1

15
3

文字

分享

1
15
3

不用什麼都會,你也可以舉一反三?大腦到底是怎麼做到的?

Chit Ying Lau_96
・2021/01/02 ・2188字 ・閱讀時間約 4 分鐘 ・SR值 497 ・六年級

如何在辦公室裡種多肉植物?以下是你不可不知的三個種植步驟:

  1. 搜一下種植須知
  2. 把植物挪到窗邊,曬曬太陽
  3. 定期澆花,檢查底盤積水

看起來很有道理對不對?但其實筆者根~本~就沒有種過多肉植物!這些只是小時候「種綠豆的經驗中」學習到的,嘿嘿嘿。

生活中的許多技能與知識,都是透過經驗學習成長的。圖/Pexels

俗話說:「經一事,長一智」,當我們在學習待人接物、新的工作技能時,往往都會汲取很多很多的經驗,接下來,我們的大腦會把這些日常經驗抽象化、歸納並找出規律,藉此將經驗化為知識,並將知識應用在新的事件上。

比如說,小時候種綠豆的經驗會被抽象化成 3 個小事件(上面的種植步驟),即使我們從沒種過多肉植物,也不清楚多肉植物對水份、陽光的需求,但我們仍懂得舉一反三,把種綠豆時習得的基本種植步驟應用在多肉植物上。

-----廣告,請繼續往下閱讀-----

然而,大腦究竟是如何記住這些「小事件」(種植綠豆的步驟)之間的關係,並應用到類似的新事件(種植多肉植物)呢?

腦袋裡的計數器: ESR 細胞

為了解答這個問題,曾經獲得諾貝爾獎的利根川進(Susumu Tonegawa)與他領導的團隊設計了一個方形迷宮,在小鼠的迷宮實驗中,小鼠需要通過 4 次迷宮才可以獲得食物的獎勵。

首先,經過 8 天的訓練後,研究團隊發現,小鼠會在跑第 4 圈的時候加速

也就是說,牠們已經從之前的訓練經驗中得知,自己會在第 4 圈後出現食物的獎勵 1

不過,小鼠到底是怎麼追蹤自己跑了多少圈呢?

-----廣告,請繼續往下閱讀-----

由於海馬體與感知、空間、時間有關,目前科學家已經知道,當海馬體 CA1 區域被激活時,海馬體 CA1 區域就能利用其他區域的感官資訊,來幫助小鼠鞏固空間記憶。

因此研究團隊使用病毒感染海馬體 CA1 區域的神經細胞,而這個病毒身上載有對「鈣離子」相當敏感的螢光蛋白。

一旦這個區域的神經細胞被激活,鈣離子就會增加,從而增強蛋白的螢光強度,因此科學家就可以透過亮起來的螢光蛋白,測量出這裡的神經細胞有沒有被激活。

ESR 細胞在整個跑圈過程中都展示出活性,但會在特定的圈數表現得更活躍。
圖/Chit Ying Lau、Freepik

值得留意的是,這些神經元會在特定的圈數變得更加活躍,表示它們會「分工合作」,各自記錄不同圈數(事件),因此被統稱為 Event-specific rate remapping cells(簡稱為 ESR 細胞)。

-----廣告,請繼續往下閱讀-----

這些「圈數」就如種植的步驟一樣,被視為一個又一個獨立的小事件(Event)。

果然,團隊發現區域有大概 17% 的神經元在小鼠跑圈圈的時候被激活,它們激活的比例更在訓練後增至 29% ,可見其活性是學習而來的。

ESR 細胞:跑跑跑,向前跑,經過小巷和大道

然而,這些 ESR 細胞到底是如何儲存資訊的呢?它們是透過「走了多遠」、「走了多久」來記住嗎?還是直接把每一圈當作一個事件呢?

