Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

科學家與樂器的交會:弦樂器的演化樹

葉綠舒
・2014/10/19 ・814字 ・閱讀時間約 1 分鐘 ・SR值 477 ・五年級

Credit: ccho via Flickr
Credit: ccho via Flickr

能將工作與興趣合而為一,應該是很多人的夢想。不過,在聖路易(St. Louis)的Donald Danforth Plant Science Center工作的Dan Chitwood顯然很認真的在實踐這點。身為植物型態學家,他的工作是研究蕃茄如何在氣候變遷下為了適應產生型態上的演化;但是他有個休閒活動:拉中提琴(viola)。

有一天,他決定要來研究提琴的型態演化。於是他由Cozio.com這個網站上下載了數千把提琴的正面與背面的照片,使用免費的統計軟體來分析這些提琴的本體與F孔(發聲孔)的型態。

最後,他得到了如下的演化樹:

圖片來源:Scientific American
圖片來源:Scientific American

Dan分析的樣品包含了上下共四百年,大約9,000把提琴。他發現同一「家族」的製琴者,他們的提琴形狀雖然會因人而略有不同,但是由演化樹的分析上看來,同一「家族」的人的製琴技術,顯然是一脈相承的。

-----廣告,請繼續往下閱讀-----

紅色的演化樹,是目前炙手可熱的斯特拉迪瓦里琴(Stradivarius)的製琴家族Stradivari;他們家族的琴屢次在佳士得(Christie’s)拍賣中取得高價(最高價前五名都是他們的琴)。

綠色的是Stainer家族。Jacob Stainer(1617-1683)是奧地利的製琴師,在Antonio Stradivari(1644-1737)開始製琴之前,他就已經開始製作提琴了。

紫色則是Amati家族(1538-1740),他們來自義大利,始祖是Andrea Amati。Andrea Amati創制了「提琴家族」(大提琴、中提琴、小提琴),同時也規範了提琴的基本形式、形狀、尺寸、材料和製作的方法。

而藍色是義大利的製琴家Giovanni Paolo Maggini(1580-1630)。他是Gasparo da Salò老師的得意門生。他只有一位弟子 Valentino Siani。

-----廣告,請繼續往下閱讀-----

看著這個演化樹不禁莞爾。能夠把自己的專業跟嗜好完美的結合,而且還發表在PLOS One上面,這樣的事情,應該也不太多。

本篇原刊載於作者部落格

參考資料:

  1. Rebecca Boyle. 2014. Plant Biology Informs the Origins of the Stradivarius. Scientific American.
  2. Daniel H. Chitwood. 2014. Imitation, Genetic Lineages, and Time Influenced theMorphological Evolution of the Violin. PLOS One. DOI: 10.1371/journal.pone.0109229
-----廣告,請繼續往下閱讀-----
文章難易度
葉綠舒
262 篇文章 ・ 9 位粉絲
做人一定要讀書(主動學習),將來才會有出息。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

3
1

文字

分享

0
3
1
黔金絲猴物種起源,竟是近親雜交形成?
寒波_96
・2023/08/11 ・3267字 ・閱讀時間約 6 分鐘

新物種如何誕生,是演化最重要的主題之一,正如達爾文代表作的書名《物種起源》(The Origin of Species,也常譯作《物種源始》)。隨著基因體學帶來愈來愈多新知識,人們對物種的想法也不斷演變。

2023 年發表的一項研究調查多種金絲猴的基因組,意外發現有一種金絲猴,竟然直接由不同物種合體形成。這是靈長類的第一個案例,動物中也相當少見。

黔金絲猴。圖/Current status and conservation of the gray snub-nosed monkey Rhinopithecus brelichi (Colobinae) in Guizhou, China

五種金絲猴的親戚關係

金絲猴(snub-nosed monkey,學名 Rhinopithecus,也稱為仰鼻猴)主要住在中國西南部和東南亞,目前有五個物種。牠們的中文名字依照地名,英文名字則多半根據顏色。

古時候金絲猴的分布範圍更廣,像是台灣也曾經存在過,如今卻只剩下化石。現今五個物種分別為:

