解更多人與光的互動關係。」孫啟光對於光和人體的互動特別感興趣,光如何影響人體?有的光波段會傷害人體,有的不會,劑量也可能造成差別;不同組織對光的反應也不同,例如光可以穿透眼球到達視網膜,卻不能穿透人體其他部分,我們的基因演化設計了不同器官對光有不同反應,目的又是什麼?

工研院光電所設有台灣首座國際級的人因照明實驗室,研究在不同情境與時間下,各種光線配置對人的清醒程度、情緒、工作效率、神經系統等生心理影響,探討適合的人因照明參數。市售照明光源常見眩光與LED藍害問題,當眼角餘光直接或經物體反射看到光源(如書頁上的小光點),刺目的燈光導致無法清晰的觀看物體,此干擾為眩光,眩光會讓眼睛不適,易疲勞、注意力不集中;藍害則會讓視網膜變質,甚至造成白內障,為不可逆的傷害,但相反的,藍光也可用於治療季節性憂鬱,端看如何適切地使用光源。光源閃爍也漸受重視,有研究指出閃爍的燈光可能造成偏頭痛,也有較為極端的例子,日本曾有光敏癲癇症患者因看了神奇寶貝卡通,承受不住皮卡丘放電時劇烈的光線變化而送醫。

-----廣告,請繼續往下閱讀-----

工研院光電所工程師趙偉成說,光對人的影響主要可分為視覺、心理、生理、生物四個層面,視覺是指對於眼睛的影響,例如藍害與眩光;心理與生理層面是人體照光後的「生理回饋」,如心跳、血壓、皮膚阻抗、腦波訊號等,與神經系統有關;生物層面則是對賀爾蒙的影響,如現在常見學者研究照明對褪黑激素、生理時鐘的影響。後三者難以完全切割,不過生物效應與生心理層面之間的交互影響、運作機制尚未有充足的研究。

良好的光線對人如此重要,在某些地區,照明是急待解決的經濟與健康議題,世界上約有15億人口依賴蠟燭或是會產生對人體有害氣體的煤油燈度過漫漫長夜,這些人口多為發展中國家的居民,夜晚缺乏足夠照明使得白天須工作貼補家計的孩童無法夜晚學習讀寫,學業落後,甚至醫院也無法於夜晚運作。UNESCO光之年的重要計畫之一便是在這些地區推廣可攜式的太陽能LED照明,以期打破當地的惡性循環。

光科技的未來

Internet_of_things_signed_by_the_author(wiki)
孫慶成說,未來光電科技將與物聯網、雲端的概念合流。(圖:維基)

「台灣的光電產業產值大約占了全世界五分之一!」兼任光電學會副理事長的孫慶成說,台灣的光電產業舉足輕重,其中又以LED照明、顯示器、太陽能為主。對於光科技的發展趨勢,孫慶成勾勒一連串的藍圖:「未來大概是眼睛張開所看到的一切東西都與光相關!」光科技深入資訊(含顯示與感測)、能源、照明領域,光既是能量來源,也是訊號。試著想像這些場景:或許車子不再需要人為駕駛,而是雲端控制;可能所有資訊濃縮於一副眼鏡上;可能手機只有一片指甲般大小,這些藍圖必須利用無數感測器以及取得、傳輸、顯示、儲存大量資訊的技術,這便是奠基在光電技術之上,與物聯網、雲端的概念合流。

孫啟光希望,國際光之年能喚起大家對光的重視,了解光的多面向,特別是光對人的影響,也希望台灣能進一步發展更多人本應用之光電產業。光電學會以提出光電效應的{“type”:”block”,”srcClientIds”:[“3499b1ad-7165-43f2-8256-e5dd5686e0a6″],”srcRootClientId”:””}愛因斯坦為主角,設計了光之年主燈擺在三月台中的元宵燈會。光電學會秘書長黃建璋說,接下來的一年會舉行50至100場巡迴演講,並與各大學光電系所合作辦營隊。台北天文科學教育館一月底也舉辦為期七個月的「光的奧秘」特展,內容包括以LED與投影建構模擬宇宙大霹靂的通道、展出太陽能應用與福衛五號的光學望遠鏡,也有利用光線折射、反射原理設計的視覺遊戲。

