Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

使用數位裝置能促進記憶力?

Y. M. Huang
・2014/12/17 ・1637字 ・閱讀時間約 3 分鐘 ・SR值 478 ・五年級

在這數位化的時代,科技取代了不少原本需要人腦才能處理的事情,也改變了人們的認知能力去看更多關於數位化對人們影響的文章)。以筆者自己為例,數位化絕對改變了我的一些行為模式。筆者的行事曆都在雲端的月曆中,所以如果要跟別人約時間,沒帶行事曆,就完全沒有辦法處理。講白一點,記憶這件事情,對現代人來說,真的是越來越沒有必要的一項能力,因為只要google一下就好了。對於比較私人的事情例如生日、紀念日,社群網站也會很貼心的提醒你;再極端一點,就找個像電影雲端情人中的Samantha一樣的數位秘書,直接檢索你數位化的資料,幫你打理生活!

但究竟用這些數位化的服務來幫助我們記事情,會對於我們的認知能力造成甚麼樣的影響呢?又這些影響在哪些情境下會發生呢?有研究者做了很有趣的實驗,企圖模擬一般民眾在使用數位化服務來記事情時的情境,並探討這樣的行為,會對於人們後續的記憶力造成什麼影響。

在第一個實驗中,他們讓實驗參與者打開隨身碟上的pdf檔,每一次他們要學習兩個pdf檔案中所出現的單字,後續會有記憶測驗。在學完第一個檔案中的單字後,有時候實驗參與者會被告知他們可以把這個檔案儲存到電腦主機,且他們後續可以複習這個檔案中所出現的單字;有些實驗參與者則被告知他們沒有辦法把這個檔案儲存到電腦主機,必須直接關閉檔案。這樣的動作,企圖模擬人們平時將訊息用數位裝置儲存的行為,來檢視這樣的行為究竟對於記憶有什麼影響。

接著,他們學習第二個檔案中的單字,在兩個檔案中的單字都學習完之後,若先前第一個檔案有儲存在電腦主機的實驗參與者,他們可以花20秒來複習那些單字,對於沒有做這個動作的實驗參與者來說,他們不能重新看到那些單字。最後,所有的實驗參與者要回憶兩個檔案中所出現的單字。 對於第一個檔案中出現的單字來說,有儲存的組比其沒有儲存的組,記憶表現顯著的好。這個結果一點也不讓人意外,因為儲存組在記憶測驗前,還可以重新複習單字,記憶表現當然會比較好。比較讓人意外的是,儲存組及沒有儲存組在對於第二個檔案中單字的記憶表現也有差異!儲存組的實驗參與者對於第二個檔案中的單字,有比較好的記憶表現。研究者們認為,因為當實驗參與者覺得東西被儲存了,就可以釋放出一些資源,因此對於第二個檔案中的單字有比較好的記憶表現。

-----廣告,請繼續往下閱讀-----

在第二個實驗中,研究者操弄了儲存設備的穩定性,來檢驗是否只要有儲存的動作就會對於記憶有幫助,還是一定要使用穩定的儲存設備,才會對於記憶表現有幫助。結果顯示,如果儲存的設備是不穩定的,則即使有儲存的動作,對於記憶還是沒有幫助的

在第三個實驗中,研究者們進一步檢驗,如果需要記憶的項目比較少的時候,儲存是否還是會對於記憶有影響。結果發現,如果每個檔案只有兩個單字,則是否有儲存,對於記憶沒有影響

綜合這三個實驗的結果,可以發現利用數位化的方式來儲存記憶,在某些情境下對於人們的記憶是有幫助的,此外這樣的幫助並不僅限於有用數位化方式來儲存的記憶項目,對於後續需要記憶的項目也是有幫助的!用白話的方式來說就是:

  1. 善用數位化方式來儲存記憶,有助於記憶表現
  2. 如果數位化儲存的記憶不穩定,其實對於記憶是沒有幫助的
  3. 如果需要記憶的項目不多,其實不需要仰賴數位化儲存的方式來協助記憶

