0

0
0

文字

分享

0
0
0

《大英雄天團-液態金屬》

Zobot
・2015/02/02 ・1147字 ・閱讀時間約 2 分鐘 ・SR值 536 ・七年級

-----廣告,請繼續往下閱讀-----

哈妮蕾夢
Photo by Disney

《大英雄天團》的哈妮蕾夢可以不費吹灰之力,將原本硬梆梆的金屬在幾秒鐘之內瓦解,還可以將這些非固體型態的金屬裝在透明小球中,現實生活中是否也能做到這些事情呢?

來自北卡羅萊納州大學的研究團隊已經知道有一種液態金屬,其性質使這群化學家可以把它像電影「魔鬼終結者2」裡面的T-1000一樣把玩,甚至做出這個暴力機器人的小型翻版。

這群化學家先是發現,只需要將極小的電流通到置於水中的鎵合金(原本在室溫下就是液態),就可以改變它的形狀。再經過三年的研究,他們終於知道這個特別的反應是怎麼回事:通電時,在鎵合金表面會形成一層氧化物,它會改變金屬與水之間的表面張力;一旦電壓移開,張力又會不著痕跡地消失,從大約每平方公尺50萬焦耳降到近乎零,這麼戲劇性的變化會造成許多電液動(electrohydrodinamic, EHD)現象。

參與這個題目的研究員之一,麥克爾迪奇(Michael Dickey)博士說,「這是我做過最有趣的科學工作,因為還沒有任何文獻解釋過這個現象」;「對一滴液體而言,有兩個主要的因素支配它的形狀和行為,重力和表面張力。如果我們可以控制表面張力,那麼就可以控制液體的形狀。」博士說,控制液態金屬的形狀,能夠有很廣的應用,例如可以控制在特定時間將電路變形,去執行不同的任務、相機和望遠鏡中的鏡片可以變形以調整焦距,甚至更久之後在其他材料上會發現類似的技術。

-----廣告,請繼續往下閱讀-----

鎵合金的氧化表層在空氣中太堅硬,若不放在水中沒辦法有相同效果,不過研究人員相信,可以找到其他材料,在不同環境中也能產生類似效果。

請不要期待馬上就能看到T-1000大軍從你家門前經過(或滑過或飛馳過)。在鎵合金中,這個現象目前只可能發生在很小的尺度中,因為一旦包含太多質量,重力的影響就會取代張力,使整個系統崩塌。

液態金屬(liquid metal)原本泛稱在特定條件下,型態如液體(非結晶結構)的金屬,不過有一家利用此技術開發產品的公司正以此為名 — 「液態金屬科技公司(Liquidmental Technology Inc.)」使用鋯、鈦、銅、鎳、鈹做出的「液態金屬 LM001B 型合金(Liquidmental LM001B alloy)」,加熱後會形成非結晶結構很容易塑形,冷卻後又會自然結晶而定型。利用 LM001B 製造的產品具有強度高、不易磨損、不易腐蝕等特性,已經被應用於製造例如飛機的副翼、外科手術用具、刀刃、手錶等,很快地還會用來製造更輕薄又堅固的手機和平板(或阿廣的微型機器人?)。

參考資料:

-----廣告,請繼續往下閱讀-----
文章難易度
Zobot
10 篇文章 ・ 0 位粉絲
PanSci 實習編輯 | 主修大氣科學。喜歡弄文字、玩音樂。傾向自然,不管是拿來讀的那種,渾身散發出來的那種,還是可以去野餐的那種。

0

2
3

文字

分享

0
2
3
第三類寬能隙半導體到底在紅什麼?
宜特科技_96
・2023/10/30 ・4510字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

寬能隙半導體晶片
圖/宜特科技

半導體產業崛起,我們常聽到「能隙」這個名詞,到底能隙是什麼?能隙越寬的材料又代表什麼意義呢?
近幾年 5G、電動車、AI 蓬勃發展,新聞常說要靠第三類的「寬能隙半導體」發展,到底寬能隙半導體在紅什麼?我們一起來了解吧!

本文轉載自宜特小學堂〈第三類寬能隙半導體到底在紅什麼?〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

宜特科技 第三類寬能隙半導體到底在閎什麼 影片連結
點擊圖片收看影片版

什麼是能隙(Band Gap)?寬能隙又是「寬」在哪裡?

身為理組學生或是工程師,甚至是關心科技產業的一般人,對於「能隙」兩字一定不陌生,但你了解什麼是能隙嗎?