-----廣告,請繼續往下閱讀-----

1999諾貝爾化學獎得主阿米德˙齊威爾(Ahmed Zewail)在巴黎光之年開幕式上呼籲大家對話以解決世界的需求。歐洲物理協會會長、IYL策劃委員會會長約翰˙杜德里則說,光科技在生活中的角色如此重要,這是光學與光電社群與大眾交流知識的機會,「我們只有一次機會,舉行慶祝很不錯,不過我們得盡快開始工作了!」

備註

  1. 耿一偉,《羅伯˙威爾森──光的無限力量》,台北:國立中正文化中心,2009。
  2. Paul Bogard,陳以禮譯,《夜的盡頭》,台北:時報文化,2014。
  3. 全球光害地圖計畫中文版介面的光害地圖

訪問之外的參考資料

  1. UNESCO 國際光之年官網
  2. Optical Society,〈New LED Streetlight Design Curbs Light Pollution〉,2013
  3. Clifford A. Pickover,顏誠廷譯《物理之書》,台北:時報文化,2013。
  4. 光之年巴黎開幕報導編譯來源:〈Light Is Power, Inspiration, Source, Say International Year of Light Speakers〉〈Solutions enabled by light inspire at International Year of Light celebration〉
-----廣告,請繼續往下閱讀-----
文章難易度
劉珈均
35 篇文章 ・ 1 位粉絲
PanSci 特約記者。大學時期主修新聞,嚮往能上山下海跑採訪,因緣際會接觸科學新聞後就不想離開了。生活總是在熬夜,不是趕稿就是在屋頂看星星,一邊想像是否有外星人也朝著地球方向看過來。

0

0
0

文字

分享

0
0
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
一年有幾週?背後竟隱藏著宗教、政治與天文觀測的紛爭?為何決定一年有幾週如此大費周章?
F 編_96
・2025/01/06 ・3256字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

每到歲末或年初時,大家常會打開新的行事曆,做新一年的計畫。從直覺來看,我們常以「一年有 365 天」或「閏年 366 天」的概念衡量時間。如果將 365 天除以 7(每週 7 天),得到的答案約是 52 週又 1 天;若遇到閏年(366 天),則是 52 週又 2 天。換句話說,無論是一般年還是閏年,一年都不可能整除,剛好 52 週,總要多出 1 或 2 天。

對多數人而言,這種「約 52 週加 1 天」似乎是再自然不過的事。然而,實際上人類在訂定「一年幾天」與「多久閏一次」的規則上,一路走來經歷了漫長探索與爭議。自古以來,不同文明先後採用依太陽或月亮運行週期為基準的曆法;儘管最終各國大多轉而採行以太陽週期為主的格里高利曆(Gregorian calendar),但並非一蹴可幾,而是一段包含宗教、政治、天文觀測的故事。

一年感覺很長,其實也就 52 週(+1 或 +2 天)。 圖/unsplash

從洪荒到曆法:人類如何決定時間單位

追溯人類對時間的測量,可遠至一萬多年前:考古發現顯示,澳洲原住民或新石器時代的部落,便會根據太陽、星象的移動,來推算季節變遷與祭典進行。後來,隨著農業興起,區分一年四季並掌握耕作節氣成了首要需求,日曆的概念亦逐漸成型。

  • 宗教推力:古埃及與蘇美等文明常需要在特定時刻進行祭祀或儀式,故對晝夜長短、月相週期乃至每年太陽位置頗為講究。
  • 日月曆法之爭:有些文明依月亮週期(約 29.5 天)為月數基礎,稱「陰曆」;也有採納太陽年度(約 365 日)稱「陽曆」,或折衷稱「陰陽合曆」。

就週數而言,古人或許更關注「每個月有幾天」與「一年有幾個月」,而非「一年到底可以分成幾週」。然而,週的概念在很多宗教與文化裡同樣重要,如猶太教及後來的基督宗教都強調「七天」一週之體系,用於安息日或祈禱輪替。因此,當今的一年分成「52 週多幾天」,也綜合了宗教傳統與太陽年的計算。