-----廣告,請繼續往下閱讀-----

*(雲南)滇金絲猴(black-white 黑白,學名 Rhinopithecus bieti

* 緬甸金絲猴(black 黑,學名 Rhinopithecus strykeri

*(四川)川金絲猴(golden 金,學名 Rhinopithecus roxellana

*(貴州)黔金絲猴(gray 灰,學名 Rhinopithecus brelichi

-----廣告,請繼續往下閱讀-----

* 越南金絲猴(Tonkin 越南東京,學名 Rhinopithecus avunculus

五種金絲猴。圖/參考資料1

比對五款吱吱的 DNA 差異,可知滇、緬甸金絲猴的親戚關係最近,川金絲猴則和黔金絲猴較近,但是黔金絲猴明顯介於兩者之間。黔金絲猴在自己獨特的變異之外,僅管基因組整體更接近川金絲猴,也有不少部分和滇、緬甸金絲猴相似。

見到不同物種之間共享血緣,最直覺的想法是,兩者的祖先發生過遺傳交流。但是詳細比對後,研究猿認為還有機率更高的可能性。

最滑順的劇本是,大約 197 萬年前,滇、緬甸金絲猴的共同祖先,和川金絲猴分家;又經過十幾萬年,約莫 187 萬年前,兩群金絲猴再度合體,形成一個全新的支系,也就是黔金絲猴的祖先;後來滇、緬甸金絲猴再衍生出兩個物種。

-----廣告,請繼續往下閱讀-----

這形成如今我們見到的狀態:黔金絲猴大約 75% 血緣來自川金絲猴,25% 源於滇、緬甸金絲猴的共同祖先。

四種金絲猴的親戚關係,與遺傳交流。圖/參考資料1

靈長類首見,雜交直接形成新物種

或許有人會疑惑,看起來都是共享 DNA 變異,上述說法和「不同物種之間,發生過遺傳交流」有何差別?

差別在於,所謂「不同物種之間」,指的是新物種已經誕生一段時間以後,彼此間又發生 DNA 交流,這個一點都不稀奇。例如 A、B 物種間發生關係,變成 A 的遺傳背景下,又有一點 B 血緣的物種。

但是黔金絲猴的狀況是,新物種之所以誕生,就是不同物種直接合體所致。例如 A、B 物種發生關係,衍生出差異更大,不是 A 也不是 B,足以認定為新物種的 C。

-----廣告,請繼續往下閱讀-----

假如重建的劇本為真,這就是首度在靈長類中觀察到,不同物種直接合體形成新物種的「hybrid speciation」。可以翻譯為「雜交種化」,不過「合體種化」似乎更直觀。

哥倫比亞猛獁,想像畫面。圖/wiki

經由兩個物種雜交,直接產生新物種的方式,植物較為常見,哺乳類動物極少。此前古代 DNA 研究認為,已經滅絕的美洲大象「哥倫比亞猛獁」(Columbian mammoth,學名 Mammuthus columbi)是不同猛獁象合體產生的新物種,但是證據沒那麼充分。

或許沒有那麼罕見?

直接雜交產生新物種,會很難想像嗎?仔細想想,金絲猴的案例可能沒那麼驚悚,或許還有某種程度的普遍性。

回到當初的情境,所謂「兩個物種」在當時其實只分家十萬年而已,差異應該仍很有限。是又累積 180 萬年的分歧到今日,才顯得親戚之間明顯有別。

-----廣告,請繼續往下閱讀-----

這邊 197 萬、187 萬、十萬年都是根據 DNA 變異的估計,實際數字未必如此。不過順序大概差不太多,就是首先分出兩群,很短的時間後又合體產生第三群,再經歷好幾倍的時間直到現在。

假如川金絲猴不幸滅團,缺乏樣本可供比較,那麼黔金絲猴與另外兩種近親,看起來就單純是 187 萬年前分家。

值得注意的是,我們能判斷演化樹上的不同分枝曾經合流,來自對樹形的比對。假如川金絲猴不幸滅團,這棵演化樹中我們只剩下三個物種的樣本,便會判斷黔金絲猴是跟另外兩種親戚分家而成,卻完全不會察覺有過合體種化。

