Loading [MathJax]/extensions/tex2jax.js

1

15
3

文字

分享

1
15
3

不用什麼都會,你也可以舉一反三?大腦到底是怎麼做到的?

Chit Ying Lau_96
・2021/01/02 ・2186字 ・閱讀時間約 4 分鐘 ・SR值 497 ・六年級

如何在辦公室裡種多肉植物?以下是你不可不知的三個種植步驟:

  1. 搜一下種植須知
  2. 把植物挪到窗邊,曬曬太陽
  3. 定期澆花,檢查底盤積水

看起來很有道理對不對?但其實筆者根~本~就沒有種過多肉植物!這些只是小時候「種綠豆的經驗中」學習到的,嘿嘿嘿。

生活中的許多技能與知識,都是透過經驗學習成長的。圖/Pexels

俗話說:「經一事,長一智」,當我們在學習待人接物、新的工作技能時,往往都會汲取很多很多的經驗,接下來,我們的大腦會把這些日常經驗抽象化、歸納並找出規律,藉此將經驗化為知識,並將知識應用在新的事件上。

比如說,小時候種綠豆的經驗會被抽象化成 3 個小事件(上面的種植步驟),即使我們從沒種過多肉植物,也不清楚多肉植物對水份、陽光的需求,但我們仍懂得舉一反三,把種綠豆時習得的基本種植步驟應用在多肉植物上。

-----廣告,請繼續往下閱讀-----

然而,大腦究竟是如何記住這些「小事件」(種植綠豆的步驟)之間的關係,並應用到類似的新事件(種植多肉植物)呢?

腦袋裡的計數器: ESR 細胞

為了解答這個問題,曾經獲得諾貝爾獎的利根川進(Susumu Tonegawa)與他領導的團隊設計了一個方形迷宮,在小鼠的迷宮實驗中,小鼠需要通過 4 次迷宮才可以獲得食物的獎勵。

首先,經過 8 天的訓練後,研究團隊發現,小鼠會在跑第 4 圈的時候加速

也就是說,牠們已經從之前的訓練經驗中得知,自己會在第 4 圈後出現食物的獎勵 1

不過,小鼠到底是怎麼追蹤自己跑了多少圈呢?

-----廣告,請繼續往下閱讀-----

由於海馬體與感知、空間、時間有關,目前科學家已經知道,當海馬體 CA1 區域被激活時,海馬體 CA1 區域就能利用其他區域的感官資訊,來幫助小鼠鞏固空間記憶。

因此研究團隊使用病毒感染海馬體 CA1 區域的神經細胞,而這個病毒身上載有對「鈣離子」相當敏感的螢光蛋白。

一旦這個區域的神經細胞被激活,鈣離子就會增加,從而增強蛋白的螢光強度,因此科學家就可以透過亮起來的螢光蛋白,測量出這裡的神經細胞有沒有被激活。

ESR 細胞在整個跑圈過程中都展示出活性,但會在特定的圈數表現得更活躍。
圖/Chit Ying Lau、Freepik

值得留意的是,這些神經元會在特定的圈數變得更加活躍,表示它們會「分工合作」,各自記錄不同圈數(事件),因此被統稱為 Event-specific rate remapping cells(簡稱為 ESR 細胞)。

-----廣告,請繼續往下閱讀-----

這些「圈數」就如種植的步驟一樣,被視為一個又一個獨立的小事件(Event)。

果然,團隊發現區域有大概 17% 的神經元在小鼠跑圈圈的時候被激活,它們激活的比例更在訓練後增至 29% ,可見其活性是學習而來的。

ESR 細胞:跑跑跑,向前跑,經過小巷和大道

然而,這些 ESR 細胞到底是如何儲存資訊的呢?它們是透過「走了多遠」、「走了多久」來記住嗎?還是直接把每一圈當作一個事件呢?

為了解 ESR 細胞的活動機制,團隊把迷宮擴大、複雜化,隨機指定老鼠每一圈要走的路程,而小鼠仍會在走完第 4 圈後得到獎勵。

驚人的是——即使每圈小鼠要走的路程都不一樣, ESR 細胞的活動並沒有受影響!由此看來, ESR 細胞的確將不同圈數當作獨立的小事件,亦不會受距離變化影響。

-----廣告,請繼續往下閱讀-----
ESR 細胞將不同圈數視為獨立事件,不受距離影響。圖/Pexels

然而,當研究員改變獎勵出現的頻率,ESR 細胞的活動也隨即出現神奇的變化。

  • 如果小鼠跑完每個圈後都會得到獎勵,大部份 ESR 細胞的活動都會消失
  • 如果小鼠要多跑一個圈(lap 5)才得到獎勵,原本的 lap 4 細胞會在第 5 圈變得更活躍。

顯然,這些ESR細胞並不純粹追蹤「圈數」,而是儲存了「圈數之間的關係」。

別再說是新一哥哥教的!ESR 才是大功臣

在現實人生中,生活總是千變萬化的,就算今天學會了如何種綠豆、種多肉植物,但明天可能需要學會種仙人掌、水生植物。

由此可知,如果一組 ESR 細胞只能儲存特定經驗,那要應付日常的小轉變都很費勁了。

-----廣告,請繼續往下閱讀-----

於是,團隊讓小鼠在方形迷宮訓練了一天後,在翌日把迷宮換成了「圓形」。

結果顯示,有高達 38% 的 ESR 細胞在圓形迷宮內仍然保持他們追蹤特定圈數的能力,表示小鼠可以把從方形迷宮學習到的知識應用到圓形迷宮上。

總而言之,ESR 細胞相當穩健,即使換了迷宮的形狀、路程,也不會影響它的活動。透過 ESR 細胞,大腦可以追蹤事件與事件之間的關係,且不易受外在環境改變,奠定了知識轉移的基礎。

不過,現實生活中要追蹤的事情可比這些實驗複雜得多了。ESR的記憶可以保存多久?知識轉移的機制是甚麼?ESR細胞會和海馬體其他細胞相互合作嗎?這些問題仍有待解答。

  1. Sun, C., Yang, W., Martin, J. et al. Hippocampal neurons represent events as transferable units of experience. Nat Neurosci 23, 651–663 (2020).
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
Chit Ying Lau_96
2 篇文章 ・ 0 位粉絲

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

2
0

文字

分享

0
2
0
掌控注意力與動機:終結找不到東西的困擾!——《記憶決定你是誰》
天下文化_96
・2024/08/03 ・1563字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

為什麼我們總是找不到鑰匙?

讓我們想像一個日常中會發生的情況。你下班回家,用手機確認電子郵件,同時把鑰匙插入鑰匙孔,打開大門。你踏入家中,家裡那隻不久前才認養、還沒訓練好規矩的好動小狗撲過來,纏著你跳來跳去,搞得你身上沾滿狗兒的口水。

你聽到女兒的房間大聲傳出卡加咕咕樂團(Kajagoogoo)的歌曲,一小段極易琅琅上口的重低音合成流行音樂鑽進你的腦門。你疲憊的走進廚房,裡面有股腐臭味,告訴你昨晚忘記把垃圾拿出去。然後,忽然一個抽痛,提醒你要冰敷幾週前扭傷的腳踝。

現在,不要轉頭,試著回想你把鑰匙放在哪裡。如果你想起自己把鑰匙留在鎖孔上,那很好,但如果實在想不起來,你也並不孤單。你可能只是被太多事情轉移了注意力,一旦有一大堆訊息襲來,我們對單一事件的記憶會變得混亂。

有時候就是無法想起自己將物品放在哪裡。 圖/envato

更糟的是,當我們試圖回想自己最後把鑰匙放在哪裡時,會一一過濾各式記憶,包括自己以前曾放置鑰匙的所有地方,以及我們把鑰匙放在各個地方的各種不同情況,不管那些事件是發生在昨晚、上個星期,甚至去年。會有很多這樣的干擾,所以諸如鑰匙、手機、眼鏡、皮夾,甚至車子等常用的東西,我們經常忘記它放在哪裡。競爭的記憶那麼多,能夠記住這些東西放在哪裡才奇怪。

-----廣告,請繼續往下閱讀-----

破解記憶混亂:注意力如何幫助你記住重要細節

試著把記憶想像成一張桌子,上面雜亂的放滿皺皺的紙片。如果你把網路銀行的密碼隨手抄在這種紙片上,要重新找到這張紙片,不僅需要耗費一番努力和運氣,同時也在挑戰你的記憶力。這類經驗就像艾賓浩斯努力背誦的無意義三字母組,要找到當下所需的正確記憶,難度會不成比例的增加。

但如果你把密碼寫在一張亮眼的桃紅色便利貼,要找到就變得格外容易,因為桃紅色便利貼會從桌上所有其他紙片之中凸顯出來。記憶以同樣的方式運作。愈特殊的經驗愈容易記得,因為它會從所有其他記憶裡凸顯出來。

愈特殊的經驗愈容易記得,就像一張亮眼的便條紙。 圖/envato

那麼,要如何使記憶從我們堆滿雜亂事物的腦袋中凸顯出來呢?答案是「注意力」和「動機」。利用注意力,大腦能把我們看到、聽到、想到的事情提高優先順序。我們隨時都可能把注意力放在四周的諸多事物上,而環境裡發生的事情常常會吸引我們注意。

在前面描述的假想情況中,你的注意力可能短暫的放在鑰匙上,接著注意力就被門打開後遇到的許多事情給轉移。即使你留意著應該記住的重要事物(一小時後得去機場接妻子,你需要那串鑰匙,否則會遲到),也不見得能幫你建立特殊的記憶,足以對抗各式各樣吸引你注意的干擾(好動的狗、廚房裡的垃圾臭氣,或女兒房間傳出的樂團聲音)。

-----廣告,請繼續往下閱讀-----

這就是「動機」登場的時候了。你需要利用動機來引導注意力,讓注意力鎖定在某個特定的事物上,好製造一個之後能找得到的記憶。下次你放下鑰匙這類經常找不到的東西時,花一點時間專注在當時和當地的某個獨特事物,例如檯面的顏色,或鑰匙旁邊那疊未拆封的信件。只要一點點專心的動機,就能對抗大腦忽略日常事件的天性,建立較為明顯的記憶,如此便有機會戰勝那些干擾的喧囂。

——本文摘自《記憶決定你是誰:探索心智基礎,學習如何記憶》,2024 年 7 月,天下文化,未經同意請勿轉載

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

2
1

文字

分享

0
2
1
奠定現代通信基礎的克勞德.香農(Claude Shannon)
數感實驗室_96
・2024/06/06 ・743字 ・閱讀時間約 1 分鐘

本文由 國立臺灣師範大學 委託,泛科學企劃執行。 

以前小時候如果調皮不聽話,就會被大人叫去跪算盤,現在的家長家裡沒算盤了,反而會拿出電路板讓小孩跪。

咦?為什麼總是拿算數工具來懲罰小孩呢?

電路板上看似複雜電路板密密麻麻的,是電腦進行邏輯計算的關鍵。這小小的薄片能執行驚人的運算功能,背後的奧秘離不開一位傳奇科學家的貢獻。他不僅奠定了現代通信的基礎,還開創了人工智慧研究,這可不是一般人一生能做到的成就,但克勞德.香農(Claude Shannon)卻一次搞定。

-----廣告,請繼續往下閱讀-----

這位非凡的科學家是如何改變了我們的時代?

他讓我們今天能享受高效的通訊技術和智慧生活。如果你也覺得現在生活離不開手機和電腦,那你應該感謝這位數學和電機工程的天才。

對於 2000 年後出生的人而言,或許覺得用手機傳訊息、用電腦看影片再平常不過。但在 Shannon 出現之前,沒有人能系統性地定義「資訊」和「通訊」。他以其對動手實驗的熱忱,將這些看似無形的概念轉化為實際的理論,為世界帶來了一場資訊革命。

正是因為 Shannon 的卓越貢獻,我們才能享受如此便捷的現代通信技術。他不僅改變了科學的面貌,還深刻地影響了我們的日常生活。

Shannon 的故事也提醒我們,熱愛與好奇心是推動進步的核心力量。他用智慧和創造力,為我們打造現代通信的基礎,並開啟未來的無限可能。

-----廣告,請繼續往下閱讀-----

更多、更完整的內容,歡迎上數感實驗室 Numeracy Lab 的 YouTube 頻道觀看完整影片,並開啟訂閱獲得更多有趣的資訊!

-----廣告,請繼續往下閱讀-----
數感實驗室_96
76 篇文章 ・ 50 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/