-----廣告,請繼續往下閱讀-----

朱利安曆失準?教宗格里高利的關鍵校正

現行國際普及的格里高利曆,最早源自於古羅馬朱利安曆(Julian calendar)。公元前 46 年,凱撒大帝(Julius Caesar)在天文學家蘇西根尼斯(Sosigenes)建議下,設定一年 365.25 天,並每四年加一天作閏年。看似精妙,但實際上太陽年長度約是 365.2422 天,每年多出的 0.0078 天、也就是大約 11 分鐘,雖然聽來微乎其微,卻在一段世紀之後累積成巨大的誤差。

對天主教而言,耶穌受難與復活日期影響了整年眾多教會節日。若曆法逐漸偏移,像復活節等慶典便逐年脫節了季節原意。至 16 世紀末時,朱利安曆已誤差累積多達 10 天。教宗格里高利十三世遂在 1582 年宣佈大刀闊斧改革:10 月 4 日的次日直接跳到 10 月 15 日,並規定「百年年份如若非 400 整除,則不列為閏年」。如此,將一年的平均時長微調至更貼近 365.2422 天。

一些國家如法國、西班牙和義大利等迅速採納「新曆」,但英國則因宗教立場等因素拖延至 1752 年才肯切換。中國雖在 1912 年起算是「正式認可」,但廣泛實施延至 1929 年。這樣因曆制修整所產生的「失落日子」,在各國各時期都曾引發不小民眾抗議與混亂,但如今我們所熟知的「一年 365(或 366)天、每週 7 天」全球大體一致,正是拜此改革所賜。

教宗格里高利十三世的改革,成了日後我們熟知的「一年 365(或 366)天、每週 7 天」。圖/unsplash

一年是 52 週又幾天?

回到主題:基於現在格里高利曆的「年」長度,一般年 365 天,閏年 366 天。因此只要把 365 ÷ 7 = 52 餘 1,或 366 ÷ 7 = 52 餘 2。這樣看來,52 週是某種近似值,再加上 1 或 2 天則填補了週數的縫隙。有趣的是,人們日常生活中往往不深究這些「多一天」會落在哪裡,反而透過各國法定假期、節日分布或企業排班,來靈活因應。

-----廣告,請繼續往下閱讀-----

不管日曆如何安排,七天一週與太陽一年的 365.2422 天本質上不會整除。因而實際執行層面,才衍生「一月有 4 週多幾天」或「一年 52 週多幾天」。而根據格里高利曆規範,每 4 年遇到 2、6 結尾者時通常加閏日;再以百年刪除閏日,唯獨 400 年倍數的百年不刪。如此 400 年中有 97 個閏年,非 100 次,年均值約 365.2425 天,與真實太陽年極為貼近。

再度修正:米蘭科維奇曆與東正教的調整

與此同時,一些東正教教會或科學家,仍曾嘗試做更精準的校調。例如 1923 年出現的「米蘭科維奇曆」,由塞爾維亞天文學家米蘭科維奇(Milutin Milanković)提出:

  • 改進閏年規則:如果該年不是 100 的倍數,則正常計算;若是 100 的倍數,就得看除以 900 所餘下的數是否為 200 或 600,若是,則跳過閏年。
  • 應用範圍:此一方案被視為更貼近天文年,但只有部分東正教教會接納實施,對全球世俗時間並未產生重大影響。

有趣的是,若米蘭科維奇曆被大規模推廣,平均一年長度會更符合真實太陽年,但世界各國基礎已扎根於格里高利曆,也不太可能再冒然重新改革。畢竟,每次曆改都會使官方紀錄、民間活動和宗教節慶產生協調難題,且大眾的社會慣性早已落實在現行制度裡。

時間計算背後宗教、政治與科學的糾纏

我們眼中的「一年 52 週又 1~2 天」其實是長期政治、宗教、科學交互影響的產物。數世紀以來,不同文明為祭祀、政令或貿易往來而反覆調整曆制;伴隨天文觀測與數學演算的精進,人們才一步步從古老的朱利安曆轉到格里高利曆,避免每年多出一些看似微不足道的分鐘數量,卻逐漸累積成整天的時差。在這些爭論、改革中,週數雖非爭議焦點,但它一同被帶入今日世界,最終定型為「一年 = 52 週 +1(或 2)天」。