為了解 ESR 細胞的活動機制,團隊把迷宮擴大、複雜化,隨機指定老鼠每一圈要走的路程,而小鼠仍會在走完第 4 圈後得到獎勵。

驚人的是——即使每圈小鼠要走的路程都不一樣, ESR 細胞的活動並沒有受影響!由此看來, ESR 細胞的確將不同圈數當作獨立的小事件,亦不會受距離變化影響。

-----廣告,請繼續往下閱讀-----
ESR 細胞將不同圈數視為獨立事件,不受距離影響。圖/Pexels

然而,當研究員改變獎勵出現的頻率,ESR 細胞的活動也隨即出現神奇的變化。

  • 如果小鼠跑完每個圈後都會得到獎勵,大部份 ESR 細胞的活動都會消失
  • 如果小鼠要多跑一個圈(lap 5)才得到獎勵,原本的 lap 4 細胞會在第 5 圈變得更活躍。

顯然,這些ESR細胞並不純粹追蹤「圈數」,而是儲存了「圈數之間的關係」。

別再說是新一哥哥教的!ESR 才是大功臣

在現實人生中,生活總是千變萬化的,就算今天學會了如何種綠豆、種多肉植物,但明天可能需要學會種仙人掌、水生植物。

由此可知,如果一組 ESR 細胞只能儲存特定經驗,那要應付日常的小轉變都很費勁了。

-----廣告,請繼續往下閱讀-----

於是,團隊讓小鼠在方形迷宮訓練了一天後,在翌日把迷宮換成了「圓形」。

結果顯示,有高達 38% 的 ESR 細胞在圓形迷宮內仍然保持他們追蹤特定圈數的能力,表示小鼠可以把從方形迷宮學習到的知識應用到圓形迷宮上。

總而言之,ESR 細胞相當穩健,即使換了迷宮的形狀、路程,也不會影響它的活動。透過 ESR 細胞,大腦可以追蹤事件與事件之間的關係,且不易受外在環境改變,奠定了知識轉移的基礎。

不過,現實生活中要追蹤的事情可比這些實驗複雜得多了。ESR的記憶可以保存多久?知識轉移的機制是甚麼?ESR細胞會和海馬體其他細胞相互合作嗎?這些問題仍有待解答。

參考資料

  1. Sun, C., Yang, W., Martin, J. et al. Hippocampal neurons represent events as transferable units of experience. Nat Neurosci 23, 651–663 (2020).
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
Chit Ying Lau_96
2 篇文章 ・ 0 位粉絲

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
真實世界的所有問題,都是跨領域問題-朱士維專訪
顯微觀點_96
・2025/09/20 ・5074字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自顯微觀點

主持台大生醫光學實驗室的朱士維,在 2023 年初兼任台大學務長。他一面落實以學生為核心的大學價值,一面持續鑽研光學與生物組織、奈米結構的互動。

近年朱士維參與的研究包含觀察「活的小鼠大腦」如何自我調節、以光激發出奈米材料的新物理性質等。這些研究登上《自然通訊》(Nature Communication)、《先進科學》(Advanced Science)等重要期刊,以尖端光學技術為腦科學、奈米材料探照未知之處。

對於生醫領域的精密光學應用,朱士維說明,光學顯微技術介於醫學造影和電子顯微鏡之間:醫學造影提供即時成像,但解析度不夠精密。電子顯微鏡可以達到奈米解析度,卻無法保持樣本活性。而持續發展的光學顯微術則開始達成快速的高解析度活體影像,讓科學家看到真實生理。

-----廣告,請繼續往下閱讀-----

活體顯微影像的追求不出四大方向:對比、解析度、穿透深度、速度。

– 朱士維

雙光子顯微術搭配人工智慧 追上神經生理

2024 年,朱士維領銜的台大、清大聯合團隊研發高速體積成像系統 TAG-SPARK (TAG-lens-based SPAtial redundancy-driven noise Reduction Kernel),以可調式聲學梯度變焦透鏡(Tunable Acoustic Gradient, TAG lens)結合自我監督式深度學習演算法,顯微影像成果比單用雙光子顯微術清晰 10 倍,掃描速度快上近 1000 倍。

