0

0
1

文字

分享

0
0
1

從「已知用火」到駕馭太陽 紀念光研究一千年

劉珈均
・2015/02/02 ・6349字 ・閱讀時間約 13 分鐘 ・SR值 545 ・八年級

SchallerChristian_PlakatLicht.indd
奧芬堡大學媒體資訊傳播系學生為光之年製作的海報。 Christian Schaller© Offenburg University cc

一千年前的1015年,生於今日伊拉克南部的阿拉伯學者伊本海瑟姆(Ibn al-Haytham)寫了七冊《光學之書》(Kitab al-Manathir,英文Book of Optics),為人類首篇光學研究,敘述眼睛構造、視覺理論與光的物理特性。海瑟姆被視為第一個科學家,因其所得皆透過謹慎的實驗與紀錄而來。海瑟姆提出人能觀看,是因為光線照射到物體後反射至眼睛,而非過往認為的眼睛發出光線照亮物體;他也提出大氣使光偏折,研究出光在曲面折射的數學公式,並試圖做實驗解釋彩虹、日食與月食等現象。

一千年後,人類發明各種光源點亮夜晚、發射衛星捕捉星光、用光纖網路串聯起全世界,短短一百多年的時光,光學科技改造了人類的文明與生活,也改變了運作千萬年的地球生態。

一千多位科學家與各方人士1月19、20日齊聚「光之城」(City of Light)巴黎,正式為「國際光之年(International Year of Light, IYL)」拉開序幕。聯合國教科文組織(UNESCO)將2015定為國際光之年,以此紀念千年來人們在光領域的研究足跡及各種光技術的發展。2015恰逢許多光學里程碑的周年:1015誕生首篇光學研究、1815菲涅爾提出光的波動性、1865年馬克士威發表光電磁傳播理論、1905愛因斯坦提出光電效應與1915廣義相對論、1965彭齊亞斯與威爾遜測量到宇宙微波背景輻射。

包含台灣在內,全球共71個國家地區共襄盛舉光之年,用一整年時間舉行光學科技相關的演講與活動,提醒光在人類生活扮演的重大角色,並討論如何以光科技解決當前問題。

-----廣告,請繼續往下閱讀-----
海瑟姆的光學之書。(圖:維基)
海瑟姆的光學之書。(圖:維基)

從「已知用火」到光纖網路、駕馭太陽:光科技與人類文明

夜幕降臨,華燈初上,人工光源徹底改變了人類的夜晚活動型態。在夜晚光源只有星星和月亮的年代,夜晚的可見度大約只有幾公尺,對人們而言,晚上意味著一天的勞動與社交互動告一段落,所有人都要從戶外回到屋內,會在外遊蕩的只有危險與不良份子。晚上出外遊走這件事最早可追溯到17世紀法王路易十四頒布法令,將巴黎街頭掛上燈籠,接下來的公共照明系統還有燃燒鯨魚油的燈具、19世紀出現的煤氣燈、刺眼的弧光燈,直至19世紀末電燈登場。隨著工商時代發展,漸漸地人們在夜晚工作、從事娛樂活動、發展各式24小時服務。

medium_2571896883
photo credit: prashant maxsteel [ read profile ] via photopin cc

LED是另一波照明革命,三位日本科學家赤崎勇、天野浩與中村修二於1990年代開發出高品質藍光LED,在此之前的半世紀只有紅光與綠光LED,藍光的加入得以配製出白光LED,延伸應用於照明、液晶螢幕、手機面板螢幕的背光晶片等。LED照明節省了90% 的能源,發光效率可達每瓦200流明,壽命可輕而易舉達到幾萬小時,遠遠長於其他照明技術(一般白熾燈泡發光效率約每瓦24流明,平均壽命約1000小時),三位科學家也因此貢獻共同獲得2014諾貝爾獎。

「醫學影像技術的突破從光學開始。」台大光電工程所教授孫啟光說,光學望遠鏡讓人類往天空探索,從此知道地球非宇宙中心;而光學顯微鏡是第一個醫學影像儀器,讓人開始了解人的內部組成,也造就了細胞病理診斷。醫學影像技術讓醫師觀察人體內部構造、協助診斷與分析病情,其他常見的醫學影像儀器還有核磁共振、X光、電磁斷層掃描(CT)等等,除核磁共振外,也都與光有關,只是並非一般所看到的可見光。

1960年梅曼(Theodore Harold Maiman)製出第一台雷射,雷射發明逾半世紀,在醫療到消費性電子產品、通訊、軍事科技等領域皆扮演舉足輕重的角色,例如運用雷射治療眼科、皮膚科與牙科疾病;常見的用品如DVD播放器、條碼讀取機;軍事武器以雷射標定瞄準等。雷射也是尖端研究的重要工具,目前有十幾位諾貝爾獎得主的研究與雷射有關,除了雷射本身,還有全像片、雷射冷卻、玻色─愛因斯坦凝聚態。

-----廣告,請繼續往下閱讀-----
medium_1747920810
photo credit: Twistiti via photopin cc

現代生活大量依賴的網路、雲端服務,就靠光纖傳送大量訊息,1966年高錕研究發現,減少玻璃雜質,便能解決光藉著玻璃全反射傳送的途中,訊號嚴重衰減的問題,進而達到長程通訊,此研究克服了光通訊長久以來的障礙。光纖具有體積小、訊號衰減低的優點,且光纖不受電磁干擾,每條光纖可用不同波長的頻段獨立傳送訊息,因此光纜能傳送的訊號大量而準確,被譽為光纖之父的高錕獲2009諾貝爾獎。

