0

0
0

文字

分享

0
0
0

磁性、超導性共存的新材料開啟新的可能性

only-perception
・2011/09/12 ・1027字 ・閱讀時間約 2 分鐘 ・SR值 573 ・九年級

國小高年級科普文,素養閱讀就從今天就開始!!

科學家已抵達一個關鍵的里程碑,那導致新的、具實用電子特性的材料。在 9/5 當期 Nature Physics 中報導的一項研究裡,這個團隊將二種無磁性的絕緣體交錯重疊(sandwiched)並發現一種令人吃驚的結果:二種材料交會的那一層,同時具有磁性以及超導電性區域 — 這二種特性一般來說無法共存。

技術專家老早想尋找一種方法來改造這類材料 — 稱之為複合氧化物(complex oxides) — 當中的磁性,成為開發用於儲存與處理(資料)之潛在新型運算記憶體的第一步。

這項發現,由史丹佛材料與能源科學研究所(SIMES,能源部 SLAC National Accelerator Laboratory 與史丹佛大學的合作機構)的研究者所完成,「在改造新種材料與研究這些一般來說不相容的狀態的交互作用上,開啟了令人振奮的可能性,」 Kathryn A. “Kam” Moler 表示,SLAC/Stanford 研究者,她領導這些成像研究。

關鍵的下一步:理解這種超導電性以及磁性共存在這種材料中,是否為一種不穩定的停戰協議,又或著,這代表發現一種新型態的、主動與磁性產生交互作用的超導電性,Moler 表示。超導電材料,那以沒有阻礙的方式傳遞電流,同時具 100% 的效率,通常會排斥任何靠近它們的磁場。

“我們未來的測量將指出,它們是在彼此對抗或彼此相助,” Moler 說。

獨立的、來自 MIT 的研究者在同一期的 Nature Physics 上宣佈,他們已利用另一種測量方法證實,磁性存在於二種材料之間的界面上。在一篇伴隨二篇論文而來的評論中,哥倫比亞大學物理學家 Andrew J. Millis(他並沒有涉及這些研究)寫道,這項研究能產生新品種的材料,具有 “有趣的、可控制的、新奇的以及也許實用的集體電子特性。” 雖然這個目標仍很遙遠,他說,不過這些新發現指出,”這個領域已通過一個關鍵的里程碑。”

SIMES 畢業生 Julie Bert,該論文的第一作者,以及她的同僚,在一片鋁酸鑭(lanthanum aluminate,LaAlO3)薄膜上進行她們的觀測,那已平放在鈦酸鍶(strontium titanate,SrTiO3)基質上。這些結構是藉由與應用物理學家 Harold Hwang 的合作而生長,他最近將他的小組從東京大學搬出以加入 SIMES,現在身為副主管。二種氧化物交會之處的原子層變得金屬化(metallic)並允許電流在接近絕對零度的溫度下沒有阻礙地流動。

研究者正開始實驗,看看當這種材料被壓縮,或著,施加一電場時,是否有任何變化,Moler 說。她補充表示,現在必須完成額外的研究以測定促成磁性與超導電性在這些氧化物中形成的物理特性。

“現代科技賦予我們驚人的能力,以一層又一層的原子生長材料,” Moler 說。”我們的研究帶來的訊息是:這麼做我們能創造出具有驚人新特性的新材料。

資料來源:PHYSORG: Novel magnetic, superconducting material opens new possibilities in electronics [September 5, 2011]

轉載自 only-perception

文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

0

0
0

文字

分享

0
0
0
奈米微晶顯現鐵電性質
NanoScience
・2012/09/16 ・874字 ・閱讀時間約 1 分鐘 ・SR值 543 ・八年級

國小高年級科普文,素養閱讀就從今天就開始!!

鐵電性(ferroelectricity)材料是製造次世代非揮發性(non-volatile)記憶體的基礎,而記憶體的密度極限取決於鐵電性究竟能在多小的尺度下存在。最近美國科學家研究了碲化鍺(GeTe)與鋇鈦氧化物(BaTiO3)內鐵電形變的分佈情形,證實低至數奈米的大小仍可見鐵電性存在。根據此結果,次世代非揮發性記憶體每平方英寸的儲存容量可望高達數兆位元。

鐵磁(ferromagnetic)材料具有永久磁偶極矩,可藉由外加磁場使其轉動。相對地,鐵電材料具有永久電偶極矩,可利用電場控制極矩方向,這個特性讓科學家得以將數位電訊號儲存在鐵電薄膜中,因此開拓了一個新的元件應用舞台。