這麼想來,雜交誕生新物種的現象,或許沒那麼罕見,只是時光抹去了許多痕跡。

血緣融合,猴毛也是奇美拉

另一有趣的發現是毛色演化。金絲猴現今四個物種,外表的毛色為一大差異。毛色與深色素有關,深色素愈多,毛色會顯得愈黑,相對則是愈淡,會呈現白毛、黃毛、金毛。

-----廣告,請繼續往下閱讀-----

身為不同演化支系合體的產物,黔金絲猴的毛色也混合兩邊的風格。頭和肩膀的淺色,類似川金絲猴;手腳的深色,則類似滇、緬甸金絲猴。

基因組合體以後,兼具兩群影響毛色的基因,形成混合的毛色搭配。圖/參考資料1

金絲猴毛的顏色深淺,取決於不同色素的相對比例。棕黑色素(pheomelanin)愈高,毛色愈淡;真黑素(eumelanin)愈高,毛色愈深。例如猴毛中含有大量棕黑色素、少量真黑素,便會呈現金毛。

很多基因有機會影響色素與毛色。分析得知金絲猴們有 5 個基因和毛色關係密切,黔金絲猴的基因組來自兩個支系,比對發現,三個基因 SLC45A2MYO7AELOVL4 繼承自川金絲猴,兩個基因 PAHAPC 則源於滇、緬甸金絲猴。

這些基因如何影響毛色,仍有許多不明朗之處。最明確知道的是,SLC45A2 基因表現降低,會使得棕黑色素產量上升,令顏色變淡。PAH 基因表現增加,可以讓顏色加深。

-----廣告,請繼續往下閱讀-----

同一隻金絲猴不同部位的細胞,同一批基因經由不同調控,就能控制毛色深淺。

這篇文章介紹的演化基因體學分析手法,對許多人大概不算容易,但是這些研究帶來的趣味,倒是不難體會。

延伸閱讀

參考資料

  1. Wu, H., Wang, Z., Zhang, Y., Frantz, L., Roos, C., Irwin, D. M., … & Yu, L. (2023). Hybrid origin of a primate, the gray snub-nosed monkey. Science, 380(6648), eabl4997.
  2. The Primate Genome Project unlocks hidden secrets of primate evolution
  3. Biggest ever study of primate genomes has surprises for humanity
  4. Hundreds of new primate genomes offer window into human health—and our past
  5. van der Valk, T., Pečnerová, P., Díez-del-Molino, D., Bergström, A., Oppenheimer, J., Hartmann, S., … & Dalén, L. (2021). Million-year-old DNA sheds light on the genomic history of mammoths. Nature, 591(7849), 265-269.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
寒波_96
193 篇文章 ・ 1090 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。

3

2
0

文字

分享

3
2
0
為什麼台灣文蛤是新的物種,古時候就住在台灣嗎?
寒波_96
・2023/06/15 ・3837字 ・閱讀時間約 7 分鐘

或許是台灣大眾對文蛤非常熟悉,所以 2023 年 4 月新聞報導「台灣文蛤」被認定為新的物種時,引發一波「蛤?」的熱潮。究竟文蛤有哪幾種,真的不一樣嗎?現在的台灣人會吃文蛤,古代人也會嗎?

三種文蛤大致的分佈範圍。圖/參考資料4

定義新的台灣本土物種

文蛤住在海岸附近,南亞、東南亞、東亞、東北亞到日本的沿岸,都能見到文蛤生存,物種不少,研究不多,分類有許多討論空間。

這項研究主要關注 3 個物種,包括住在日本、韓國的「麗文蛤(Meretrix lusoria)」,東亞偏北的「中華文蛤(Meretrix petechialis)」,以及全新定義,東亞南部與台灣的「台灣文蛤(Meretrix taiwanica)」。