人類一直嘗試駕馭太陽的能量,早在1839年,法國物理學家貝克雷(Alexandre-Edmond Becquerel)就發現了光伏效應,即某些材料照到光時會產生微小電流,但要等到一百多年後的1954,三位貝爾實驗室的科學家才發明出第一個能有效將太陽能轉換為電能的矽基太陽能電池,當時該電池在太陽直射下的效率只有6%左右,現在先進的太陽能電池已可達到40%。太陽能發電的應用觸角開始延展,例如太陽能車、海水淡化系統等。現今太陽能應用尚未成為主流,但氣候變遷的威脅愈來愈緊迫,帶動替代能源的需求,國際能源總署(IEA)估計,到2060年,太陽能科技可望提供世界三分之一的能源。

情歌與舞蹈的顏色:光與藝術

medium_5508100799
photo credit: Sam Breach via photopin cc

光也撩撥著人們的情感。畫家以光影描繪情感的氛圍與張力;自4世紀開始,彩繪玻璃將自然光化為燦爛奪目的藝術品,教堂、古蹟、清真寺常以彩繪玻璃述說古老的傳說故事,光彷彿是具有生命的精靈,觸碰人們靈魂深處的悸動;演唱會、主題樂園,常見雷射光激發高昂情緒與驚呼聲;攝影與電影捕捉當下的光,讓時空與光線永恆駐足。而若要說以玩弄光影為業、融會各種藝術元素的魔術師,大概莫過於劇場燈光設計師,自15世紀的文藝復興時期,便開始有藝術家認知燈光設計的重要,利用燈光調節影響觀眾情緒。

「其實我比較看重的是影子,未必是光,」劇場燈光設計師車克謙說:「光的角度或是光在物件上造成的陰影對我吸引力比較大。我觀察影子的構成,去發現光源是什麼。」車克謙經驗豐富,曾操刀高雄世界運動會主場的開閉幕式、幾米音樂劇《向左走,向右走》、《地下鐵》等各式戲劇與大型戶外展演。

-----廣告,請繼續往下閱讀-----

「光可以幫助一個物件,也可以毀了它。」而燈光設計就是讓觀眾看到想讓他看見的細節,隱藏不想讓人注意到的地方。運用燈光的亮度與色澤導引、加強觀眾的情緒是設計師的基本功。舞台上的演員在說故事,燈光也在說故事,燈光協助帶出戲劇的動線,有時也暗示戲劇的隱喻與伏筆,車克謙笑著說:「有時候燈光還要克制表演慾,不要太『愛講話』。」過多過強的光會失去焦點,或讓觀眾一片昏花,什麼也看不到。不同展演需要的光不一樣,如舞蹈表演大部分只有簡單布幕,幾乎全靠光影創造出山林、海洋、竹林等意象,帶領舞者與觀眾穿梭不同空間。

車克謙說,平常會強迫把眼睛當照相機,從環境中記錄光的狀態和屬性,如冬天的光、紐約城市的光、午後咖啡店的光。對聲音的感受也是創作靈感來源,聽著旋律,車克謙便不自覺在腦中編織場景的顏色與氛圍,他舉例,例如搖滾樂大概就是紅色、黃色、橙色加上一些閃爍效果,情歌則要看是男聲或女聲、或熱戀或憂鬱,紫色、藍色、粉色都有可能。

「No light, there is no space.(少了光,就沒有空間存在)」知名劇場設計師羅伯˙威爾森(Robert Wilson)常將這句話掛在嘴邊。他認為,「因為有光,黑暗才真的變黑。因為黑暗,才感受得到光線的明亮。這就是空間的基本概念,也是空間的原理。」光決定了許多事物,形成敘事結構與節奏,「它可以跟音樂合作或是對抗,讓事物變得明顯或晦暗,為動作定下秩序。」[1]

全球光害地圖的反思:我們正在失去夜晚

夜晚地球(2)
夜晚的地球。photo credit: NASA Goddard Photo and Video via photopin cc

燈光點亮了人類的文明與生活方式,我們用人造燈光點亮夜晚至今不過一百多年,已顛覆了人類與生態經過千萬年演化而適應日夜交替的習性,人工照明改變人類生活型態,但也帶來各種問題,一些國際組織與研究單位發起各式活動呼籲大眾正視光汙染。

-----廣告,請繼續往下閱讀-----

國際暗空協會(International Dark-Sky Association, IDA)致力於保護夜間環境、推動適當照明,IDA將光害定義為:「所有人工照明的負面影響,包括天空輝光(sky glow)、刺眼的強光(glare)、無端闖入的光線(light trespass)、雜亂的光線(light clutter)、夜晚受損的能見度以及浪費的能源等。」光汙染的影響層面不只是我們再也看不到經典老歌所唱的「Starry Starry Night」,光害也代表著浪費能源、干擾生態,全世界至少有三成左右的脊椎動物、六成左右的非脊椎動物屬於夜行性,再加上習於暮色或清晨出沒的生物,就不難想像光害的影響層面有多廣闊。[2]

IDA製作的影片〈Losing the Dark〉:

美國國家光學天文台(National Optical Astronomy Observatory, NOAO)也發起國際性的公民科學家活動「全球光害地圖計畫(Global at Night)」,介面有20幾種語言,號召全球公民上傳資料,描述自己所在地區的夜空明亮度、天氣狀況,藉此蒐集全球光汙染資料。去年2014共有來自94個國家、17,500次的觀測數據,八年下來已從115個國家累積了近十萬筆觀測數據。[3]

中央大學光電系教授孫慶成說,照明的服務對象是眼睛,但我們現在有許多照明發出的光都是不必要的,而這些多餘的光就四處亂竄,闖入夜空、干擾視線等,例如一般路燈,有五分之一的光浪費在打往水平或天空方向,造成天空輝光。要解決光害其實沒那麼困難,孫慶成說,要達到適度照明,透過調整照明裝置設計就能改善,孫慶成帶領的中央大學團隊設計的LED照明可讓98%的光與能源都貢獻於照亮街道,而非照亮夜空,節能達40%至60%。孫慶成認為,良好的照明應該是:「照亮回家的路,也將天空留給星辰。」