TAG-SPARK 的聲學梯度變焦透鏡,以聲波控制特殊透鏡內的液體振動、改變折射率,使雙光子顯微光路可以在 1 秒內完成多個深度的對焦,快速建立 3D 影像。在高速體積成像的支援下,研究團隊設計的演算法利用每層平面影像間豐沛的空間冗餘(spatial redundancy)資訊進行去噪(noise reduction),讓影像訊噪比改善7倍以上。

TAG-SPARK 以不同速度對活體小鼠的腦部進行鈣離子掃描成像,可以看見在不同深度的樹突、細胞體構造以及運作時的電位變化。來源/TAG-SPARK: Empowering High-Speed Volumetric Imaging With Deep Learning and Spatial Redundancy

高速度和高品質的立體顯微影像,讓科學家以接近神經運作的速率,觀察活體小鼠的小腦動態。研究團隊以小腦中的柏金氏細胞(Purkinje cells)作為觀察目標,它們是小腦皮層唯一的輸出神經元,掌控小腦的訊號傳輸與身體日常運作。柏金氏神經細胞的樹突緻密分布於小腦皮質最外側的分子層(molecular layer),細胞體則聚集在更深處的分子層與顆粒細胞層(granule cell layer)之間,獨立形成柏金氏層。

傳統顯微方法不易穿透其深度觀察細胞體動態,若使用共軛焦顯微術,強力激發光卻容易傷害腦細胞。但雙光子顯微術在觀察活體組織時,則可以提供較深的焦平面和較低的光毒性。

-----廣告,請繼續往下閱讀-----

透過 TAG-SPARK, 研究團隊不僅詳細記錄柏金氏細胞動態,更發現相同的樹突訊號能導致柏金氏細胞體產生不同反應,呈現前所未見的有趣訊號模式。朱士維相信「意識是資訊的集合」,高速立體光學成像系統能讓我們看見腦中資訊的聚散,更進一步接近「何謂意識」這個世紀之謎。

柏金氏細胞卵狀的細胞體位於小腦皮層較深處,緻密的樹突則延伸至表面的分子層,因此要觀察其運作時的全貌,需要能夠快速地變換焦點深度。來源/Wikimedia

朱士維也參與由台大生科系教授陳示國領導的跨校團隊,以雙光子顯微術結合梯度折射(Gradient-Index, GRIN, 物鏡內有不同折射率的微型透鏡平行排列)內視鏡,觀察小鼠的晝夜節律神經系統的真實運作狀況。

這支結合生命科學、物理以及工程科學的研究團隊測試大腦底部「視交叉上核」(suprachiasmatic nucleus,SCN)神經細胞對光線變化的反應。在團隊中,朱士維負責提供精密顯微影像,研究活體腦神經元生理不可或缺的觀察工具。

團隊利用朱士維研發的雙光子-GRIN顯微內視鏡(雙光子顯微術搭配GRIN內視鏡),從樹突叢集的鼠腦表層看進神經細胞體聚集處。他們發現,即使樹突受到相同光訊號刺激,節律神經細胞體可能以不同的方式回應,並由複數神經元整合資訊,再行輸出訊號給下游神經元。

-----廣告,請繼續往下閱讀-----

研究團隊認為,在多種神經元的交織協力下,晝夜節律的神經生理呈現高度動態變化。神經細胞活動與光照的關係並非傳統想像的線性模式,而是雙穩態(bi-stability, 系統中有 2 個調節開關)的靈活調控,而單一類型神經細胞對光照的反應難以預測,生理時鐘內還有許多奧秘等待探索。

與跨領域學者合作,並非一帆風順。朱士維坦言,跨足生物學領域,他還有很多知識要補充、溝通門檻要跨越。

他笑稱,「光是合作對象經常討論的果蠅蕈狀體,我聽了 3 年才認為自己真的懂了。」對他來說,跨領域合作最重要的收穫之一,就是尊重不同領域之間的知識含量。其次,則是溝通的技術。

我維持了幾年的一知半解才了解合作對象的語言,那我務必要讓自己說出來的話非常容易理解。

– 朱士維

除了生醫應用,朱士維也在物理工程領域探索新的光學現象。他與中國、日本學者合作研究奈米材料上的非線性光學,發現與米氏散射原理相關的移位共振,能夠激發矽奈米結構的多極模態(multipolar modes)。

-----廣告,請繼續往下閱讀-----

透過共軛焦反射顯微鏡光路達成的多極模態,讓奈米材料展現幾項嶄新的光學效應,如更低的光學非線性閾值、光開關的訊號反轉(sign flip)、空間解析度提升等。不僅開啟了操控米氏共振的新方法,也擴張了超過百年的經典光散射理論。

以共軛焦顯微鏡觀察高強度雷射照射下的矽奈米立方體的非線性散射,上圖中矽立方體寬度為180奈米(中央圖)時,可以得到最強的移位共振效果。圖/Multipole engineering by displacement resonance: a new degree of freedom of Mie resonance.

這些精采研究涵蓋跨領域、跨國界的合作,並非巧合,而是出於朱士維的世界觀。他深信,「真實世界的所有問題,都是跨領域問題。」在大學教室裡,他也以此觀念為學生設定學習方向。

討論與實作優先的大學教育

在大一、大二的基礎課程中,朱士維就會要求學生提出研究計畫、動手進行研發。他強調,讓學生從具體而明確的問題出發,親手進行研究。在研究中遇到挑戰、企圖解決時,學生自然會尋找需要的知識。

朱士維回想,「修課學生果然從很務實的角度發想,有人的提案是『保證起床的鬧鐘』,結合物理知識和現實可行的元件,做出不會被輕易關掉的鬧鐘,讓他可以準時上課。他在學期末真的做出了這個鬧鐘。」

-----廣告,請繼續往下閱讀-----

朱士維認為,在豐富的現代資訊環境中,幾乎所有理論知識都可以線上學習,在教室上實體課程的必要性遠不如以往。至於實體課程最珍貴的部份是讓人當面討論、激盪想法,讓積極學習的學生們能夠聚集、交流,而非要求學生安靜聽課、被動吸收。

朱士維相信,大學教育的重要目標之一,是訓練學生主動採取行動的習慣,並讓他們知道必須主動追求,才能完成自己心中的期待。因此親自規畫、動手(腳)實踐,是他所有課程的必備基礎。

除了物理系,朱士維也在臺大創新設計學院(College of Design and Innovation,簡稱 D-School)開設課程,引導學生以「設計師」、「使用者」觀點建構自己的大學生活與生涯規劃。

朱士維特別說明,D-School 設有創新領域學士學位學程,讓學生能夠跳脫舊有領域框架自訂學習主題。讓學生能實現自己對知識的構想,或許比舊有科系分野更能適應快速變化的社會。他強調,「學生原創的課程組合,是可以得到學士學位的。」

-----廣告,請繼續往下閱讀-----

主修社團,副修電機

談及學習經驗,朱士維說,「我常常說自己大學主修『嚕啦啦社』,副修電機系。大學4年中至少有1年在山上過,成績排名也因此往往是後半段。」但他認為,自己重要的「能力」如溝通協調、事前規劃、親手解決問題的信念,都是在社團經歷中學到的。

朱士維回想,他在高中時參與了救國團服務隊舉辦的山區營隊,活動內容相當刻苦簡樸,但他十分羨慕服務隊成員們能住在優美山林間,心想「等我上大學,一定要成為其中一員。」

進入台大嚕啦啦社並擔任服務隊員後,朱士維不僅培養了在山野間帶隊行進的嚮導經驗,也經常為了團康活動面對群眾。他說,「服務員經常得一手掌握團隊氣氛,活動才會成功。」他回想,當年為了達到這樣的能力,投入許多時間認真練習,經過跌跌撞撞的多次嚐試,才塑造出自己的風格。