筆者深信,未來人們的記憶能力一定會做一些轉型,但某種記憶能力還是必須保存的,畢竟記憶是讓一個人有「自我」的關鍵能力!該如何善用數位化方式來儲存記憶,是非常值得進一步探討的議題。此外,要如何善用因為不用做記憶儲存所釋放出來的認知資源,也是相當值得探究的。

-----廣告,請繼續往下閱讀-----

去看研究的原文 Saving-Enhanced Memory: The Benefits of Saving on the Learning and Remembering of New Information

去看主要研究者Benjamin C. Storm的網頁,Storm教授的研究專注在記憶相關的議題上

最後,來看看以隨身碟為發想的廣告 A memory to remember,搭配這個研究欣賞,相當有意思!

-----廣告,請繼續往下閱讀-----
文章難易度
Y. M. Huang
95 篇文章 ・ 4 位粉絲
輔大心理系副教授,主要研究領域:探討情緒與認知之間的關係、老化對認知功能的影響、以及如何在生活中落實認知心理學的研究成果。 部落格網址:認知與情緒新聞網 (http://cogemonews.com)

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

4
3

文字

分享

0
4
3
前額葉皮質的奇蹟:如何保養你的記憶引擎!——《記憶決定你是誰》
天下文化_96
・2024/08/04 ・2641字 ・閱讀時間約 5 分鐘

憂鬱症或阿茲海默症?前額葉皮質的雙面效應

額葉損傷病患遇到的記憶問題,跟我們在日常生活中所面對的記憶挑戰有著直接的關聯,而這個關聯成為我對前額葉皮質深感興趣的原因之一。即使在沒有具體損傷的情況下,前額葉皮質的功能仍會受到許多因素影響,進一步導致顯著的記憶問題,例如我在埃文斯頓醫院神經心理學診間測試的許多病患,轉介過來是為了評估阿茲海默症的可能性,但在進一步測驗後,卻發現是臨床上的憂鬱症。

在年紀較長的成人身上,憂鬱症有可能看起來很像早期的阿茲海默症,好比我曾經測驗過一名剛退休不久的學校老師,他一向以頭腦清晰自豪,現在卻難以專注,一直忘東忘西。儘管從磁振造影看不出明顯的腦部損傷,但他的認知卻不比前額葉皮質受損的人好上多少。他和醫生都沒想到,這些認知問題可能與他剛經歷一場離婚,以及幾十年來第一次獨居的情況有關。

前額葉皮質是腦部最晚成熟的區域之一,在整個青春期會持續調整與其他腦區的聯繫。兒童雖然學習很快,卻不擅長專注在應該專注的事物上,因為容易分心。這對於有 ADHD(注意力缺失/過動障礙症)的兒童更是嚴重,他們在學校表現不佳並不是因為缺乏理解力,而是因為在教室裡難以集中注意力、培養有效的學習習慣,以及利用可以應付考試的策略。有大量證據顯示,ADHD與前額葉皮質的異常活動有關。

前額葉皮質也是我們進入老年時,首先開始衰退的區域之一,我們因此覺得自己變得比較健忘。幸好,對多數年長的人來說,形成記憶的能力不會有問題,倒是專注力的改變會影響我們記憶事件的方式。舉例來說,你可能記不住你在表妹婚禮上遇到的某個人叫什麼名字,卻可以記得你們會面時各式各樣的其他資訊,諸如他臉上有雀斑,戴著鮮黃色的領結,或不停說著他最近到田納西州那許維爾(Nashville)的事。

-----廣告,請繼續往下閱讀-----

隨著年齡變長,我們想起瑣事卻想不起重要事情的傾向也會提高。已經有無數研究顯示,在必須專心、忽視干擾的情況下記憶時,年長者表現得比年輕人要差,然而他們記得干擾訊息的能力卻與年輕人一樣好,有時甚至更好。隨著年歲漸長,我們依然能夠學習,卻較難專注於想要記住的細節,反倒常常記住無關緊要的事情。