-----廣告,請繼續往下閱讀-----
照明設計對照
(上)一般常見的路燈照明;(下)改良後的照明。(圖/孫慶成提供)

現實生活中也有類似例子,國立科學博物館植物園的燈光造景即是一例,每天入夜後兩個小時半,植物園外的LED燈將七彩變幻光芒投射到八層樓高的溫室桁架與玻璃帷幕,周末的燈光秀以234組燈具將植物園妝點為光雕藝術品。這些LED燈來自回收燈具,一天電費不超過新台幣35元,且燈光照射角度經過設計,光線只落在建築物上,不會進入夜空,也不會進入溫室影響植物作息;舊金山一家叫作民間暮光(Civil Twilight)的公司讓路燈隨月亮光線而自動調節亮度,讓夜間的亮度維持平衡,尋回夜晚自然氛圍,並減少四分之三的照明費用。

讓光更人性:光對人體的影響

光之年海報(2)
奧芬堡大學媒體資訊傳播系學生為光之年製作的海報。photo credit:Waldemar Schmidt © Offenburg University cc

「光對人類有直接、長遠、且重要的影響,光無所不在。」孫啟光說,首先就是視覺,人類如何看到萬物便是藉由光線照射物體後,反射進入眼睛的視網膜、視神經,到大腦解讀。他開玩笑地說,他不清楚一般人如何感受光,他自己被太陽曬的時候就很有感覺。

孫啟光研究專長為非侵入式的生醫影像,他說,開發光電醫材必須確認許多事情,才能進到臨床實驗、對病人負責。現在許多生醫影像技術使用的是與雷射手術差不多波段的光源,但作為非侵入式觀測人體與動手術(破壞組織的)的光源應該要分開,使用不同顏色(波段)的光。「身為一個科學家,我想要了解更多人與光的互動關係。」孫啟光對於光和人體的互動特別感興趣,光如何影響人體?有的光波段會傷害人體,有的不會,劑量也可能造成差別;不同組織對光的反應也不同,例如光可以穿透眼球到達視網膜,卻不能穿透人體其他部分,我們的基因演化設計了不同器官對光有不同反應,目的又是什麼?

工研院光電所設有台灣首座國際級的人因照明實驗室,研究在不同情境與時間下,各種光線配置對人的清醒程度、情緒、工作效率、神經系統等生心理影響,探討適合的人因照明參數。市售照明光源常見眩光與LED藍害問題,當眼角餘光直接或經物體反射看到光源(如書頁上的小光點),刺目的燈光導致無法清晰的觀看物體,此干擾為眩光,眩光會讓眼睛不適,易疲勞、注意力不集中;藍害則會讓視網膜變質,甚至造成白內障,為不可逆的傷害,但相反的,藍光也可用於治療季節性憂鬱,端看如何適切地使用光源。光源閃爍也漸受重視,有研究指出閃爍的燈光可能造成偏頭痛,也有較為極端的例子,日本曾有光敏癲癇症患者因看了神奇寶貝卡通,承受不住皮卡丘放電時劇烈的光線變化而送醫。

-----廣告,請繼續往下閱讀-----

工研院光電所工程師趙偉成說,光對人的影響主要可分為視覺、心理、生理、生物四個層面,視覺是指對於眼睛的影響,例如藍害與眩光;心理與生理層面是人體照光後的「生理回饋」,如心跳、血壓、皮膚阻抗、腦波訊號等,與神經系統有關;生物層面則是對賀爾蒙的影響,如現在常見學者研究照明對褪黑激素、生理時鐘的影響。後三者難以完全切割,不過生物效應與生心理層面之間的交互影響、運作機制尚未有充足的研究。

良好的光線對人如此重要,在某些地區,照明是急待解決的經濟與健康議題,世界上約有15億人口依賴蠟燭或是會產生對人體有害氣體的煤油燈度過漫漫長夜,這些人口多為發展中國家的居民,夜晚缺乏足夠照明使得白天須工作貼補家計的孩童無法夜晚學習讀寫,學業落後,甚至醫院也無法於夜晚運作。UNESCO光之年的重要計畫之一便是在這些地區推廣可攜式的太陽能LED照明,以期打破當地的惡性循環。

光科技的未來

Internet_of_things_signed_by_the_author(wiki)
孫慶成說,未來光電科技將與物聯網、雲端的概念合流。(圖:維基)

「台灣的光電產業產值大約占了全世界五分之一!」兼任光電學會副理事長的孫慶成說,台灣的光電產業舉足輕重,其中又以LED照明、顯示器、太陽能為主。對於光科技的發展趨勢,孫慶成勾勒一連串的藍圖:「未來大概是眼睛張開所看到的一切東西都與光相關!」光科技深入資訊(含顯示與感測)、能源、照明領域,光既是能量來源,也是訊號。試著想像這些場景:或許車子不再需要人為駕駛,而是雲端控制;可能所有資訊濃縮於一副眼鏡上;可能手機只有一片指甲般大小,這些藍圖必須利用無數感測器以及取得、傳輸、顯示、儲存大量資訊的技術,這便是奠基在光電技術之上,與物聯網、雲端的概念合流。