半導體能帶與能隙示意圖
半導體能帶與能隙示意圖。圖/宜特科技

能隙基本上要用量子物理的理論來跟大家說明,「能帶(Band)」的劃分主要為低能帶區的「價電能帶」(Valence Band,簡稱 VB),與高能帶區「導電能帶」(Conduction Band,簡稱 CB)的兩種,在 VB 與 CB 之間即是一個所謂的能帶間隙(Band Gap,簡稱 BG),簡稱「能隙」

能帶因電子流動產生導電特性
能帶因電子流動產生導電特性。圖/宜特科技

金屬材料能夠導電,主要是因為電子都位於高能的(CB)區域內,電子可自由流動;而半導體材料在常溫下,主要電子是位於低能的(VB)區域內而無法流動,當受熱或是獲得足夠大於能隙(BG)的能量時,價電能帶內電子就可克服此能障躍遷至導電能帶,就形成了導電特性。

-----廣告,請繼續往下閱讀-----

我們都知道功率等於電流與電壓加乘的正比關係,在高功率元件(Power device)的使用上如果半導體材料的能隙越寬,元件能承受的電壓、電流和溫度都會大幅提升。大眾所熟知的第一類半導體材料——矽(Si)能隙為 1.12 eV,具有成熟的技術與低成本優勢,廣泛應用於消費性電子產品;第二類半導體材料——砷化鎵(GaAs) 能隙為 1.43eV,相比第一類擁有高頻、抗輻射的特性,因此被廣泛應於在通訊領域。

為什麼需要用到第三類寬能隙半導體(Wide Band Gap,WBG)?

由於近年地球暖化與碳排放衍生的環保問題日益嚴重,世界各國都以節能減碳、綠色經濟為共同的首要發展方向,石化能源必須逐步減少並快速導入綠能節電的應用,因此不論是日常用品、交通運輸或軍事太空都逐步以高能效、低能耗為目標。

歐洲議會在 2023 年通過新法提高減碳目標,為 2030 年減碳 55% 的目標鋪路。國際能源署(IEA)也強建議各國企業在 2050 年前達到「淨零排放」,甚至有傳聞歐盟將通過燃油車禁售令,不論是考量環保或經濟,全球企業的綠色轉型勢在必行。因此在科技發展日新月異的同時,要兼顧大幅提升與改善現有的能源,已是大勢所趨。

目前半導體原料最大宗,是以第一類的矽(Si)晶圓的生產製造為主,但是以低能隙的半導體材料為基礎的產品,物理特性已到達極限,在溫度、頻率、功率皆無法突破,所以具備耐高溫高壓、高能效、低能耗的第三類寬能隙半導體(Wide Band Gap,WBG)就在此背景之下因應而生。

-----廣告,請繼續往下閱讀-----

現在有哪些的寬能隙(WBG)材料?

那麼有哪些更佳的寬能隙材料呢?目前市場所談的第三類半導體是指碳化矽(SiC)和氮化鎵(GaN),第三類寬能隙半導體可以提升更高的操作電壓,產生更大的功率並降低能損,相較矽元件的體積也能大幅縮小。
Si 與 C 的化合物碳化矽(SiC)材料能隙可大於 3.0eV;Ga 與 N 或 O 的化合物氮化鎵(GaN)或氧化鎵(Ga2O3)能隙也分別高達 3.4eV 與 4.9eV,大家可能沒想到的是鑽石的能隙更高達 5.4eV。

特性Si 矽SiC(4H)
碳化矽
GaN
氮化鎵
Ga2O3(β)
氧化鎵
Diamond
鑽石
能隙(eV)1.13.33.44.95.4
遷移率
(cm2/Vs)
1400100012003002000
擊穿電場強度
(MV/cm)
0.32.53.3810
導熱率
(W/cmK)
1.54.91.30.1420
半導體材料的物性比較。圖/宜特科技

氮化鎵(GaN)或氧化鎵(Ga2O3),雖然分別在 LED 照明或是紫外光的濾光光源,已經應用一段時間,但受限於這類半導體材料的特性,其實生產過程充滿了挑戰。例如:要製作 SiC 的單晶晶棒,相較 Si 晶棒的生產困難且時間緩慢很多,以及 GaN 與 Si 晶圓的晶格不匹配時,容易生成差排缺陷(Dislocation Defect)等問題必須克服,導致長久以來相關的製程開發困難及花費高昂,但第三類半導體市場潛力無窮,對於各國大廠來說仍是兵家必爭之地。

寬能隙半導體運用在那些產品上?