-----廣告,請繼續往下閱讀-----
儘管目前的曆法存在些許時差,但已是目前全球通用的計日方式。圖/unsplash

另一方面,有些文化或地區在現代仍維持傳統的陰曆、陰陽曆搭配格里高利曆,如中國農曆可見節氣和月相紀錄;穆斯林世界則使用純陰曆,並以其方法計算齋戒月、開齋節等。全球一體化雖使格里高利曆成為主流,但不代表其他紀年方式就此消失。在各種曆法交錯下,「一週幾天,一年多少週」或許並非普世絕對,卻是人類根植於宗教、科學與經濟行為下逐漸形成的共識。

踏入 21 世紀,隨著全球高度互聯與商業活動頻繁,幾乎所有國際公約、金融市場、交通規劃都以格里高利曆為基準。此種高度一致有利經貿往來與跨國協作,但究其根源,私底下仍有一種「不完美但通用」的妥協性質。時至今日,要再度大規模推行新的曆制(比如米蘭科維奇曆)的機率微乎其微。

也許未來某天?

不管你是否每天翻開行事曆查看日期,或是習慣智慧型手機提醒,在全球主流價值裡,「一年 52 週又 1 或 2 天」已成幾乎不容置疑的常識。

也許未來仍有理論家建議以更精準的曆法取代格里高利曆,讓一年日數更貼合天文常數。然而,歷史經驗告訴我們,此種改革勢必付出巨大社會成本,還要面對全球龐雜的政治協調。最終,我們大概仍會安於現在這個略有瑕疵卻普及度最高的制度,繼續說著「一年有 52 週」,並在每年最後那 1 或 2 天裡,慶祝跨年、增添慶典。

-----廣告,請繼續往下閱讀-----

不論如何,時間的運行永不止息;地球仍舊繞著太陽旋轉,帶給我們四季遞嬗與新的挑戰。或許最重要的並非究竟一年「整除」了多少週,而是我們如何在這既定框架下規劃生活,在有限的時間裡,拓展出新的生活軌跡。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

2
0

文字

分享

0
2
0
從門得列夫到 118 種元素:元素週期表是怎麼出現的?
F 編_96
・2025/01/04 ・2302字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

F 編按:本文編譯自 Live Science

「氫鋰鈉鉀銣銫砝、铍鎂鈣鍶鋇镭…」相信很多人離開高中很多年,都還朗朗上口。

列著 118 種已知化學元素的「元素週期表」(Periodic Table),雖然唸起來像咒文,但有了它之後便能夠快速查詢原子序(proton number)、價電子(valence electrons)數量,以及元素可能的化學性質,成為各領域科學家與工程師設計實驗、預測物質反應必不可少的工具。

有趣的是,元素週期表並非一蹴可及。縱觀歷史,化學家們歷經數世紀的摸索、爭論與資料整理,才在 19 世紀後半葉逐漸確立。

我們現在看到的元素週期表,是在 19 世紀後半才逐漸確定。 圖/unsplash

週期表之父:門得列夫的突破

19 世紀中葉,已知的化學元素約有 63 種,許多化學家嘗試找出元素間的共同點,卻苦無系統性整理。當時能區分「金屬」與「非金屬」,或利用價電子概念將一些元素歸類,但要涵蓋大多數元素仍顯不足。俄國化學家門得列夫在撰寫《化學原理》教科書時,因接觸各元素的資料而產生新思路。他索性把已知元素各種性質寫在紙卡上,再一一比對它們的原子量(類似當今的原子量或原子序概念)與化學性質。

-----廣告,請繼續往下閱讀-----

確切的靈光乍現時刻,如今已無從完全重現,但我們知道門得列夫最後觀察到:「如果按照原子量(或後來的原子序)由小到大排列,某些化學性質就會呈週期性重複。」進一步來看,元素的價電子數量通常也會對應到表格的「欄位」或「族群」。於是,在 1869 年,他將研究結果發表,提出了第一版週期表的雛形,更大膽預言了尚未被發現的元素「eka-aluminium」(後來證實即鎵 gallium)及其他四種元素的性質。

讀懂週期表:原子序、符號與原子量

今日的週期表之所以能快速讓人獲得豐富資訊,關鍵在於三個核心欄位:

  1. 原子序(Atomic Number)
    代表該元素核內所含質子數。如果一原子核有 6 顆質子,就必定是碳(C),無論其他中子或電子數如何。此序號由上而下、由左而右遞增,貫穿整張表格。
  2. 元素符號(Atomic Symbol)
    多為一至兩字母縮寫,如碳(C)、氫(H)、氧(O)。但也有如鎢(W,因「Wolfram」得名)或金(Au,取自拉丁文「Aurum」)等較不直覺的符號。
  3. 原子量(Atomic Mass)
    表示該元素在自然界中各同位素的加權平均值,故通常是帶小數的數字。對合成元素則標示最常見或最穩定同位素的質量,但由於這些元素壽命極短,數值往往會被不斷修正。

舉例來說,硒(Se)在週期表中顯示原子序 34,屬於第 4 週期、第 6A 族,表示它有四層電子軌域,其中最外層(價電子層)有 6 顆電子。有了這些資訊,科學家可快速判斷硒的化學傾向、可形成何種化合物,乃至於在生物或工業應用中可能扮演的角色。

週期表的內部結構:週期、族與軌域

門得列夫最初按照原子量遞增排列元素,現代則依靠原子序(即質子數)來分類。橫向稱為「週期」(Period),從第 1 週期到第 7 週期;縱向稱為「族」(Group),目前總共有 18 組。週期數量在於顯示該元素電子軌域有幾層;而同一族則代表外層價電子數相同,故有相似化學性質。

-----廣告,請繼續往下閱讀-----

例如,第 18 族常被稱作「貴氣體」或「惰性氣體」,如氦(He)、氖(Ne)、氬(Ar)等皆不易與其他元素起反應。另一個顯著群體是位於第一族的鹼金屬(Alkali Metals),如鋰(Li)、鈉(Na)等,因外層只有 1 顆電子,極容易失去該電子而形成帶 +1 價的陽離子,故與水猛烈反應。

此外,在表格中央有一塊「過渡元素」(Transition Metals)區域,包括鐵(Fe)、銅(Cu)、鎳(Ni)、金(Au)、銀(Ag)等。它們具有部分填充的 d 軌域,使得該區域的元素呈現多樣性質,例如具有金屬光澤、可塑性或導電性等,被廣泛應用於工業及工程領域。

同一族的外層價電子數相同,因此大多有著相似化學性質。圖/unsplash

再進化:從 63 種到 118 種

當門得列夫在 1869 年發表週期表時,已知元素只有 63 種,表格中甚至留有空白以預留「未來或存在尚未發現的元素」。他果然預測到了鎵(Ga)以及日後證實的日耳曼ium(Ge)等新元素性質,贏得舉世矚目。隨後,有越來越多元素透過科學發展,尤其是光譜分析與放射性研究而被發現,例如鐳(Ra)和氡(Rn)等。

到 20 世紀後期,隨著粒子加速器的誕生,人類可以合成更重的超鈾元素(Atomic Number > 92)。這些人工合成元素往往極度不穩定,壽命僅能以毫秒或微秒計,但仍證實存在、並填補週期表後段空白。如今,週期表已收錄到第 118 號元素「鿆(Og,Oganesson)」,但科學家預測或許還能繼續向上延伸;只要能合成更重、更穩定的原子核,我們就能拓展週期表的新邊境。

-----廣告,請繼續往下閱讀-----

一般認為,隨原子序遞增,原子核內部的質子數目激增,原子愈趨不穩,往往在極短時間內衰變成較輕元素。然而,一些理論物理學家提出「島狀穩定性」(Island of Stability)的概念:也許在某特定質子與中子數量組合下,能出現意外長壽的「穩定」重元素。

是否真能在表格上方再增添「第八週期」甚至更高週期的列,仍有待更多實驗來驗證。但無法否認的是,週期表一直是科學家檢驗自然規律的試驗場,也見證了人類探索未知的無盡熱情。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

F 編_96
20 篇文章 ・ 1 位粉絲
一個不小心闖入霍格華茲(科普)的麻瓜(文組).原泛科學編輯.現任家庭小精靈,至今仍潛伏在魔法世界中💃