後來得到「優良導師」與多次「教學優良教師」獎項的朱士維分析,這種能力其實就是「溝通」。但是他當時並非盤算著,「有天我會成為教師,能把這種技巧發揮在教室裡。」而是對當下的任務很投入,進行一件自己真的很想做的事情,在過程中內化了這項能力。

-----廣告,請繼續往下閱讀-----

做學術研究不可或缺的計畫書,我也是在社團學到怎麼寫的,因為當時想申請更多經費來辦活動。朱士維

朱士維說自己「主修社團,副修電機」,但並非認為學業與成績不重要,而是希望學生投入當下自己真正想做的事情,不論是學術、社團或是其他事物,只要真心投入都會有所回報。攝影/楊雅棠

因為自身經歷,朱士維相信,讓學生能投入自己真的想做的事情,才能培養長期的能力與素養。為了帶給學生自由探索的時間與空間,朱士維也強力支持 D-School 中的「探索學習」計畫。

選擇「探索學習」的學生,不再受到學期學分下限要求,可以自行前往校園外進行探索,建構自己的志向與經驗。選擇此計畫的學生,有人加入 NGO、有人進入動物園與馬場實習,還有人搭乘無動力帆船橫跨大洋,獲得課堂中無法給予的重要體驗。

朱士維認為,親身體驗,遠比聽講的學習效果更好。而離開校園探索世界的深刻體驗,未必會讓人遠離學術。

提及學術起點,朱士維不好意思地說,當年之所以報考台大光電研究所,「是因為想要繼續參加社團,要是離開台大,社團生涯就結束了。」

研究所開學不久,921 大地震撼動台灣,中部災情尤其嚴重。朱士維聽聞大學時期經常前往、充滿熟悉與認同的南投山區也遭受重創,便和指導老師孫啟光請假,前往災區協助賑災。

朱士維回憶,孫啟光乾脆地答應他的請求,即使他離校超過一個月才回歸實驗室,也不曾額外施加壓力。經過了在南投山區鎮日搬運物資、不時目擊傷亡狀況的賑災經驗,他回到台大光電研究所時,同學們大多已在研究軌道上運作。

朱士維說,「當時我並沒有對研究成果想太多,而是想回報孫老師。因為他給我很大的彈性、研究主題又有趣,就專心投入他的計畫。想不到,幾個月後研究成果竟登上國際期刊。至今我還記得看到自己名列期刊之中的感動,也在那時開始覺得『我或許可以走學術這條路!』」

因為充滿因緣際會的生涯際遇,朱士維相信,「全心投入的事情,都會在生涯某處開花結果。比起嚴密生涯規畫更重要的,是當下的自己、周遭的人與環境,找到自己想投入的事情。」

從「好好生活」出發的學務長

一進入朱士維的學務長辦公室,能看到一幅對聯「好好生活。感恩助人」,書桌後方則並列三幅春聯「好好生活」、「好好吃飯」、「好好睡覺」。

朱士維說,學務處實際上掌管學生除了成績外的所有在校事務,而大學除了學業成績外,更應該協助學生培養人格和價值觀。因此,他將學務處設定為學生在校期間的支持與賦能來源。

台大學務長辦公室中的朱士維。攝影/楊雅棠

台大學務處網站上的理念「好好生活,吃飯睡覺運動交友;感恩助人,學生互助回饋社會。」就是朱士維為學務處設立的目標。他強調,將學生推向世界,能夠與自身、週遭人事物建立真實的連結,是比追求課業成績更優先的大學價值。

因此他規劃學務處擴改善硬體設施、增加軟體服務,從社團資源、宿舍、餐廳、心輔中心到新的經濟支持計畫,提供學生友善、包容的生活環境。他期待學生能夠在生活中感到安定,進而察覺值得感恩的事,得到感激並協助他人的能力,形成助人的循環。

朱士維回想,自己在台大的社團與求學經驗都讓他心懷感恩,包括在台大擔任教師也是非常幸運的事。現在,他致力為台大學生建立可以安心探索自我與真實世界的大學環境,以充滿感動的學習經驗,取代孤獨且競爭激烈的人生賽道。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

顯微觀點_96
44 篇文章 ・ 10 位粉絲
從細微的事物出發,關注微觀世界的一切,對肉眼所不能見的事物充滿好奇,發掘蘊藏在微觀影像之下的故事。

0

0
2

文字

分享

0
0
2
腦中那首歌停不下來?可能是「耳蟲」找上你!
雅文兒童聽語文教基金會_96
・2025/08/20 ・3373字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

  • 文 / 雅文基金會聽語科學研究中心 林旻萱 助理研究員

在你的日常生活中,是否也有過這樣的經驗呢?四周一片寂靜,你坐在書桌前,試圖專心準備即將到來的考試,卻發現怎麼樣都無法靜下心來,因為腦袋裡正不受控制地播放同一首歌,甚至有時候還會不自覺的哼唱起旋律。那也許是你在商店裡無意間聽到的廣告歌曲,也或許是喜歡的歌手發的新歌,無論你有沒有刻意去回想,它都會佔據你的腦海,像是腦中的背景音樂,不斷重播。

像這樣被一首歌「洗腦」的狀況,到底為什麼會發生呢?

為什麼我們會被歌曲洗腦?原來是耳蟲搞的鬼

事實上,上述的這種現象稱為不自主音樂意象(Involuntary Musical Imagery, INMI),也稱為卡歌症候群(Stuck Song Syndrome, SSS),在口語上常被稱為耳蟲(earworm),是指一段旋律在大腦中自發浮現,並不斷重播的現象 [1][2]。耳蟲這個詞是從德文的詞彙 “ohrwurm” 而來 [3],”ohr” 是指耳朵,而 “wurm” 則是小蟲子的意思,用以形容像小蟲子爬進耳朵一般,在腦中揮之不去的音樂。根據研究,耳蟲最早的文學來源,或許可以追溯到 19 世紀 [3]。在 1845 年美國出版的一部短篇小說《悖理的惡魔》中,故事的角色就遭遇了「腦中自發響起旋律而無法擺脫」的困擾,這與現代常被提起的耳蟲現象極為相似。這顯示出,即使當時尚未明確定義耳蟲現象,人們也早已在日常生活中有過這種音樂入侵大腦的經驗,甚至為此感到困擾。

心理學教授 Philip Beaman 指出,2008 年就曾有研究針對芬蘭約 12000 名網路使用者進行大規模的問卷調查,結果顯示,有 33% 的受試者表示耳蟲會每天出現,且有超過 90% 的受試者表示至少每週會發生一次耳蟲現象 [2][4],由此可見,耳蟲現象其實相當普遍。那麼,究竟是什麼原因導致耳蟲現象呢?

-----廣告,請繼續往下閱讀-----
旋律在腦袋裡重播,讓人也忍不住地哼唱起來。 圖 / AI創建

常見的耳蟲現象,與大腦構造息息相關

為了探討大腦結構與耳蟲現象之間的關聯,Farrugia 等人於 2015 年進行了一項研究 [1],他們調查了 44 名受試者接觸音樂的經驗,並透過問卷了解受試者對耳蟲現象的看法,包括耳蟲的出現頻率及其對生活的影響等等。結果顯示,曾學習音樂或經常接觸音樂的人,更容易出現耳蟲現象,而且這些音樂片段可能對他們產生更強烈的情緒與心理影響。

另一方面,研究也透過磁振造影(Magnetic Resonance Imaging, MRI)對受試者進行腦部掃描,分析大腦的灰質體積與皮質厚度。結果發現,耳蟲現象的頻率可能與某些特定腦區的結構有關。大腦右側的額下回(Inferior Frontal Gyrus, IFG)不僅與音高記憶有關 [1][5-7],也負責抑制機制,當右側 IFG 的皮質厚度降低,抑制能力便會減弱 [1]。研究者發現,耳蟲現象發生時,IFG 的活動或許能夠抑制耳蟲出現 [1][8-9]。此外,耳蟲出現的頻率與大腦的前扣帶迴皮質(Anterior Cingulate Cortex, ACC) 厚度也有顯著的關聯,當耳蟲出現得越頻繁,ACC 的皮質厚度越薄 [1]。ACC 位置所在的大腦網絡區域,即使是大腦處於「非任務狀態」時,仍在進行各種思維活動 [1][10]。也就是說,在人們處於放空、發呆,甚至沉浸在白日夢中的時候,ACC 並不會休息停滯,反而呈現高度活躍的狀態。一項研究顯示,ACC 的皮質厚度與非任務狀態的思維活動比例有關 [11]。若將耳蟲視為一種非刻意但可感受到的意識活動,則 ACC 在耳蟲現象的神經機制中,可能扮演重要的角色。

有些人會對耳蟲感到困擾,而有些人則會擁有正向的情緒。 圖 / AI創建

對某些人而言,耳蟲能喚起愉快回憶,帶來正面影響;但對另一些人來說,強烈情緒反而可能使耳蟲成為困擾。先前已有研究指出,聆聽音樂時較容易產生正向情緒的人,其海馬旁迴(Parahippocampal Cortex, PHC)體積通常較大 [1][12], Farrugia 等人也進一步發現,認為耳蟲對自己有幫助的人,其 PHC 的灰質體積也相對較大。他們推測,PHC 灰質體積較大可能喚起與耳蟲相關的記憶,激發情緒,讓耳蟲產生較正向的作用。此外,右側顳極(Temporal Pole, TP)則被認為與情感處理相關 [1][13],若 TP 灰質體積較大,個體對情緒的刺激反應可能更為敏感,而這一類的人也較難抑制耳蟲經驗所連結到的負向情緒反應。這些結果顯示,大腦結構與功能互相影響,使每個人對於耳蟲的感受都有所不同。

那些「洗腦神曲」是怎麼來的?這些特徵是關鍵!

除了大腦結構與自身情感機制會使得耳蟲現象發生之外,歌曲本身的特徵也扮演了重要角色。根據研究,歌曲若具備某些特徵,會更容易引發耳蟲現象 [14],如下所示:

-----廣告,請繼續往下閱讀-----
  1. 節奏較快:INMI 歌曲的節奏通常比非 INMI 歌曲快,輕快的節奏更容易吸引注意力並留下記憶。
  2. 旋律輪廓常見:若旋律的起伏模式符合人們熟悉的音樂結構,更容易在腦中重播。
  3. 特殊旋律轉折:即使旋律不常見,只要具有獨特且引人注意的起伏變化,也可能成為耳蟲。
  4. 近期曝光與流行程度:最近聽過或正在流行的歌曲,更容易成為耳蟲。
經常聽的流行音樂,更容易引起耳蟲現象。圖 / freepik 

重複的旋律,能夠促進兒童語言發展嗎?

根據研究,使用兒歌作為教學素材,能有效提升 4 至 5 歲兒童的詞彙量,且兒童在理解與運用新詞彙方面皆有明顯進步 [15]。兒歌是兒童日常生活中最常接觸的音樂形式之一,而且具備了引來耳蟲的特性:旋律輕快、有節奏感,常見且具記憶點。若兒歌能透過耳蟲現象在兒童腦中自發性地重現,利用這種「非刻意但頻繁回想」的特性,或許能在自然語境中提供兒童額外的語言練習機會,使語言學習不僅僅是限於教學情境中,甚至能夠延伸至日常生活的潛意識層面。

研究也指出,透過兒歌進行學習,不僅能提升幼兒的詞彙量,亦能增強其語言學習的自信心,自我表達也會更為積極 [15]。因此,若能善用兒歌作為語言學習的媒介,並考量耳蟲現象可能帶來的記憶強化效果,也許有助於促進兒童在語言學習上的發展。

耳蟲現象,其實有跡可循

總而言之,當你腦中突然浮現一段旋律,反覆播放、揮之不去時,其實不必感到意外。這正是大腦運作與音樂特性交互作用的結果,是一種相當普遍且自然的現象。即使你沒有刻意記住某首歌,它仍可能在潛意識中悄悄留下痕跡。

所以下次當某首歌又悄悄佔據你的思緒時,不妨放鬆心情,靜靜欣賞它的旋律與節奏。你之所以忍不住想哼唱,並不是因為分心,而是因為這段旋律剛好觸發了大腦中的某個開關,也許還會勾起某些情緒或回憶呢!

-----廣告,請繼續往下閱讀-----

耳蟲,是音樂在我們腦海中留下的溫柔印記,時刻提醒著我們:大腦與音樂之間,總有著令人著迷的互動。

參考資料:

  1. Farrugia, N., Jakubowski, K., Cusack, R., & Stewart, L. (2015). Tunes stuck in your brain: The frequency and affective evaluation of involuntary musical imagery correlate with cortical structure. Consciousness and cognition35, 66-77.
  2. Liikkanen, L. A. (2008). Music in everymind: commonality of involuntary musical imagery. In 10th International Conference of Music Perception and Cognition. Sapporo, Japan, August 2008 (pp. 1-5).
  3. Beaman, C. P. (2018). The literary and recent scientific history of the earworm: A review and theoretical framework. Auditory Perception & Cognition1(1-2), 42-65.
  4. Beaman, C. P., & Williams, T. I. (2010). Earworms (stuck song syndrome): Towards a natural history of intrusive thoughts. British Journal of Psychology101(4), 637-653.
  5. Albouy, P., Mattout, J., Bouet, R., Maby, E., Sanchez, G., Aguera, P. E., … & Tillmann, B. (2013). Impaired pitch perception and memory in congenital amusia: the deficit starts in the auditory cortex. Brain136(5), 1639-1661.
  6. Hyde, K. L., & Peretz, I. (2004). Brains that are out of tune but in time. Psychological science15(5), 356-360.
  7. Hyde, K. L., Lerch, J. P., Zatorre, R. J., Griffiths, T. D., Evans, A. C., & Peretz, I. (2007). Cortical thickness in congenital amusia: when less is better than more. Journal of Neuroscience27(47), 13028-13032.
  8. Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in cognitive sciences8(4), 170-177.
  9. Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2014). Inhibition and the right inferior frontal cortex: one decade on. Trends in cognitive sciences18(4), 177-185.
  10. 廖泊喬。(2024/3/13)。DMN腦神經科學研究:好好躺平有助潛能發展。觀點同不同。取自:https://issues.ptsplus.tv/articles/7927/
  11. Bernhardt, B. C., Smallwood, J., Tusche, A., Ruby, F. J., Engen, H. G., Steinbeis, N., & Singer, T. (2014). Medial prefrontal and anterior cingulate cortical thickness predicts shared individual differences in self-generated thought and temporal discounting. Neuroimage, 90, 290-297.
  12. Koelsch, S., Skouras, S., & Jentschke, S. (2013). Neural correlates of emotional personality: A structural and functional magnetic resonance imaging study. PLoS One8(11), e77196.
  13. Royet, J. P., Zald, D., Versace, R., Costes, N., Lavenne, F., Koenig, O., & Gervais, R. (2000). Emotional responses to pleasant and unpleasant olfactory, visual, and auditory stimuli: a positron emission tomography study. Journal of Neuroscience20(20), 7752-7759.
  14. Jakubowski, K., Finkel, S., Stewart, L., & Müllensiefen, D. (2017). Dissecting an earworm: Melodic features and song popularity predict involuntary musical imagery. Psychology of Aesthetics, Creativity, and the Arts11(2), 122.
  15. Christina, Y., & Pujiarto, P. (2023). The Effectiveness of Nursery Rhymes Media to Improve English Vocabulary and Confidence of Children (4-5 Years) in Tutor Time Kindergarten. Journal of Education Research, 4(3), 1326-1333.
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

雅文兒童聽語文教基金會_96
63 篇文章 ・ 224 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。