現在知名大廠如意法半導體、英飛凌、羅姆等,對寬能隙材料的實際運用均有相當大的突破,如氮化鎵(GaN)在以 Si 或 SiC 為基板的產品已陸續發表,而我們最常接觸到的產品,就是市售的快速充電器,採用的就是 GaN on Si 材料製作的高功率產品。

除了功率提升,因為溫度與熱效應可大幅降低,元件就可以大幅縮小,充電器體積也更加玲瓏小巧,除了已商品化的快充電源領域,第三類半導體在 AI、高效能運算、電動車等等領域的應用也是未來可期。

-----廣告,請繼續往下閱讀-----

(延伸閱讀:泛科學—快充怎麼做到又小又快? 半導體材料氮化鎵,突破工作頻率極限)

現行以矽基材料為主的高功率產品,多以絕緣閘雙極電晶體(IGBT)或金氧半場效電晶體(MOSFET)為主,下圖可以看到各種功率元件、模組與相關材料應用的範圍,傳統 IGBT 高功率模組大約能應用至一百千瓦(100Kw)以上,但速度卻無法提升至一百萬赫茲(1MHz)。而 GaN 材料雖然速度跟得上,但功率卻無法達到更高的一千瓦(1kW)以上,必須改用 SiC 的材料。

功率元件與相關材料的應用範圍
功率元件與相關材料的應用範圍。圖/英飛凌

SiC 具有比 Si 更好的三倍導熱率,使得元件體積又可以更小,這些特性使它更適合應用在電動車領域。特斯拉的 model3 也從原先的 IGBT ,改成使用意法半導體生產的 SiC 功率元件,應用在其牽引逆變器(Traction inverter)、直流電交互轉換器與充電器(DC-to-DC converter & on-board charger),能夠提高電能使用效率與降低能損。

特斯拉充電樁
多家車廠加入特斯拉充電網路。圖/特斯拉

在未來更高的電力能源需求下,車載裝置除了基本要具備高功率,還需要極高速的充電能力來因應電力補充,車用充電樁、5G 通訊基地台、交通運輸工具、甚至衛星太空站等更大的電力能源需求,相關的電流傳輸轉換,電傳速度的要求以及降低能損,就必須邁向更有效率的寬能隙材料著重進行開發,超高功率的 SiC 元件模組需求亦會水漲船高。

-----廣告,請繼續往下閱讀-----

寬能隙半導體在開發生產階段,需進行那些驗證分析?

根據宜特的觀察,晶圓代工廠與功率 IDM 廠商正持續努力研究與開發。不過,新半導體材料在開發初期,會有許多需要進行研發驗證的狀況,近年我們已協助多家寬能隙半導體(WBG)產業的開發與生產驗證。

比如磊晶製程相關的結構或缺陷分析,就可以藉由雙束聚焦離子束(Dual beam FIB)製備剖面樣品並進行尺寸量測或成分分析(EDS),亦可搭配穿透式電子顯微鏡(TEM)進行奈米級的缺陷觀察;擴散區域的分析可經由樣品研磨製備剖面後,進行掃描式電子顯微鏡(SEM)觀察以及掛載在原子力顯微鏡 (AFM) 上的偵測模組-掃描式電容顯微鏡(SCM)判別摻雜區域的型態與尺寸量測。

下圖為 SiC 的元件分析擴散區摻雜的型態,我們可以先用 SEM 觀察井區(Well)的分布位置,再經由 SCM 判斷上層分別有 N 與 P 型 Well 以及磊晶層(EPI) 為 N 型。

SEM及SCM分析的量測圖
使用 SEM 剖面觀察 SiC 元件的結構,搭配 SCM 分析 N/P 型與擴散區的量測。圖/宜特科技

另外在摻雜元素及濃度的分析,則可透過二次離子質譜分析儀(SIMS)的技術,下圖 GaN on Si 的元件,先用雙束聚焦離子束(Dual beam FIB)進行剖面成份分析(EDS)判斷磊晶區域的主要成份之後,提供 SIMS 參考再進行摻雜元素 Mg 定量分析濃度的結果,作為電性調整的依據。

-----廣告,請繼續往下閱讀-----
使用 DB-FIB 觀察 GaN 元件的剖面結構與 EDS 成份分析,搭配 SIMS 分析摻雜濃度
使用 DB-FIB 觀察 GaN 元件的剖面結構與 EDS 成份分析,搭配 SIMS 分析摻雜濃度。圖/宜特科技

除了上述介紹 WBG 元件結構的解析之外,其它產品也都可以透過宜特實驗室專業材料分析及電性、物性故障分析來尋求解答,包括因應安全要求更高的產品可靠度測試與評估,藉由宜特可以提供更完整與全方位的驗證服務。