孫啟光希望,國際光之年能喚起大家對光的重視,了解光的多面向,特別是光對人的影響,也希望台灣能進一步發展更多人本應用之光電產業。光電學會以提出光電效應的{“type”:”block”,”srcClientIds”:[“3499b1ad-7165-43f2-8256-e5dd5686e0a6″],”srcRootClientId”:””}愛因斯坦為主角,設計了光之年主燈擺在三月台中的元宵燈會。光電學會秘書長黃建璋說,接下來的一年會舉行50至100場巡迴演講,並與各大學光電系所合作辦營隊。台北天文科學教育館一月底也舉辦為期七個月的「光的奧秘」特展,內容包括以LED與投影建構模擬宇宙大霹靂的通道、展出太陽能應用與福衛五號的光學望遠鏡,也有利用光線折射、反射原理設計的視覺遊戲。

-----廣告,請繼續往下閱讀-----

1999諾貝爾化學獎得主阿米德˙齊威爾(Ahmed Zewail)在巴黎光之年開幕式上呼籲大家對話以解決世界的需求。歐洲物理協會會長、IYL策劃委員會會長約翰˙杜德里則說,光科技在生活中的角色如此重要,這是光學與光電社群與大眾交流知識的機會,「我們只有一次機會,舉行慶祝很不錯,不過我們得盡快開始工作了!」

備註

  1. 耿一偉,《羅伯˙威爾森──光的無限力量》,台北:國立中正文化中心,2009。
  2. Paul Bogard,陳以禮譯,《夜的盡頭》,台北:時報文化,2014。
  3. 全球光害地圖計畫中文版介面的光害地圖

訪問之外的參考資料

  1. UNESCO 國際光之年官網
  2. Optical Society,〈New LED Streetlight Design Curbs Light Pollution〉,2013
  3. Clifford A. Pickover,顏誠廷譯《物理之書》,台北:時報文化,2013。
  4. 光之年巴黎開幕報導編譯來源:〈Light Is Power, Inspiration, Source, Say International Year of Light Speakers〉〈Solutions enabled by light inspire at International Year of Light celebration〉
文章難易度
劉珈均
35 篇文章 ・ 1 位粉絲
PanSci 特約記者。大學時期主修新聞,嚮往能上山下海跑採訪,因緣際會接觸科學新聞後就不想離開了。生活總是在熬夜,不是趕稿就是在屋頂看星星,一邊想像是否有外星人也朝著地球方向看過來。

0

4
0

文字

分享

0
4
0
快!還要更快!讓國家級地震警報更好用的「都會區強震預警精進計畫」
鳥苷三磷酸 (PanSci Promo)_96
・2024/01/21 ・2584字 ・閱讀時間約 5 分鐘

本文由 交通部中央氣象署 委託,泛科學企劃執行。

  • 文/陳儀珈

從地震儀感應到地震的震動,到我們的手機響起國家級警報,大約需要多少時間?

臺灣從 1991 年開始大量增建地震測站;1999 年臺灣爆發了 921 大地震,當時的地震速報系統約在震後 102 秒完成地震定位;2014 年正式對公眾推播強震即時警報;到了 2020 年 4 月,隨著技術不斷革新,當時交通部中央氣象局地震測報中心(以下簡稱為地震中心)僅需 10 秒,就可以發出地震預警訊息!

然而,地震中心並未因此而自滿,而是持續擴建地震觀測網,開發新技術。近年來,地震中心執行前瞻基礎建設 2.0「都會區強震預警精進計畫」,預計讓臺灣的地震預警系統邁入下一個新紀元!

-----廣告,請繼續往下閱讀-----

連上網路吧!用建設與技術,換取獲得地震資料的時間

「都會區強震預警精進計畫」起源於「民生公共物聯網數據應用及產業開展計畫」,該計畫致力於跨部會、跨單位合作,由 11 個執行單位共同策畫,致力於優化我國環境與防災治理,並建置資料開放平台。

看到這裡,或許你還沒反應過來地震預警系統跟物聯網(Internet of Things,IoT)有什麼關係,嘿嘿,那可大有關係啦!

當我們將各種實體物品透過網路連結起來,建立彼此與裝置的通訊後,成為了所謂的物聯網。在我國的地震預警系統中,即是透過將地震儀的資料即時傳輸到聯網系統,並進行運算,實現了對地震活動的即時監測和預警。

地震中心在臺灣架設了 700 多個強震監測站,但能夠和地震中心即時連線的,只有其中 500 個,藉由這項計畫,地震中心將致力增加可連線的強震監測站數量,並優化原有強震監測站的聯網品質。

-----廣告,請繼續往下閱讀-----

在地震中心的評估中,可以連線的強震監測站大約可在 113 年時,從原有的 500 個增加至 600 個,並且更新現有監測站的軟體與硬體設備,藉此提升地震預警系統的效能。

由此可知,倘若地震儀沒有了聯網的功能,我們也形同完全失去了地震預警系統的一切。

把地震儀放到井下後,有什麼好處?

除了加強地震儀的聯網功能外,把地震儀「放到地下」,也是提升地震預警系統效能的關鍵做法。

為什麼要把地震儀放到地底下?用日常生活來比喻的話,就像是買屋子時,要選擇鬧中取靜的社區,才不會讓吵雜的環境影響自己在房間聆聽優美的音樂;看星星時,要選擇光害比較不嚴重的山區,才能看清楚一閃又一閃的美麗星空。

-----廣告,請繼續往下閱讀-----

地表有太多、太多的環境雜訊了,因此當地震儀被安裝在地表時,想要從混亂的「噪音」之中找出關鍵的地震波,就像是在搖滾演唱會裡聽電話一樣困難,無論是電腦或研究人員,都需要花費比較多的時間,才能判讀來自地震的波形。

這些環境雜訊都是從哪裡來的?基本上,只要是你想得到的人為震動,對地震儀來說,都有可能是「噪音」!