多工殺手:為什麼一心多用讓你大腦退化

除了年齡之外,讓你覺得自己的前額葉皮質有問題的因素多得不得了。在現代世界裡,一心多用恐怕是最常見的罪魁禍首。我們的對話、活動和會議不斷受到簡訊、電話的干擾,而我們本身又常把注意力分散在好幾個目標上,使得問題更加嚴重。就算是神經科學家也無法免於多工作業--在今天,幾乎每一場學術演講中,都能發現臺下的科學家(包括我自己)拿出筆記型電腦,時而聽講、時而回電子郵件。

很多人甚至對一心多用的能力很自豪,但同時做兩件事很難不用付出代價。為了達成目標,前額葉皮質能幫助我們專注在所需的事情上,但如果我們在不同目標間迅速換來換去,這項美妙的能力就會消失。

加州大學舊金山分校神經科學家安卡佛(Melina Uncapher)的團隊便指出,「媒體多工」(media multitasking)對記憶不利,意思是在不同媒體的訊息間切換會妨礙記憶,例如一下子看簡訊、一下子看電子郵件。更嚴重的是,習慣重度媒體多工的人,平均而言前額葉皮質的某些區域會變得較薄。

-----廣告,請繼續往下閱讀-----

至於額葉的功能失常究竟是媒體多工的原因或是結果,還需要更多研究才能了解,但不管如何,這裡傳達出來的訊息相當一致。我的樂團夥伴米勒爾(Earl Miller)是世界頂尖的前額葉皮質專家及麻省理工學院的教授,他經常這樣說:

「沒有所謂一心多用;你只是輪流把不同的事情做得很糟。」

前額葉的功能也會遭到一些健康問題的破壞。例如高血壓和糖尿病會傷害大腦各區域間相互溝通的神經纖維通路,也就是白質。我和同事發現,與年齡相關的白質損傷,似乎會讓前額葉皮質失去跟大腦其他部分的聯繫--試想這名執行長被單獨鎖在房間裡,無法使用電話和網路。

感染疾病後如果造成腦部的發炎,也可能導致相似的結果,例如在新冠肺炎流行早期受到感染的人,注意力和記憶力等執行功能出現衰退,而且前額葉皮質部分區域的結構發生改變。

一旦前額葉的運作發生改變,就可能導致「腦霧」(又稱為「長新冠」)--當感染的時間很長,或罹患慢性疲勞症候群(chronic fatigue syndrome)等與感染相關的病症時,有機率出現腦霧的症狀。

-----廣告,請繼續往下閱讀-----
感染或罹患慢性疲勞症候群,都可能影響到前額葉皮質。圖/envato

養成健康生活:強化前額葉皮質的簡單步驟

如果我們生活時忽視自己的身心健康,也可能使前額葉皮質暫時失能。例如睡眠剝奪可能對前額葉皮質和記憶造成毀滅性的打擊。酒精也對前額葉皮質帶來負面影響,有些研究顯示這些影響在大量喝酒後還會持續好幾天。我們在後面的章節將探討,壓力會破壞前額葉的運作。如果你在充滿壓力的一週工作之後,熬夜喝酒又不停滑手機看網路新聞,然後整個週末都在跟腦霧奮戰,不用太驚訝。

幸運的是,我們確實可以做一些事來增進前額葉皮質的運作,雖然那些事可能跟你想的不一樣。你的腦是身體的一部分,所以任何對身體有幫助的事情,對你的腦都有幫助,進一步也對記憶有幫助。例如充足的睡眠、適度的運動、健康的飲食,這些事物都有益於你的生理和心理健康,也有益於你的前額葉皮質。