希望透過本文介紹,讓大家對第三類半導體有更進一步的了解,近期被稱為第四類半導體的氧化鎵(Ga2O3)也逐漸躍上檯面,它相較於第三類半導體碳化矽(SiC)與氮化鎵(GaN),基板製作更加容易,材料也能承受更高電壓的崩潰電壓與臨界電場,半導體材料的發展絕對是日新月異,也代表未來會有更多令人期待的新發現。

本文出自 www.istgroup.com。

宜特科技_96
5 篇文章 ・ 3 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室

0

4
2

文字

分享

0
4
2
快充怎麼做到又小又快? 半導體材料氮化鎵,突破工作頻率極限
PanSci_96
・2023/03/11 ・2703字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

除了線材,市場上也到處可看到標榜使用氮化鎵、可支援大電流快充的充電頭。但為什麼之前充電速度一直快不起來呢?為什麼現在要改用氮化鎵呢?快充能變得更快更快更快嗎?

快充加速了充電速度

在快充出來以前,我們的智慧型手機充電器,功率大約是 5 瓦特(W)或是 2.5 瓦特,現在最夯的的氮化鎵快充頭功率則高達 65 瓦特,相差了 13 倍,理想上充電時間也會縮短為十三分之一。

實際上,這幾年快充的發展速度可能比想像的還要快上許多。

還記得在 21 世紀的 Nokia 3310 嗎?其功率僅 4.56 瓦特,而蘋果一直到 2014 年的 iPhone6 才支援更快的 10 瓦特快充。然而,現在不僅已經出現不少支援 50 瓦特以上快充的手機,今年二月中國手機品牌 realme 推出的 GT Neo5,甚至出現 240 瓦特的超快充技術,是目前充電最快的智慧型手機。

提升充電器功率的關鍵

從過去到現在,充電器不僅功率大幅提升,充電器的大小同時也縮小了許多。過去的線性充電器,除了有條細細長長的尾巴外,最大的特徵就是不僅大、充電時還會發熱的變壓器;為了將市電的 110V 交流電轉為手機可以使用的 5V 直流電,就需要變壓器協助降壓。

-----廣告,請繼續往下閱讀-----

變壓器的發熱來源來自內部占了絕大部分體積的線圈,在電路學中被稱為「電感器」。輸入與輸出的線路會以線圈的形式綑在一組鐵芯上,兩端的線圈數量十分關鍵,線圈數量的比值就是兩側電壓的放大大小;若想從 110V 變成 5V,則為輸入的線圈圈數是輸出的 22 倍,那麼輸出的電壓就會減少 22 倍。

在變壓的過程中,輸入端的線圈與鐵芯就像一顆大電磁鐵,讓磁通量通過鐵芯,將能量傳到輸出線圈,輸出線圈則會因為電磁感應,產生相同頻率但電壓不同的交流電,完成降壓。只要再把 5V 交流電轉成 5V 的直流電,就可以幫手機充電啦。

過去的線性充電器最大的特徵就是體積大、充電時還會發熱。圖/Envato Elements

聰明的你應該已經想到,提升充電功率的關鍵就在於——線圈數量

如果希望變壓器的輸出提升,必須在維持線圈比值的情況下,等比例增加輸入與輸出端的線圈數量;更多的線圈就意味更多的磁通量能透過鐵芯傳到另一端,更多的能量也隨之傳遞。但如此一來,早已被塞滿的變壓器,為了塞進更多的線圈就只能繼續增加充電器的體積,還會因能量耗損放出大量的熱。

-----廣告,請繼續往下閱讀-----

若想提升功率,又能減少電感器大小,最好的方法就是——增加工作頻率

透過「高頻變壓器」的幫忙,將原先市電 60 赫茲的頻率提升到 50K 赫茲,被轉為高頻的交流電再進行變壓,如此一來就能降低能量損耗,所需的電感器大小也會大幅降低。

然而,要注意的是,要想改變交流電的頻率,是無法直接轉換的。要先將交流電轉為直流電,再經由特殊的「開關」電路將直流電轉為特定頻率的交流電;這類型的充電器就被稱為「開關充電器」,現在的智慧型手機就是使用開關充電器。

救世主材料

但隨著手機電池容量不斷增加,手機充電效率的需求永無止盡,充電器又開始一個比一個大。

-----廣告,請繼續往下閱讀-----
智慧型手機所使用得充電器為開關充電器。圖/Envato Elements

不是繼續提升工作頻率就好了嗎?那是因為,我們遇到了「矽的極限」。

開關電路中將直流轉為交流的關鍵,就是我們熟知的半導體元件電晶體。裡頭的原料過去都以我們熟知的矽為主,然而以矽為材料的半導體工作頻率極限僅在 100k 以下,如果超過 100k,轉換效率會大幅下降,更有嚴重的能量浪費問題。