當地震儀靠近工地或馬路時,一輛輛大卡車框啷、框啷地經過測站,是噪音;大稻埕夏日節放起絢麗的煙火,隨著煙花在天空上一個一個的炸開,也是噪音;台北捷運行經軌道的摩擦與震動,那也是噪音;有好奇的路人經過測站,推了推踢了下測站時,那也是不可忽視的噪音。

因此,井下地震儀(Borehole seismometer)的主要目的,就是盡量讓地震儀「遠離塵囂」,記錄到更清楚、雜訊更少的地震波!​無論是微震、強震,還是來自遠方的地震,井下地震儀都能提供遠比地表地震儀更高品質的訊號。

-----廣告,請繼續往下閱讀-----

地震中心於 2008 年展開建置井下地震儀觀測站的行動,根據不同測站底下的地質條件,​將井下地震儀放置在深達 30~500 公尺的乾井深處。​除了地震儀外,站房內也會備有資料收錄器、網路傳輸設備、不斷電設備與電池,讓測站可以儲存、傳送資料。

既然井下地震儀這麼強大,為什麼無法大規模建造測站呢?簡單來說,這一切可以歸咎於技術和成本問題。

安裝井下地震儀需要鑽井,然而鑽井的深度、難度均會提高時間、技術與金錢成本,因此,即使井下地震儀的訊號再好,若非有國家建設計畫的支援,也難以大量建置。

人口聚集,震災好嚴重?建立「客製化」的地震預警系統!

臺灣人口主要聚集於西半部,然而此區的震源深度較淺,再加上密集的人口與建築,容易造成相當重大的災害。

-----廣告,請繼續往下閱讀-----

許多都會區的建築老舊且密集,當屋齡超過 50 歲時,它很有可能是在沒有耐震規範的背景下建造而成的的,若是超過 25 年左右的房屋,也有可能不符合最新的耐震規範,並未具備現今標準下足夠的耐震能力。 

延伸閱讀:

在地震界有句名言「地震不會殺人,但建築物會」,因此,若建築物的結構不符合地震規範,地震發生時,在同一面積下越密集的老屋,有可能造成越多的傷亡。

因此,對於發生在都會區的直下型地震,預警時間的要求更高,需求也更迫切。

-----廣告,請繼續往下閱讀-----

地震中心著手於人口密集之都會區開發「客製化」的強震預警系統,目標針對都會區直下型淺層地震,可以在「震後 7 秒內」發布地震警報,將地震預警盲區縮小為 25 公里。

111 年起,地震中心已先後完成大臺北地區、桃園市客製化作業模組,並開始上線測試,當前正致力於臺南市的模組,未來的目標為高雄市與臺中市。

永不停歇的防災宣導行動、地震預警技術研發

地震預警系統僅能在地震來臨時警示民眾避難,無法主動保護民眾的生命安全,若人民沒有搭配正確的防震防災觀念,即使地震警報再快,也無法達到有效的防災效果。

因此除了不斷革新地震預警系統的技術,地震中心也積極投入於地震的宣導活動和教育管道,經營 Facebook 粉絲專頁「報地震 – 中央氣象署」、跨部會舉辦《地震島大冒險》特展、《震守家園 — 民生公共物聯網主題展》,讓民眾了解正確的避難行為與應變作為,充分發揮地震警報的效果。

-----廣告,請繼續往下閱讀-----

此外,雖然地震中心預計於 114 年將都會區的預警費時縮減為 7 秒,研發新技術的腳步不會停止;未來,他們將應用 AI 技術,持續強化地震預警系統的效能,降低地震對臺灣人民的威脅程度,保障你我生命財產安全。

文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
193 篇文章 ・ 297 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

3

10
2

文字

分享

3
10
2
水面艦如何找到潛水艇?潛水艇如何隱藏自己?——潛艦與反潛的捉迷藏
PanSci_96
・2023/11/25 ・5953字 ・閱讀時間約 12 分鐘

潛水艇到底有多重要?

最近關於潛水艇的新聞可不少,首艘國造潛艦「海鯤號」下水典禮、中國 093 潛艇「疑似」失事、前陣子還有烏克蘭使用導彈與無人機成功襲擊俄羅斯基洛級潛艇的新聞,潛水艇的關注度一時間高了不少。

但是你一定好奇,潛水艇對國防來說,真的很重要嗎?還有,現代觀測技術那麼發達,在這些儀器的眼皮之下,潛艇真的還能保持隱形嗎?

反潛方怎麼找到藏匿海中的潛艦?

潛水艇以安靜、隱蔽著稱,有著極重要的戰略價值,不僅可以水下布雷、隱蔽投送兵力與物資;它難以被發現的特性,更是打擊水面艦的刺客,往往能讓敵人不敢越雷池一步。

-----廣告,請繼續往下閱讀-----

當然,要造一艘能潛在水下的潛艇肯定不簡單,畢竟如果在水面下出事了,很難立即取得救援,安全的要求遠高於其他載具。另一方面,以隱蔽為最高原則的潛艦,從引擎、外型、武器到主動聲納,都需要新科技的改進,來讓自己發出的聲音降到最低。

但潛艦與反潛就像臥虎捉藏龍,如果能隨時掌握這隻水中蛟龍的動向,潛艦的威懾力就會大幅降低,甚至能將其一網打盡。因此相對地,隱蔽的技術進步時,反潛的技術也有所突破,透過光學、聲學、磁場等技術,要讓潛艦原形畢露。

潛艦與反潛就像臥虎捉藏龍。圖/imdb

既然我們知道潛艦的隱蔽性是最高考量,現在我們就站在反潛方,來看看如何抓出一艘潛水艇。
主動偵查其實跟「通訊」很像,都是傳送一個訊息到目標物,再接收傳回來的訊號。只是通訊的訊號是對方主動回傳回來的。主動偵查呢,則是訊號碰到目標物再反射回來被我們接收。沒錯,這跟蝙蝠的回聲定位很像,只是一個在水面上,一個在水裡。

為什麼水中使用的是「聲納」而非「雷達」?