這項由勞倫斯柏克萊國家實驗室與加州大學柏克萊分的Paul Alivisatos與Ramamoorthy Ramesh領導的團隊所完成的研究,目的是探討穩定鐵電排列的最小尺寸極限,以及在此極限下所呈現的形式。先前的研究認為隨著尺度變小,造成鐵電性的原子位移會完全消失或變亂,或者以渦流態排列的形變出現。此團隊的研究結果卻顯示在單一疇區,中局部原子位移大致仍保持線性排列,因此仍有淨電極化存在。換言之,有用的鐵電性質(包含極化開關與壓電特性)在只有幾奈米的尺度下依然維持存在。

該團隊分析了碲化鍺與鋇鈦氧化物奈米微晶內的鐵電有序。前者是鐵電半導體,後者則為典型的鐵電氧化物。他們先以電子顯微鏡直接觀察個別粒子中與鐵電性有關的結構形變,接著對整體粒子進行原子對函數分佈分析(atomic pair distribution function analysis)以求得這些形變間的關連性,然後再以電子全像術(electron holography)直接拍攝此鐵電極化,並測量了單一奈米微晶的壓電滯留曲線(piezoelectric hysterisis)。

研究結果顯示,由鐵電奈米微晶製作的非揮發記憶體的資料儲存密度將可能高達每英寸數兆位元。此外,此材料未來亦可應用於奈米機電系統(NEMS)中,作為壓電致動器及傳感器(transducer)等。該團隊目前想要探討理論預測的渦流極化態是否能穩定存在這些奈米微晶粒子中。詳見Nature Materials|DOI:10.1038/nmat3371。

譯者:孫士傑(高雄大學應用物理系)
責任編輯:蔡雅芝

資料來源:Nanocrystals go ferroelectric. NanoTech [Aug 30, 2012]

轉載自 奈米科學網

NanoScience
69 篇文章 ・ 2 位粉絲
主要任務是將歐美日等國的尖端奈米科學研究成果以中文轉譯即時傳遞給國人,以協助國內研發界掌握最新的奈米科技脈動,同時也有系統地收錄奈米科技相關活動、參考文獻及研究單位、相關網站的連結,提供產學界一個方便的知識交流窗口。網站主持人為蔡雅芝教授。

0

0
0

文字

分享

0
0
0
研究者將分子磁鐵設計成長效 qubits
only-perception
・2012/06/02 ・1079字 ・閱讀時間約 2 分鐘 ・SR值 566 ・九年級

國小高年級科普文,素養閱讀就從今天就開始!!

今日某些物理學家正在研究將分子磁鐵(molecular magnets)當成未來量子電腦之資訊儲存單元使用的可能性。就分子結構來說,分子磁鐵是那些磁矩偏好朝特定軸向排列的分子。其所擁有的電子自旋結構可經由磁力調整出一種以上的狀態,且在低溫時,即使在缺乏磁場的情況下,依然可維持這種狀態,這可能使它們被用於資訊儲存上。

現在一個來自英國的研究團隊已證明,在不同的磁性狀態間,量子力學相位的疊加可持續超過 15 微秒,使其自旋態因解同調(decoherence,走調)而失去其資訊前,能反覆切換。在分子磁鐵作為 qubits(量子位元,量子電腦的元件)的實用性上,這項發現為其平添佐證。

來自牛津大學與曼徹斯特大學的研究者,C.J. Wedge 等人,已將他們「如何利用化學方法修改分子 qubits 以增加其相位記憶時間」的研究發表在最近一期的 Physical Review Letters 上。在這之前,研究者已達成 3.8 微秒的相位記憶時間(phase memory times),而其他分子磁鐵系統研究所產生的(記憶)時間都在 1 微秒的時間尺度上。

“相位記憶時間與同調時間是非常類似的概念,” 牛津大學的共同作者 Arzhang Ardavan 表示。”(長相位記憶時間)意味著,當量子資訊消失前,有可能操縱 qubit 許多次。那意義重大,但我們亦樂見能精確控制分子結構的可行性,以及能測定各種解同調機制,並盡我們所能來減少它們。”

在他們的研究中,研究者聚焦在 Cr7Ni 分子磁鐵上。他們之前證明這種分子所擁有的同調時間遠超過操縱單一 qubit 所需要的 10 奈秒。在此,他們採取下一步驟並研究分子磁鐵解同調(原子核自旋擴散 (nuclear spin diffusion) 與頻譜擴散 (spectral diffusion))的特定來源,以及如何優化結構以便盡可能地延緩解同調。

為了辦到這件事,研究者改變二種關鍵要素(某些陽離子與配位基),藉此比較不同的 Cr7Ni 結構。他們特別研究,在低溫下不同的結構維持其自旋態的能力有多好,那以結構的相位–同調性鬆弛時間(phase-coherence relaxation time)來測定。研究者發現,優化修改過的 Cr7Ni 分子磁鐵能有超過 15 微秒的相位記憶時間,那比操縱單一 qubit 所需要的時間多了幾個數量級,而且明顯比先前的證明還要更長。

研究者預測,這些結果將導致在分子磁鐵簇內操控量子態的能力。他們計畫在未來更進一步研究操縱分子磁鐵的方法。

“我們將驗證各種可能性,” Ardavan 說。”我們研究這些分子之化學性質的同僚能夠合成合併數個耦合分子磁鐵的結構。我們將利用這類分子來研究簡單的多 qubit(multi-qubit)演算法。”

“最近,有人在理論上提出,電場能用來操縱分子磁鐵的磁性狀態,” 他補充道。”我們正透過實驗來驗證這些可能性。”

原始文獻:C. J. Wedge, G. A. Timco, E. T. Spielberg, R. E. George,
F. Tuna, S. Rigby, E. J. L. McInnes, R. E. P. Winpenny,
S. J. Blundell, and A. Ardavan.
Phys. Rev. Lett. 108, 107204 (2012) [5 pages]
doi: 10.1103/PhysRevLett.108.107204

資料來源:PHYSORG:Researchers engineer molecular magnets to act as long-lived qubits[March 21, 2012]

轉載自only-perception

only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D

0

0
0

文字

分享

0
0
0
石墨烯再添神奇─這回是磁性
NanoScience
・2012/05/07 ・756字 ・閱讀時間約 1 分鐘 ・SR值 619 ・十年級

國小高年級科普文,素養閱讀就從今天就開始!!

日本與法國科學家發現在石墨烯(graphene)上製作蜂巢狀的氫端(hydrogen-terminated)奈米孔陣列(nanopore array),可使石墨烯在室溫下展現鐵磁性(ferromagnetism)。研究人員相信此磁性來自於奈米孔結鋸齒邊緣的電子自旋。該現象有助於製作不含稀有元素、輕薄透明且可彎曲的磁鐵,也可用來發展利用邊緣極化自旋(edge-polarized spin)操作的新型自旋電子元件。

石墨烯是由碳原子形成的原子尺寸蜂巢晶格結構。圖片來源:維基百科(http://0rz.tw/ZBiPe)

石墨烯是一單原子厚的二維碳材料,材質十分強韌,且導熱及導電性都極佳,應用範圍從超快電晶體到 DNA 定序,因此又有「神奇材料」的美名。日本青山學院大學(Aoyama Gakuin University)的 Junji Haruyama 表示,雖然理論已預測不含磁性原子(如鐵、鎳與鉻)的石墨烯仍可具有磁性,但製作石墨烯邊緣所使用的微影法會讓材料產生大量缺陷,反而不利形成磁性所需的鋸齒邊。

有鑑於此,Haruyama 等人以多孔氧化鋁模板(porous alumina template, PAT)作為蝕刻遮罩。PAT 是由六角形孔洞所組成蜂巢狀陣列,此結構可藉由蝕刻製程完全複製在石墨烯上。由於採用非微影方法,並以低功率氬離子進行蝕刻,在石墨烯邊緣只有少量的缺陷產生。接著,該團隊讓材料在 800°C 下進行兩階段退火:首先在真空環境中,然後再通入氫氣,目的是透過「邊緣重建」(edge reconstruction)產生邊緣為鋸齒狀的原子結構,並以氫原子加以終結。最後利用超導量子干涉儀(SQUID)確認樣本磁性。

這個包含法國研究機構 SPINTEC 的團隊目前計畫以石墨烯作為磁性半導體材料,藉由外加電壓將可調制孔隙邊緣能帶以及控制極化自旋,亦即利用量子自旋霍爾效應(quantum spin Hall effect)以及自旋整流效應(spin rectification effect)來製作自旋電晶體。詳見 Appl. Phys. Lett. 99, 183111 (2011)。

譯者:劉家銘(逢甲大學光電學系)
責任編輯:蔡雅芝
原文網址:Graphene goes magnetic—nanotechweb.org

本文來自 NanoScience 奈米科學網 [2011-12-11]

NanoScience
69 篇文章 ・ 2 位粉絲
主要任務是將歐美日等國的尖端奈米科學研究成果以中文轉譯即時傳遞給國人,以協助國內研發界掌握最新的奈米科技脈動,同時也有系統地收錄奈米科技相關活動、參考文獻及研究單位、相關網站的連結,提供產學界一個方便的知識交流窗口。網站主持人為蔡雅芝教授。

0

0
0

文字

分享

0
0
0
磁性、超導性共存的新材料開啟新的可能性
only-perception
・2011/09/12 ・1027字 ・閱讀時間約 2 分鐘 ・SR值 573 ・九年級

科學家已抵達一個關鍵的里程碑,那導致新的、具實用電子特性的材料。在 9/5 當期 Nature Physics 中報導的一項研究裡,這個團隊將二種無磁性的絕緣體交錯重疊(sandwiched)並發現一種令人吃驚的結果:二種材料交會的那一層,同時具有磁性以及超導電性區域 — 這二種特性一般來說無法共存。

技術專家老早想尋找一種方法來改造這類材料 — 稱之為複合氧化物(complex oxides) — 當中的磁性,成為開發用於儲存與處理(資料)之潛在新型運算記憶體的第一步。

這項發現,由史丹佛材料與能源科學研究所(SIMES,能源部 SLAC National Accelerator Laboratory 與史丹佛大學的合作機構)的研究者所完成,「在改造新種材料與研究這些一般來說不相容的狀態的交互作用上,開啟了令人振奮的可能性,」 Kathryn A. “Kam” Moler 表示,SLAC/Stanford 研究者,她領導這些成像研究。

關鍵的下一步:理解這種超導電性以及磁性共存在這種材料中,是否為一種不穩定的停戰協議,又或著,這代表發現一種新型態的、主動與磁性產生交互作用的超導電性,Moler 表示。超導電材料,那以沒有阻礙的方式傳遞電流,同時具 100% 的效率,通常會排斥任何靠近它們的磁場。

“我們未來的測量將指出,它們是在彼此對抗或彼此相助,” Moler 說。

獨立的、來自 MIT 的研究者在同一期的 Nature Physics 上宣佈,他們已利用另一種測量方法證實,磁性存在於二種材料之間的界面上。在一篇伴隨二篇論文而來的評論中,哥倫比亞大學物理學家 Andrew J. Millis(他並沒有涉及這些研究)寫道,這項研究能產生新品種的材料,具有 “有趣的、可控制的、新奇的以及也許實用的集體電子特性。” 雖然這個目標仍很遙遠,他說,不過這些新發現指出,”這個領域已通過一個關鍵的里程碑。”

SIMES 畢業生 Julie Bert,該論文的第一作者,以及她的同僚,在一片鋁酸鑭(lanthanum aluminate,LaAlO3)薄膜上進行她們的觀測,那已平放在鈦酸鍶(strontium titanate,SrTiO3)基質上。這些結構是藉由與應用物理學家 Harold Hwang 的合作而生長,他最近將他的小組從東京大學搬出以加入 SIMES,現在身為副主管。二種氧化物交會之處的原子層變得金屬化(metallic)並允許電流在接近絕對零度的溫度下沒有阻礙地流動。

研究者正開始實驗,看看當這種材料被壓縮,或著,施加一電場時,是否有任何變化,Moler 說。她補充表示,現在必須完成額外的研究以測定促成磁性與超導電性在這些氧化物中形成的物理特性。

“現代科技賦予我們驚人的能力,以一層又一層的原子生長材料,” Moler 說。”我們的研究帶來的訊息是:這麼做我們能創造出具有驚人新特性的新材料。

資料來源:PHYSORG: Novel magnetic, superconducting material opens new possibilities in electronics [September 5, 2011]

轉載自 only-perception

文章難易度
only-perception
153 篇文章 ・ 1 位粉絲
妳/你好,我是來自火星的火星人,畢業於火星人理工大學(不是地球上的 MIT,請勿混淆 :p),名字裡有條魚,雖然跟魚一點關係也沒有,不過沒有關係,反正妳/你只要知道我不是地球人就行了... :D