解決的方法就是:尋找下一個材料。沒錯,就是最近最夯半導體的——氮化鎵(GaN);其能隙是矽的 3 倍,電子遷移率為 1.1 倍,崩潰電壓極限則有 10 倍。

顯然,氮化鎵擁有更良好的電特性,還能在高頻、高電壓的環境下工作,使用氮化鎵為材料的快充頭因此誕生!氮化鎵最高的工作頻率是 1000K,是矽的 10 倍,除了讓變壓器的電感線圈能再次縮小,連帶縮小充電頭的體積;亦能降低能耗並減少電容與散熱器的大小,成為好攜帶的快充豆腐頭。

-----廣告,請繼續往下閱讀-----

到這裡,或許你會想問,提高充電效率應該不只有換材料一條路吧?還會有更快的充電技術出現嗎?

當然會的;和矽相比,氮化鎵仍有很大的研究性。

而且不僅手機,就以現在市面上正夯的電動車來說,也需要快充技術支援,來減少充電時所需要的時間;為應對龐大的充電市場需求,綜觀整個半導體材料的發展歷史,已經有許多材料問世。除了氮化鎵,還包括矽、鍺、三五族半導體「砷化鎵」(GaAs)、「磷化銦」(InP),以及化合物半導體「碳化矽」(SiC);在能源產業中,又以氮化鎵和碳化矽的發展最令人期待。

電動車也需快充技術的支援,來縮短充電所需時間。圖/Envato Elements

氮化鎵與碳化矽的未來與挑戰

不論以技術發展還是成本考量,這兩位成員還不會那麼快取代矽的地位。

-----廣告,請繼續往下閱讀-----

兩者應用的範圍也不完全相同。氮化鎵擁有極高的工作頻率,在高頻的表現佳,並且耐輻射、耐高溫,除了運用在充電技術內外,在高功率 5G 基地台、航空通訊、衛星通訊也都將大展身手。碳化矽則在高溫及高電壓下擁有良好的穩定性,尤其在未來電動車快充的需求增加,1000 伏特以上的充電需求,將使得僅能承受 600 伏特的矽半導體無法負荷,預期將接手電動車中的關鍵元件。

兩者看來潛力無窮,但目前在製程上仍需克服許多問題;如:材料介面的晶格缺陷及成本考量;在它們能像矽材料應用在各方領域之前,還需要投入更多研發能量。

但令人興奮的是,駛向下個半導體世代的鳴笛聲已經響起,不論是台積電、晶圓大廠環球晶,國內外各家半導體大廠,都早以搭上這班列車。不同的材料也意味著,從磊晶、製程、元件設計、晶圓製造都將迎來改變,陸續也有廠商開始使用 AI 輔助設計氮化鎵半導體元件。

未來半導體與科技產業將迎來何種轉變,就讓我們拭目以待吧!

-----廣告,請繼續往下閱讀-----
半導體未來的發展令人興奮!圖/GIPHY

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

PanSci_96
1219 篇文章 ・ 2184 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

3
1

文字

分享

0
3
1
CO2 不是廢物!以嶄新材料推進人造光合作用——林麗瓊專訪
鳥苷三磷酸 (PanSci Promo)_96
・2022/03/22 ・5496字 ・閱讀時間約 11 分鐘

-----廣告,請繼續往下閱讀-----

本文由 台灣萊雅L’Oréal Taiwan 為慶祝「台灣傑出女科學家獎」15周年而規劃,泛科學企劃執行。

  • 2017 年「台灣傑出女科學家獎」傑出獎第十屆傑出獎得主

在辛亥路側的臺灣大學凝態科學研究中心,曾為中心主任的林麗瓊帶著我們上上下下好幾層樓,如數家珍地說明各設備的能耐,以及學生要如何經過她紮實訓練跟親自審查才能上機。「還有好多,今天沒時間看」,站在她稱為「起家本」的第一台自製反應爐旁,她說當年太貪心,加了多個 Port,增加了殘餘氣體吸附而使樣品被污染的風險。然而這台由她自己設計、自己到工廠請人開模製作的機器,在她細心調教跟利用下,創造了許多研究突破。我們請林麗瓊與這座別具意義的反應爐一起合照,她則邀請在旁的學生 Suman 一起入鏡。