現代遠距無線傳輸的方式主要有兩種,電磁波通訊與聲波通訊。在水面以上,我們通常以電磁波傳輸,因為在空氣中這麼做最有效率,因此不論是無線通訊還是手機微波訊號,多是以電磁波的形式在傳輸。
可惜這個方法到水中就不管用了,為什麼呢?電磁波穿過水的時候會因為兩個原因,讓強度快速衰減。一是電磁波容易被水吸收,二是電磁波與水分子碰撞會產生散射,舉例來說,太陽光也是電磁波的一種,而太陽光就會因為在海水中散射,而讓海看起來是藍色。

-----廣告,請繼續往下閱讀-----
太陽光就會因為在海水中散射,而讓海看起來是藍色。圖/unsplash

這種電磁波衰減的程度有多少呢?具體來說,在最清澈的海水中,可見光每前進 1 公尺,亮度就會衰減 4% 。如果想使用無線電通訊,以一個頻率 1000 赫茲的電磁波來說,每向前進一千碼(大約 900 公尺),訊號強度就會減少 1300 分貝。這邊說明一下,「分貝 dB 」不只是聲音音量的單位,而是可以用在各種需要表達強度比例的單位。

電磁波每減少 10 分貝,就意味能量減小 10 倍。圖/PanSci YouTube

舉例來說,電磁波每減少 10 分貝,就意味能量減小 10 倍。在前進一千碼時減少 1300 分貝,就意味能量會衰退 10 的 130 次方倍,小到等於沒有。在實務上,通常電磁波的極限穿透距離就只有幾十到幾百公尺而已。相比之下,如果從電磁波換成低頻聲波,每一千碼的損失約為 0.01 分貝,跟電磁波相比起來可以說是幾乎沒有損失。

通常電磁波的極限穿透距離就只有幾十到幾百公尺而已。相比之下,低頻聲波可以說是幾乎沒有損失。圖/PanSci YouTube

因此在水中,大家聽到的不會是什麼「雷達」,因為雷達(RADAR)的全名是 Radio Detection and Ranging ,是使用電磁波偵查的技術。在水裡我們用的是「聲納」,是利用聲音當傳輸訊息與探知物體的手段。

此時蝙蝠的回聲定位使漆黑水底頓時明亮起來,聲波在海裡的傳播速度約為每秒 1500 公尺,只要計算我們發出的聲波與接收到聲波的時間差,我們就能辨別物體的距離。例如我們在聲波發出後的 10 秒後接收到反彈的訊號,就代表聲波來回走了 10 秒共 1 萬 5 千公尺的距離,我們和目標物就是這個距離的一半,也就是 7 千 5 百公尺。

-----廣告,請繼續往下閱讀-----

聲納裝載潛水艇上可以成為潛水艇的眼睛,裝在水面艦上,可以成為抓出潛水艇的掃描儀。潛水艇沒有聲納,姑且可以靠海圖小心航行,水面艦沒有聲納,面對潛水艇就只能海底撈針。

潛艦與反潛技術的發展

潛水艇在第一次世界大戰中開始展現出重要的戰略價值,其中最著名的潛艇戰就是德國的 U 艇和德國實施的「無限制潛艇戰」。當時德國的對手英國是個島國,因此便想到利用潛艦封鎖英國,無論是軍艦或商船一律擊沉,希望能拖垮英國的經濟。雖然德國最後未取得戰爭勝利,但潛水艇也確實擊沉了多艘協約國的船艦,立下的戰績是有目共睹。

最著名的潛艇戰就是德國的 U 艇和德國實施的「無限制潛艇戰」。圖/wikipedia

有鑑於此,反潛聲納的技術由此萌芽。第一個主動式聲納在第一次世界大戰期間,被著名物理學家朗之萬發明。 1915 年,第一個潛艇探測器「ASDIC」開始在英國海軍的艦艇上被運用。 1931 年,美國也發明了潛艇偵測裝置,並稱它為「SONAR」,顯然這名字取得比較好,也成為現在最常稱呼這種技術的名稱,聲納。

第一個主動式聲納在第一次世界大戰期間,被著名物理學家朗之萬發明。圖/PanSci YouTube

至此,水面艦就像開了白眼一樣,潛水艇終於無所遁形⋯⋯真的嗎?聲納既然已經發明了百年,為何潛水艇至今似乎仍保有隱蔽優勢呢?在科技發達的現代,聲納為何還是無法抓出所有潛艇?

-----廣告,請繼續往下閱讀-----

很可惜,事情沒有那麼簡單。當大家帶著最新科技和設備準備挑戰潛水艇這個可敬對手,卻突然被隱藏 BOSS 跳出來狠狠地打了臉,他就是:物理。

什麼是「陰影區」?潛艦能夠躲藏的位置?

讓我們回到大家都做過的實驗,準備一個透明杯子裝水,把筷子插入水中。因為光線在穿過不同介質的介面時,會因為速度改變而轉彎,所以筷子插到水杯中會出現偏折,水面上跟下呈現不同角度,看起來就像是被折彎了。

光線在穿過不同介質的介面時,會因為速度改變而轉彎,聲音也是。圖/wikipedia

聲音跟光一樣都是「波」的一種,因此在穿過不同密度的介質時也會產生折射,路徑出現偏折。你說道理我都懂,但海裡面只有水,哪來的不同介質?

還真的有,那就是隨著經緯度與深度變化,鹽分、水溫、密度都不同的海水。鹽分、水溫、密度的升高,都會導致聲速變快。而這三者在海中的各處都不會是固定的。例如在不同深度的海水中,深度 1000 公尺內上層海域的斜溫層,當深度越深離海面越遠,海水越得不到太陽的加溫,因此海溫快速驟減,而海溫的降低也會導致聲速降低。深度超過 1000 公尺以後的深海等溫層,溫度、鹽分的變化趨緩,此時壓力會隨著深度增加而增加,海水密度開始小幅度上升,因此聲速緩慢增加。

-----廣告,請繼續往下閱讀-----
每一處海水根據鹽分、水溫、密度不同,都會影響聲速。圖/PanSci YouTube

每一層有不同聲速的海水,就等於是不同的介質,聲波會在不同層的海水之間產生折射。類似的現象也發生在空氣中。在炙熱的沙漠或是天氣熱的柏油路面,偶而會因為空氣的密度分布不均,光線在不同密度的空氣間產生偏折,出現影像在空中出現的錯覺,也就是海市蜃樓的現象。

重點來了,在海裡的折射會是怎麼樣的呢?假設我們有一艘潛的足夠深的潛艇,海面附近的聲納發出一道聲音斜向海洋深處前進,根據決定折射角度的斯乃爾定律,當聲速上升,聲音會偏離介面的法線,偏向兩個液體的交界面。在海中的實際表現,就是聲音產生偏折,漸漸與海平面平行,當偏折的角度超過 90 度,最後甚至會向上偏折,產生全反射。

而斯乃爾定律也告訴我們,偏折的程度跟入射角有關,當角度超過臨界角時,才會產生全反射。根據這些聲波行進路線畫出來的圖,可以看到一塊聲波永遠到達不了的地方,這就是陰影區(shadow zone)。如果潛艇躲藏在這個位置,那麼水面上的敵人就永遠也無法透過主動聲納發現你。

根據這些聲波行進路線畫出來的圖,可以看到一塊聲波永遠到達不了的地方,這就是陰影區(shadow zone)。圖/PanSci YouTube

除此之外,從聲納路徑圖可以看得出來,在水中聲納走的路徑像是 U 字型一樣,會不斷在海面反射,在海中全反射。而線與線之間的空白處,是聲波不會經過的地方,也屬於陰影區。因此實際從水面偵測潛艦時,只有在碰到這些線的時候會收到該點的訊號,如果要抓出敵人,就要在獲知訊號時抓緊時間。

-----廣告,請繼續往下閱讀-----

如何減少陰影區範圍?

為了減少這些陰影區死角的範圍,也有一些有趣但複雜的想法,例如使用拖曳式陣列聲納,一個點不夠,那我就拉一排,減少盲區。或是透過小角度的海底反射,來覆蓋近距離內的更多範圍。然而這也不會只是畫一張圖那麼簡單,平常聲納就要過濾來自自身引擎的噪音,或是因為海底等非目標物的環境反射。多一次反射,就意味會多一道訊號反射到聲納中,要如何將這些訊號區分開來,判斷哪些是海床訊號,哪些是敵艦訊號,就各憑本事。

沒錯,就算有了聲納系統還不夠,海底資訊的掌握度和後期運算更是兵家相爭的關鍵。你想想,就算你知道聲音會隨著密度轉彎,但你知道眼前海域每個深度的實際密度嗎?如果你不知道這些資料,就算接收到訊號,你真的算得出敵艦的位置嗎?

舉例來說,冬天和夏天的海溫不同,聲音偏折的角度不同,能探查的範圍與死角就不相同。當你在不同緯度,不同海域作戰時,所需要的資料也不相同。

冬天和夏天的海溫不同,聲音偏折的角度不同,能探查的範圍與死角就不相同。圖/PanSci YouTube

台灣冬夏兩季分別受東北季風與西南季風吹拂,周圍又有黑潮、中國沿岸流等洋流影響,各層水溫隨季節變化影響劇烈,台灣海峽又因地形原因海流複雜,被稱為黑水溝。在此之上,能掌握好周圍的海流活動,除了能兼顧潛艦的航行安全外,也有助於提升潛艦的隱蔽性。

-----廣告,請繼續往下閱讀-----

潛艦與反潛的無數過招?

海洋的複雜性,構成了潛艦至今仍能維持隱蔽優勢的原因。而這場臥虎捉藏龍的對決到此還沒有結束,我們只介紹了第一招,後面大概還有 99 種招式等待要過招。例如潛艦關掉主動聲納後,如何靠被動聲納安全航行並鎖定目標?

除了透過聲納,搭載磁性探測儀的反潛機怎麼從異常磁場訊號中辨別海底的金屬潛艇?又或是水面上的聲納會被全反射,那麼改變深度的話是不是就能解決了?實際上,既然在海面上聽不見,反過來把聲納放進海中,放在海水密度最低的「深海聲道通道軸」這個如同光纖般的區域,就能清楚聽到來自遠方的聲音。

諸如此類的軍事科技對弈,就像其他科技一樣,對決永遠不會結束。如果你還有那些想了解的面向,不論是潛艦或是其他軍事科技,也歡迎留言告訴我們。

最後也想問問大家,你覺得潛水艇最大的戰略價值是什麼呢?

  1. 多一種隱蔽武器,多一種威嚇,提升敵人的作戰成本
  2. 突破封鎖線,在關鍵時刻打擊敵人的大型艦艇
  3. 間諜作戰,深入敵後蒐集電訊號與艦艇聲譜特徵,偷偷獲取情報

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

參考資料

所有討論 3
PanSci_96
1214 篇文章 ・ 2063 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

5
0

文字

分享

0
5
0
跟蟲搶吃生魚片?脈衝殺蟲保鮮甜
胡中行_96
・2023/11/23 ・1912字 ・閱讀時間約 3 分鐘

在東京連吃了兩、三個月的紅肉生魚片,雪子懷念起關西的明石鯛。作家谷崎潤一郎筆下,刀口彈跳的海鮮、切面誘人的色澤,是長篇小說《細雪》角色的鄉愁,也是地區的飲食差異。[1]描寫產地、品種、質地、肉色和新鮮度,不僅止於文學,日本人對刺身的執著,還漫溢到 2022 年 3 月的《水產科學》(Fisheries Science)期刊。[2]

圖/Gustavo Fumero on Flickr(CC BY 2.0

海獸胃線蟲

海獸胃線蟲(Anisakis)與生魚片的緊密關聯,不亞於日本人。牠們寄生鯨魚、海獅等哺乳類動物,把卵排進海洋。甲殼動物先吞了卵,再被魚或烏賊吃下肚。隨著漁獲捕撈,食材未經烹煮,或者沒熟透的話,生猛的幼蟲便躍上餐桌。附著人類的食道、胃部和腸道,遊走於嘴跟喉嚨。有些人藉由咳嗽、嘔吐清理,甚至徒手拉出幾條。[3]海獸胃線蟲症(anisakiasis)雖然不至於將谷崎潤一郎《細雪》的典雅,[1]發展成伊藤潤二《魚》的驚駭,[4]但是喉嚨刺痛、消化道發炎,而找醫師開刀除蟲大概在所難逃。[3]

食品殺蟲技術

熊本大學的學者,跟福岡的水產、電子公司以及工業技術單位合作,想殲滅生魚片裡的海獸胃線蟲。他們回顧既有的殺法,大致歸納出兩類:鹽漬、浸滷等化學處理;與冷凍、加溫、乾燥、煙燻、輻射、電擊、提高水壓等物理手段。其中最常見的是冷凍,若以歐洲食品安全局(European Food Safety Authority)的標準,放在 –20 °C 的溫度下,長達 24 小時,不只海獸胃線蟲死了,冰晶也同時形成。解凍後,滴水、軟化,變性肌紅蛋白(metmyoglobin)還會使魚肉變為褐色。[2]

另外,過去已知瞬間釋放高電能脈衝電力(pulsed power)技術,[5]能取秀麗隱桿線蟲(Caenorhabditis elegans)和宿貝海蜘蛛(Nymphonella tapetis)的性命。研究團隊想知道,這招是否能避免冷凍的缺點,又可以謀害海獸胃線蟲。[2]

-----廣告,請繼續往下閱讀-----

實驗設計

既然要研究傳統美食的安全,必定得用道地食材。實驗不僅採用在日本海域捕獲的竹筴魚(Trachurus japonicus),平均 103 x 45 x 9.6 mm 的生魚片,連寄生蟲也講究出身。從長崎海岸白腹鯖(Scomber japonicus)的內臟,挑取海獸胃線蟲屬的新鮮 Anisakis pegreffii,保存於 4 °C,含 0.9% 氯化鈉的生理食鹽水中備用。[2]

a. 用肉膠把蟲封進魚片;b. 打叉處為塞蟲的位置;c. & d. 裝籃、泡水或鹽水,再通電。圖/參考資料 2,Figure 1(CC BY 4.0

缺乏捕魚送蟲的天然套裝組合,在魚肉裏頭埋入特定數量的海獸胃線蟲,就成了考驗耐性的手工藝:橫剖半開,塞進幼蟲活體,[2]外圍沾一圈俗稱肉膠(meat glue)的轉麩醯胺酸酶(transglutaminase),[2, 6]再闔起來(圖a & b)。黏合好的竹筴魚片,被擺進塑膠網籃,方便浸泡在水或鹽水裡通電(圖c & d)。[2]

實驗調整水中的鹽份,來改變導電程度,並控制脈衝次數、水溫等變因。以海獸胃線蟲的死活,還有竹筴魚刺身的外觀、氣味、質地,及魚腥或鮮味等,為最後的評鑑標準。由於剛被電過的海獸胃線蟲,可能有點呆滯,所以生命跡象的判定,得在電完 24 與 48 小時進行。被鑷子騷擾,卻動也不動的,就算死了。[2]

脈衝殺蟲的成效

實驗中,最高電流發生時,鹽水導電率 5 mS/cm;而生魚片的是 8 mS/cm。連續打個 500 發(80 μF–15 kV–1 Hz),處決海獸胃線蟲的奪命率,可達到全盤通殺,片甲不留。儘管研究團隊承認,對致死的詳細機制不甚瞭解,結果無疑是稱心如意:生魚片的彈性、硬度跟顏色,都較冷凍再退冰好,而且質地、氣息和口味,接近未經任何殺蟲處理的食材。他們相當看好此技術的商業價值,在論文結尾表示,要繼續提升殺蟲的效率,並嘗試運用在白腹鯖等其他魚類身上。[2]

-----廣告,請繼續往下閱讀-----

  

參考資料

  1. 平野芳信(02 JUL 2014)《從蝸牛食堂到挪威的森林:解讀日本近現代文學中的飲食象徵》遠足文化
  2. Onitsuka C, Nakamura K, Wang D, et al. (2022) ‘Inactivation of anisakis larva using pulsed power technology and quality evaluation of horse mackerel meat treated with pulsed power’. Fisheries Science, 88, 337–344.
  3. Anisakiasis FAQs’. (16 SEP 2020) U.S. Centers for Disease Control and Prevention.
  4. ค๊อกคาเทล(02 DEC 2011)「【心得】噁心的經典、經典的噁心‧《魚》(內有噁心成分,請慎入)」巴哈姆特
  5. Pulsed Power’. The University of Queensland, Australia. (Accessed on 19 NOV 2023)
  6. Bub EL, Schneider K, Carr C, et al. (22 JAN 2019) ‘Food Processing: The Meat We Eat’. Institute of Food and Agricultural Sciences, University of Florida, U.S.
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。