有氧運動如跑步,能促進腦部化學物質釋放,進而提升神經可塑性,改善為腦運送氧氣和能量的血管系統,降低發炎並減少罹患腦血管疾病和糖尿病的可能性。運動也會改善睡眠、降低壓力,而睡眠不足和壓力過高正是耗盡前額葉資源的兩大元凶。

這些因素會一同作用,影響記憶功能在我們年齡增長時的維持狀況。有一項令人敬佩的研究,追蹤了多達兩萬九千人的記憶表現,發現那些在生活方式裡包含上述某些有益因素的人,在十年期間記憶能力的維持狀況也較佳。

-----廣告,請繼續往下閱讀-----

——本文摘自《記憶決定你是誰:探索心智基礎,學習如何記憶》,2024 年 7 月,天下文化,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

1

1
0

文字

分享

1
1
0
資訊量過大啦!我們其實不擅長處理複雜的資訊?——《生物轉大人的種種不可思議》
商周出版_96
・2023/11/21 ・1330字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

誰不接受多樣性?

我們的成長方式具有多樣性。有人長得快,有人長得慢;有人長得高大,有人長不高。這種多樣性是「生物的策略」。不過有個東西並不接受多樣性。就是我們的大腦。

人腦不善於處理複雜的訊息。

有一個法則叫做「神奇數字七法則」,意思是:人類一次頂多只能記住七樣東西。

這是真的嗎?我們來試試看。

-----廣告,請繼續往下閱讀-----

請記住以下插圖,限時三十秒。

接著再看下面的圖,什麼東西不見了?

答案是不倒翁。為什麼明明十樣物品也不多,我們就是記不住呢?

再來試試下一題吧。

-----廣告,請繼續往下閱讀-----

雖然超過七個圖,但是這一題可能大家都記得住,因為這些圖都與《桃太郎》的故事有關。先找出關聯性,再加以歸納整理,大腦才有辦法勉強記住超過七樣東西。

大腦不擅長處理太多資訊

記憶圖畫或許比較困難,試試看數字吧。

請記住旁邊的數字,限時五秒。

怎麼樣? 是不是太簡單了點!

-----廣告,請繼續往下閱讀-----

下面這一組數字呢? 也是限時五秒。

上面這一題是不是也太簡單了!

下一組數字呢? 限時同樣五秒鐘。

如何?

-----廣告,請繼續往下閱讀-----

前兩題應該可以輕輕鬆鬆記住,但是第三題就比較不容易了吧?

你知道第三題有幾個數字嗎?

答案是八個。

只有八個!

-----廣告,請繼續往下閱讀-----

人類厲害到發明了電腦,我們優秀又傑出的大腦照理說應該能理解一百、一萬,甚至一億個數字。然而實際上,人腦必須費盡力氣才能記住兩隻手數得完的數字。我們的大腦本質上不擅長處理「大量」的資訊。

理解「大量」的方法

如同上述的例子,當題目是文字(圖像)時,只要歸納出《桃太郎》的故事,我們的大腦就更容易理解。

那麼數字呢?

我們來看看下面的數列。

-----廣告,請繼續往下閱讀-----

把亂七八糟的數字排成一列,是不是就好記很多?

如果再排成下面這樣呢?

這次是依照數字的大小排序。

我們可以看到「3」有兩個,而 1 到 9 中間缺少了「7」和「8」。經過排列和整理順序之後,人腦就比較能夠理解這些資料。我們的大腦最喜歡把東西排成一列或排順序。學校排成績也是這樣的關係吧?

-----廣告,請繼續往下閱讀-----

——本文摘自《生物轉大人的種種不可思議:每一種生命的成長都有理由,都值得我們學習》,2023 年 8 月,商周出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
所有討論 1
商周出版_96
123 篇文章 ・ 364 位粉絲
閱讀商周,一手掌握趨勢,感受愜意生活!商周出版為專業的商業書籍出版公司,期望為社會推動基礎商業知識和教育。