來自伊朗的 Suman 她選擇來台灣學習,一方面是因為台灣是個很安全的地方,另一方面就是因為林教授是很棒的楷模。「那你會在台灣待到什麼時候?」我問,她回說「這要看我什麼時候拿到博士學位。」「那就是要看林教授囉?」「不是,是要看她自己何時取得足夠的進展。」林麗瓊笑著說這句話,也透露出她指導學生的方法:不由上而下決定主題,讓學生自由探索、從好奇心出發。

回到辦公室,林麗瓊從玻璃櫃中拿出一幅裱框的照片,裡頭是朵特別的玫瑰。「本來該長成平的、漂漂亮亮的磊晶,結果長成一朵花。」

-----廣告,請繼續往下閱讀-----
林麗瓊教授與我們分享學生的作品——〈Formosa Nano-Rose〉

拿著學生的「作品」,她笑說通常學生若做出這樣的磊晶應該要挨罵才對,然而學生發揮想像力,將奈米尺度的不規則形狀染上玫瑰紅,參加美國材料學會(Materials Research Society)年度的科學即藝術(Science as Art)競賽,拿到首獎,還有外國人寄信來,希望能取得圖片,用來求婚。

在林麗瓊經營帶領下,聚集多國、多領域人才的研究團隊看似和樂輕鬆,其實他們正探索一個可能改變人類未來的終極領域:光觸媒。

光觸媒的莫大潛力

如果要列出如今人類面對的最大挑戰,抑制二氧化碳排放、讓空氣中的二氧化碳量回到 350 ppm 的安全水平以下,不讓氣候危機加劇,肯定是其一。(順帶一提:2021 年 的 1 月是 413 ppm 上下。來源) 

就算逐步淘汰煤炭跟天然氣,改成再生能源發電,我們的生活依舊仰賴大量的石油化學產品,大氣跟海洋中依然有過量的 CO2,種樹也難趕上森林被砍伐跟遭野火肆虐的速度。然而林麗瓊另闢蹊徑,從拿手的材料科學著手,正研究如何將二氧化碳還原成低碳氫比燃料,關鍵就在於高效能的光觸媒。

-----廣告,請繼續往下閱讀-----

這當然不是林麗瓊一開始就研究的主題。她於 1989 年取得哈佛大學應用物理博士學位後,馬上被美國奇異公司研發總部材料研究中心延攬為終生聘雇研究員,也是當時該研究中心唯一的亞裔女性。那時她加入的團隊裡有物理學家、化學家、電子電機工程師等,研究的主題從飛機引擎到核能電廠五花八門,例如他們開發新型飛機引擎的材料跟設計,讓飛行速度更快、更省燃料。

1994 年回台後,她返台主持凝態中心的尖端材料實驗室。「一開始做鑽石薄膜,後來做奈米碳管、奈米線、石墨烯。」開發這些碳基的低維度奈米材料,並使其展現出新奇特性是她的拿手絕活。既然現在二氧化碳成了眾矢之的,那就換個角度,把它從廢物變寶物吧!

「如果只是要把二氧化碳轉化成低碳氫比的燃料,或是高工業價值的原物料,方式不只有光觸媒,用電催化也可以。」林麗瓊表示電催化成熟度比光催化高,發展歷史久,但是腐蝕容易造成污染,而且 CO2 與水的溶解度低、需要額外耗電,因此不見得是最佳選項。若採用光觸媒,只要將工廠的排氣經過導管收集,將 CO2 分離,進入可以接受光照的反應爐,搭配適當的材料(如金屬氧化物),就能產生光催化效應,把 CO2 變成甲醇、甲烷、乙醇、乙烷、乙醛等。

「關鍵步驟就是那個材料的觸媒,它的催化功能性要夠,那怎樣功能性才會夠?這就有我們做材料的人可以玩的空間。」林麗瓊表示這樣的材料須具備半導體特性,也就是其特有的「能待結構」或「能階」,能接受光子的能量而激發,同時「能隙」不能太大也不能太小。目前已經商用的材料為二氧化鈦(TiO2),然而其吸收光需要 3.2-3.4 電子伏特(eV)的能量,也就是得用波長很短的紫外光,限制了發展。 因此她將重點放在找尋能夠吸收可見光的材料與最佳結構,提升轉化效率。「可能是1.7、1.8(eV)是最好的……就同樣一個材料,它本質可能是 1.5 eV,但位置不對,所以我們就想辦法做一些缺陷工程啊、做一些參雜、複合的結構。」

-----廣告,請繼續往下閱讀-----

這樣的材料在吸光後會產生電子電洞對,林麗瓊生動地形容「要活活的」,才能跟二氧化碳與水起反應。意思是說這材料得身兼多職,先吸可見光、然後拆解電子電洞對,傳達到表面後,能接著活化其實很穩定的二氧化碳,再加上水氣才有可能轉化成甲醇等產物。即使是同一個氧化亞銅,他們也發現邊邊角角的活性才高,「所以就有辦法跟 CO2 招手,黏住又不能太黏喔!太黏 CO2 不跑啦!就把活性點通通給蓋住蓋死了。」