台灣文蛤不只住在台灣,東亞沿岸也有,所以不算台灣特有種,不過可謂台灣的本土物種。

-----廣告,請繼續往下閱讀-----

遺傳上看,中國南北的文蛤各自成群,有所差異,為什麼以前沒有中國學者區分新物種?不清楚,或許是覺得同屬一個中國沒必要獨立,將其視為同一物種內的明顯差異。依照新研究,中國南部的文蛤將改名為台灣文蛤。

根據 CO1 基因建構的文蛤演化樹,中華文蛤、台灣文蛤彼此較為接近,和其他文蛤相比,兩者又與麗文蛤有較近的共同祖先。演化樹上其餘兩種為皺肋文蛤(Meretrix lyrata)、韓國文蛤(Meretrix lamarckii)。圖/參考資料5

這項研究使用外殼型態與 DNA 分辨不同文蛤。遺傳學標記是「CO1 Barcode」。CO1 全名 cytochrome c oxidase 1,是粒線體上的基因。

此基因在不同物種間的差異夠多,又沒那麼多(差異不多會分不清楚,可是倘若差異過多,同一物種內的變異也很大,就失去分群的意義,不適合用來鑑定)。儘管提供的訊息遠不如基因體全面,卻容易定序與分析,所以常常被用於鑑定與分類。

比對文蛤們的 CO1 基因序列,台灣文蛤、中華文蛤彼此最接近,不過兩群內皆明顯自成一群,也就是說台灣文蛤們獨立一群,中華文蛤們也自己一群,不論外貌如何,都可以明確區分出兩個物種。

-----廣告,請繼續往下閱讀-----

而麗文蛤們也自成一群,和兩者平行。被新定義為台灣文蛤的物種,和麗文蛤相比,遺傳上離中華文蛤更接近。因此可以確認台灣現今的文蛤,絕對不是以前長期認為的麗文蛤。

依照歷史記載,麗文蛤曾經在日治時代人為引進台灣,但是最近野外採集,都沒見到麗文蛤。

雖然顏色有深有淺,不過它們都是台灣文蛤。圖/參考資料1

蛤?台灣有或沒有哪些文蛤?

外觀方面,台灣文蛤的顏色與花紋變化多端,可是皆為同一物種。一般人不見得要像研究人員去野外廣泛採集才能體驗這件事,去點一盤或買一袋,應該也相當直觀。

20241022編按:感謝顏聖紘教授與下方留言者於FB指出疑義,作者已根據意見修訂內容,以下是留言原文:「2020 年所命名為 Meretrix formosa 那篇,主要問題是其非正式的生物分類報告,僅用精子結構進行判別,未做物種形態比較與描述,並且未指定模式標本,因此只能引用該報告結論作為新種的佐證,但無法成立新種命名。」

神奇的是,其實 2020 年就有另一組學者注意到這個問題,在另一篇論文中也將台灣文蛤定為新物種,建議命名為 Meretrix formosa(福爾摩沙文蛤)。不過這項研究沒有完成目前遵循的新物種命名程序,沒有進入大眾視野。

-----廣告,請繼續往下閱讀-----

另外還有一個物種「Cytheraea formosa」,在公元 1851 年由英國學者 G.B. Sowerby II 命名。但是此一學名已經遭到取消,過往歸類為該物種的樣本學名應該皆為 Meretrix lusoria,也就是麗文蛤。

四款文蛤標本:A, Meretrix taiwanica 台灣文蛤。B, Meretrix petechialis 中華文蛤。C, Meretrix lusoria 麗文蛤。D, Cytheraea formosa 麗文蛤(已取消的舊名)。圖/參考資料1

台灣西部有一款很稀有的「虎斑文蛤(Meretris tigris)」。2019 年有一篇碩士論文《台灣養殖文蛤的遺傳多樣性及種原鑑定》(指導教授徐德華,研究生莊朝喜),主張虎斑文蛤不算一個物種,只是台灣的文蛤旗下一款。

這篇碩士論文沒有定義新物種,如果依照新分類,可以算是台灣文蛤的虎斑亞種(Meretrix taiwanica tigris)。

除此之外,現今台灣野外不只存在台灣文蛤,也採集到「韓國文蛤(Meretrix lamarckii)」。和麗文蛤相比,韓國文蛤與台灣文蛤的親戚關係更遠,明確為不同物種。兩者棲地也不同:韓國文蛤住在浪較大,純海水的環境;台灣文蛤則偏好坡度平緩的半淡鹹水河口。

-----廣告,請繼續往下閱讀-----

還有一種外觀與台灣文蛤類似的「普通文蛤(Meretrix meretrix)」,分布於東南亞,目前沒有在台灣見到。

台灣貝殼考古學

現今台灣本土的文蛤是台灣文蛤,但是古時候就存在台灣嗎?

台灣各地常常能見到遺棄大量貝殼形成的貝塚,考古遺址也出土不少貝殼,可見貝類是古代常見的資源,不過確認的文蛤並不多。另外更要注意,以前沒有台灣文蛤一說,時常將台灣的文蛤視為麗文蛤。

展示十三行遺址出土物品的十三行博物館的貝殼們。左上角的 1 號是文蛤,說明為麗文蛤,但是依照新研究似乎該改為台灣文蛤。
上圖的物種說明。

目前最清晰的紀錄來自新北市海邊的十三行遺址,根據水產試驗所的學者蕭聖代、莊世昌鑑定,這兒出土的文蛤應該是台灣文蛤。另外台北市的國立臺灣博物館,台中市的國立自然科學博物館蒐藏的標本,僅管以前有不同分類,其實也都是台灣文蛤。

-----廣告,請繼續往下閱讀-----

台灣北部,淡水河流域的十三行遺址是住海邊的人群遺跡,文蛤年代至少數百年。不過以常理推論,台灣文蛤應該更早以前就住在台灣,只是存在感不如很多種貝類。

除了文蛤以外,十三行遺址也出土過許多種貝殼,見證古代豐富的貝類生態,例如大蜆、紅樹蜆、牡蠣、黑鐘螺等等。

圓山遺址出土的大蜆。圖/參考資料6

至於台北市比較內陸的圓山遺址,儘管以貝塚出名,卻沒有出土過文蛤,主要貝類是十三行遺址也有的大蜆(Cyrenobatissa subsulcata)。圓山的大蜆貝殼最長可達 8 公分,約為成人手掌大。

隨著時代變遷,現今大蜆已經從基隆河流域消失,不再能大蜆身手。

-----廣告,請繼續往下閱讀-----

由考古研究看來,台灣這塊土地的過去與現在是延續的。古早人吃台灣文蛤與其他貝類,現代人也吃台灣文蛤與其他貝類。

劃重點:

  • 台灣現今的文蛤主要為本土物種「台灣文蛤」,也分佈於中國南部;台灣還存在另一物種「韓國文蛤」。
  • 同為台灣文蛤的不同個體,顏色與花紋變化大,有一款特殊的虎斑亞種。
  • 台灣文蛤與中國北部的「中華文蛤」親戚關係最接近。
  • 古時候台灣就存在台灣文蛤,但是圓山沒有,主要是已經滅團的「大蜆」。

延伸閱讀

參考資料

  1. Hsiao, S. T., & Chuang, S. C. (2023). Meretrix taiwanica (Bivalvia: Veneridae), a previously misidentified new species in Taiwan. Molluscan Research, 43(1), 12-21.
  2. Gwo, J. C., & Hsu, T. H. (2020). Ultrastructure of sperm and complete mitochondrial genome in Meretrix sp.(Bivalvia: Veneridae) from Taiwan. Tissue and Cell, 67, 101454.
  3. 台灣養殖文蛤的遺傳多樣性及種原鑑定
  4. 水試所鑑定養殖文蛤DNA 發現新原生種「台灣文蛤」
  5. 研究員為確認台灣文蛤物種翻遍河口養殖場 十三行博物館找貝塚標本
  6. 【國定圓山考古遺址】〈圓山貝塚,蛤?蜆!〉
  7. 臺灣貝類資料庫「大蜆」
  8. 國家文化記憶庫「大蜆」

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
所有討論 3
寒波_96
193 篇文章 ・ 1090 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。