為了讓二氧化碳若即若離、欲迎還拒的戲碼能在奈米尺度上演,身為導演兼製作人的林麗瓊與團隊花了大把工夫選角(材料),如今已獲得初步的成果。

「在產量上,雖然還不是很高,但是有機會到 1% 了。假以時日,push 到 10%,應該是有機會」。她表示儘管還需要很多努力,而且後續也還有產物選擇性與分離的課題,但一關一關解,就能將二氧化碳變成原物料,邁向循環經濟「零廢物」的目標。

林麗瓊表示反應過程中的產物分析、以及反應控制的關鍵機制需要徹底釐清,才能知道到底材料的「什麼」在做出貢獻,例如是形狀、是位置、是大小、還是其他性質?她用各種技術來監測,將這過程比喻為「盲人摸象」,得一片一片摸熟了才能前進。雖然離製程成熟跟產業化還有很長的路,她發現這個領域受關注跟投入的程度在全球都大大提升,從她剛開始時一年不超過 50 篇研究,到現在每年破千篇。

-----廣告,請繼續往下閱讀-----

從半導體、光電、能源材料、奈米薄膜到光觸媒,研究範圍廣泛的林麗瓊笑稱自己喜新厭舊又隨性,但萬變不離其宗:「我們就是玩材料的,我們玩得很開心啊!」

Welcome to the jungle 

外表溫和沈著、說話總是體貼地再三確認我們能否理解的林麗瓊,得過台灣與世界各國的獎項,也曾被選為美國材料學會董事會成員,曾任眾多知名學術期刊、專書的編輯與學術會議的主席,成就非凡。然而正如她研究的光觸媒,對於許多學生來說,她也是一位如光般賦予能量、催化著他們的觸媒。

林麗瓊坦言自己「鍛鍊很久」,努力學習理解各種關係必然遇到障礙,有時轉個彎就撥雲見日的道理。她不會給剛進門下的學生太明確、太細節的題目,而是讓他們先朝一個方向探索看看,約略三個月後再請他們提出 Proposal,她就在這段時間內觀察新學生與其他同學的互動,了解其性格,能力,再依此給出建議。

她將自己在美國奇異公司研發總部任職時學到的團隊合作方式,帶入自己的實驗室。「有的人性格像獅子、有的像兔子。但不能都一直是獅子或兔子」她順著學生的性格,鼓勵其發揮,但也鼓勵他們學習彼此的優點,懂得變換。

-----廣告,請繼續往下閱讀-----

她說有些學生活動力很強,坐不住,沒辦法一直待在機器前;反過來有些學生開工之後,一天不去開機就覺得不舒服,連機器壞了也不肯停。但就是這樣不同的性格,獲得了意想不到的發現。雖然有時會建議學生互相合作,但她的安排也不一定成功,反而是讓資深的、主導性強的學生們發展、組隊,結果更好。她則透過每週定期的 Group meeting 發揮觸媒的作用,激發團隊成長。「我關心他們怎麼發展,可是絕對不強迫。有點黏又不會太黏。」她微笑說。

是傑出科技人,也是女人

2017 年得到第十屆「臺灣傑出女科學家獎」時的林麗瓊,已得過科技部傑出獎、教育部學術獎與國際上的諸多不分性別的榮譽,對於冠在科學家獎前的「女」字,很高興能獲得肯定,也自覺要承擔更多責任。然而在 30 年前,類似的經歷曾經困擾過她。

當她被奇異聘為終生職研究員時,她在哈佛的一位韓國同學則失之交臂,扼腕地對她說「都是因為妳是女生啦。」林麗瓊覺得自己夠認真、夠努力,當然有資格加入頂尖的企業。但反過來說,那位韓國同學也很認真、很努力,所以……是臨場表現有差別?還是真的因為她是女性而成了保障名額?

「不瞞你說,這的確是很矛盾、很複雜的一種心理。」她說:「如果只是因為我是女生,這個對我很傷啊!是不是?」後來在物理學會女性工作小組內討論這種「肯定」時,她漸漸想通,認為即使有這種可能,她也要勇敢去爭取,放下不舒服的感覺,不要覺得自己是被憐憫、被施予,而是要當第一個衝破現況者,別人才有機會跟上。

-----廣告,請繼續往下閱讀-----

「有一些東西是非常根深蒂固的,男生女生都是這個文化的受害者。」她分享自己剛加入奇異公司的一段經歷:當時懷第二胎的她,發現好幾個月都沒有被分配到任務,也沒有被安排出差到工廠幫現場面臨的挑戰找題目。於是她鼓起勇氣去問經理,經理反而愣住,回答說就是因為知道她懷第二胎,家裡還有一個兩歲孩子,怎麼能讓她做這些又累又辛苦的事?

這樣的善意跟體貼,若說是歧視,林麗瓊認為就太重了,但結果卻幽微地害她投閒置散。於是她向經理明確表示自己先生非常支持,而且有保母能照顧小孩,承接任務沒有問題,才改變了這種不利自己發展的狀況。

「我自己覺得物理並沒有性別的問題,覺得好玩又可以發揮,學科本身不會阻擋女生。那是我們的環境嗎?還是什麼?」物理學界的女性比例「是可怕的低」,林麗瓊說大學部其實有 20-30% 是女生,研究所也可能還能維持 10-20%,但到教職就不到 5%。她認為這個現象不能簡單歸因,需要抽絲剝繭。舉例來說,由於她與先生(陳貴賢,中研院原子與分子科學研究所研究員)密切合作,剛回國任教提交計畫書審查時,曾被問「貢獻到底在哪裡?」但同樣的問題,她先生卻不會被問。她認為審查者不見得有意打壓,而是文化養成的習慣。要讓其他人知道自己有真功夫,需要一段不短的時間,她已十年沒被這樣問了,但的確成了女生額外要處理的。

得獎後,她參與台灣萊雅與吳健雄學術基金會合辦的高中女性科學教育巡訪計畫,每年都與許多年輕學生面對面交流,座談時間常互動熱烈到讓她趕不上搭車時間。透過這個獎跟活動,能讓許多學生有個學習楷模,提出心中的問題,幫她們去除刻板印象,其實讓她備感欣慰。她甚至因此收了高中生來實驗室實習,但她強調來的高中生得要「玩」、藉實習想像未來的生活,而不是為參加科展得名而來。

-----廣告,請繼續往下閱讀-----

對林麗瓊來說,大她四屆,同樣就讀臺大物理系的四姐是最接近的楷模,也因此她學習科學一路以來備受鼓勵而沒受阻礙。另外,曾返台演講的吳健雄則是她朝聖的偶像,曾親睹吳健雄在新竹演講風采的她說自己非常震撼。後來與自己的大哥討論該不該朝物理學邁進時,大哥對她說「吳健雄不就是物理學家嗎?為什麼不呢?」她也因此非常感激。

她給予學生的力量,也承襲自她在哈佛的指導教授 Frans Spaepen。她記得在考慮該留在哈佛做博後,還是去產業界資源豐沛的實驗室時,Spaepen 教授對林麗瓊說,若她能留下來當博後,他會很高興,但不必將哈佛當作第一或是唯一的選擇,該把握機會到外頭更大的世界看看。這番話讓她至今銘記於心,也一直將這種「不為自己設限」的理念傳達給每一位學生。

「你覺得你的興趣在哪、你的才能在哪,就走走看,不要劃地自限。刻板印象是別人的刻板印象,若連自己都有刻板印象,當然就沒救。」身為物理學界的頂尖女性科學家,林麗瓊參與、籌辦了不少推動女性加入科研領域的工作,例如與物理學會女性工作委員會籌拍《物理好丰采》影片,協助成立臺灣女科技人學會等。她說,每個人有各自的問題,但有些問題有共通性,就該以團體的名義來爭取。

例如她參與的物理學會女性工作委員會曾以團體名義向國科會提案,讓有生產事實的女性研究者在提出研究計畫時,可以將過去七年內的發表成果納入,而不是原本的五年,否則女性研究者很容易因為生兒育女放慢進度而被系統性地歧視、或是擔心可能耽誤發展而乾脆不生育。

林麗瓊認為自己沒有天花板,但她不能代表所有女性研究者,因此「如果有需要去衝破的,一起去衝破吧。」她說。

台灣傑出女科學家獎邁入第 15 年,台灣萊雅鼓勵女性追求科學夢想,讓科學領域能兩性均衡參與和貢獻。想成為科學家嗎?妳絕對可以!傑出學姊們在這裡跟妳說:YES!:https://towis.loreal.com.tw/Video.php

本文由 台灣萊雅L’Oréal Taiwan 為慶祝「台灣傑出女科學家獎」15周年而規劃,泛科學企劃執行。

鳥苷三磷酸 (PanSci Promo)_96
196 篇文章 ・ 302 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia