Loading [MathJax]/jax/output/HTML-CSS/config.js

2

0
0

文字

分享

2
0
0

一艘沉船毀掉一個珊瑚礁

陳俊堯
・2011/09/02 ・1197字 ・閱讀時間約 2 分鐘 ・SR值 486 ・五年級

credit: CC by USFWS Pacific@flickr
credit: CC by USFWS Pacific@flickr

海洋環境裡的鐵是很珍貴的。生物要生存需要足夠的鐵放在酵素裡,植物要有鐵才能製造葉綠素。但是環境裡大部份的鐵卡在礦石裡生物吃不到,只能搶著拿溶解在水裡的低濃度的鐵,於是在很多地方,鐵是個對生物量的主要限制。 海水裡缺鐵,如果鐵變多了,微生物增加,藻類也會增加。前幾年科學家們還在爭論是不是要在海水裡倒下大量的鐵讓藻類多長一點,來幫我們清掉一些二氧化碳。後來的證據發現可能會有毒藻變多等等的不良影響,還好當年没有真的執行這個大規模改變環境的措施。

現在這裡又多了個跟鐵有關的故事。萊恩群島(the Line Islands)在太平洋中間,位於夏威夷群島的南邊。這一區是美麗的珊瑚礁,是個你會想賴在那裡不走的觀光景點。故事發生在萊恩群島裡的三個環礁區(Millennium,Tabuaeran,Kingman Reefs)。這三個環礁都有沉船,典型人類活動帶來的破壞。這麼大的海洋沉了條幾十公尺長的小船應該没什麼大不了吧?經過三年,金門環礁(Kingman reef)中沉船附近出現了明顯的變化: 水變濁了,珊瑚原本覆蓋水下 40-60% 的面積,現在只剩不到 10%,慢慢被藻類及藍綠菌覆蓋死亡。原本漂亮的珊瑚礁變得髒髒暗暗的,讓這一帶的受害區域被稱為黑礁區(black reef)。

這些受影響的黑礁區大小都在 0.75 平方公里以上,你可以想像一下 900 公尺寬 900 公尺長的停車場有多大。研究人員發現底棲生物的改變是以沉船為中心隨距離遞減。在黑礁區測得環境鐵濃度比附近高黑礁區藻類的細胞裡含鐵量也是附近區域藻類的六倍。利用總基因體學方法(metagenomics)對環境裡生物進行 DNA 分析, 研究人員找到大量與鐵相關的毒力基因及病原菌,顯示鐵濃度增加改變了該地的微生物組成特性。

但是單單改變附近生長的生物,就會影響珊瑚礁的健康嗎?過去的研究已經知道,當珊瑚被其它覆蓋住的時候會使得住在珊瑚上的共生藻類没辦法行光合作用,為了保命而遺棄珊瑚走人,使得珊瑚失去重要養份提供者而逐漸走向死亡。研究人員採集健康珊瑚及蓋有黑礁區微生物的石頭回實驗室,發現當珊瑚跟黑礁區石頭養在一起的時候死亡率很高,如果培養時再在水中加點鐵死亡率更高。他們在有珊瑚,黑礁區石頭,有鐵的水裡加入抗生素之後,珊瑚的存活率回升,證實兇手應該是可以被抗生素殺死的微生物。此時我們大概可以拍板論定,人類的沉船造成水中含鐵量上升,使得水中微生物數量增加及藻類增加,給了善於利用鐵的病原菌繁生的機會,而這可能就是導致黑礁區珊瑚大量死亡的重要原因。這個影響可能禍延子孫;在這個研究的樣區裡, 就有兩個黑礁區的沉船都是數十年前陳年往事留下的古董了,而這個災難還没結束,黑礁區依舊存在。

-----廣告,請繼續往下閱讀-----

海洋真的對我們人類丟下去的東西都概括承受嗎?我們只是太瞎,没看見不久後就要回到自己身上的災難而已。

研究原文:Kelly, L. W., Barott, K. L., Dinsdale, E., Friedlander, A. M., Nosrat, B., Obura, D., … & Rohwer, F. (2012). Black reefs: iron-induced phase shifts on coral reefs. The ISME journal, 6(3), 638-649.

相關報導:Black Reefs–When the Ship Hits the Reef, Enric Sala, National Geographic

-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 2
陳俊堯
109 篇文章 ・ 22 位粉絲
慈濟大學生命科學系的教書匠。對肉眼看不見的微米世界特別有興趣,每天都在探聽細菌間的愛恨情仇。希望藉由長時間的發酵,培養出又香又醇的細菌人。

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

-----廣告,請繼續往下閱讀-----

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

4
3

文字

分享

0
4
3
勸你別碰!認識可愛又致命的「菟葵」
Evelyn 食品技師_96
・2022/06/25 ・3139字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

到海邊戲水時,不知大家是否曾注意過,海水漲退潮之間的潮間帶,可能會出現一朵朵黃綠、青褐或帶些紫色,像小菊花般的生物?只要輕輕一碰,牠的觸手就會迅速縮起,所以也被稱作「海中的含羞草」。 

這個生物的名字叫做菟葵 (zoanthid) ,俗稱「鈕扣珊瑚」,是介於珊瑚與海葵的生物[1]。因爲具有美麗的色彩,故常被用來作為水族箱的裝飾;但其實菟葵並不如牠的外表和別稱這麼可愛,反而暗藏著能致命的劇毒!

==密集恐懼症警告!】==

==【會害怕的大家趕緊撤離!】==

外表可愛 (?), 實則暗藏劇毒的菟葵。 圖/wikimedia

神秘的外表下隱藏劇毒?!

菟葵泛指所有「群體海葵目」的生物,故又稱群體海葵;其下游物種繁多,主要分布於熱帶及亞熱帶海域。牠們的體內的共生藻類除了可提供宿主能量之外,也使得牠們體表色彩豐富多變[2, 3]

不過菟葵並不像珊瑚,擁有分泌堅硬石灰質骨骼的能力,所以為了保護自身組織,菟葵會在其所附著的地方分泌黏液,這些黏液會隨著時間變硬,形成幾丁質外殼,以作為替代骨骼[2, 3]

-----廣告,請繼續往下閱讀-----

菟葵單體含有一個直徑約 10 毫米的開口,為平滑且寬大的口盤,外圍處有兩圈短小觸手,並透過共肉組織 (coenenchyme) 聚集在一起[3]

這些觸手一經碰觸就會像含羞草似地收縮,埋入共肉組織裡,因此常引起前來潮間帶戲水的遊客或潛水員的好奇觸摸,但部份的菟葵含有「菟葵毒 (palytoxin; PLTX)」,很容易就不小心引起中毒[4]

瘤狀菟葵 (Palythoa tuberculosa)。圖 / 參考資料 4、6

中毒的後果不堪設想

摸到菟葵而中毒到底會有多嚴重呢?

2008 年德國 1 名男子於家中清理水族箱時,手指不慎碰觸到菟葵後,感到四肢無力、肌肉疼痛、顫抖,隨後出現暈眩及言語障礙等症狀,經治療 4 星期後才完全康復[3]

-----廣告,請繼續往下閱讀-----

除了直接觸摸之外,菟葵毒素也會經由食物鏈,蓄積於高階生物體當中,所以會食用菟葵或藻類的生物,如螃蟹、河魨或其他魚類等,體內都有可能蓄積毒素。在臺灣,就發生過多起人類食用水產品所造成的中毒案例[2]

臺灣最嚴重的中毒案例發生於 2011 年,臺東縣 1 位漁民捕獲俗稱青鱗仔的小沙丁魚,分送給親友們食用,結果有 2 人食用後感到舌頭麻痺,出現嘔吐、胸痛及全身刺痛等中毒症狀,其中 1 人死亡[3]

台東曾出現食用青鱗仔後,出現菟葵毒素中毒的案例。圖/Totti,

還有 2000 年,臺灣 1 名歲男子食用 3 尾米點箱魨 (Ostracion meleagris) 後感到不適、冒汗和呼吸困難,送醫後出現呼吸衰竭、血壓下降且心律不整等症狀,經醫院緊急治療後,心臟功能才恢復正常。但由於橫紋肌溶解症,導致急性腎衰竭、寡尿症狀持續 20 天之久,一個月後才康復出院[3]

塗在矛上的劇毒

這麼可怕的毒素,被研究者發現的時間其實並不長,約 40 年左右而已。

-----廣告,請繼續往下閱讀-----

當初發現的由來,是源自於夏威夷 Muolea 地區,當地湖泊裡,生長著擁有劇毒的藻類,原住民會採集該毒藻塗抹於矛上製成毒矛,其毒性足以使獵物致命。後來經過許多學者前往採樣進行調查,1971 年終於成功純化出毒素,確認為——菟葵毒[5]

之後學者陸續發現,菟葵毒存在於許多生物體內,例如 Palythoa 屬及 Zoanthus 屬之菟葵及 Ostreopsis 屬的渦鞭毛藻皆有,與菟葵生活區鄰近的海洋生物,如海星、軟珊瑚或多毛蟲等,體內亦有發現菟葵毒[3]

不過有研究指出,從菟葵 (Palythoa caribaeorum) 分離出的細菌裡,發現具有類似菟葵毒之溶血活性。此外,也有學者從其他種細菌中分離出菟葵毒,所以大家推測,細菌也可能是菟葵的毒素來源[3]

日本沖繩本島東北海岸聚集許多瘤狀菟葵。圖 / 參考資料 6

菟葵毒分子結構龐大又複雜,比河魨毒更毒

菟葵毒為無色、易吸濕之非結晶性固體,外觀沒有固定形狀,為水溶性,具耐熱性。

-----廣告,請繼續往下閱讀-----

其化學式為 C129H223N3O54,分子量為 2680.13 Da,結構複雜且分子量龐大,並存在著許多異構體以及結構類似物[註 1]

菟葵毒分子結構及其結構類似物。圖 / 參考資料 7

而在毒理學中,半數致死劑量 (lethal dosage 50%; LD50) 是描述有毒物質的常用指標之一,意為動物實驗中,能致使實驗動物產生百分之五十比例之死亡所需要化學物質之劑量。通常毒素給予實驗動物的方式,分為口服、靜脈注射和腹腔注射,不同的給予方式,毒性亦略有差異。

那麼菟葵毒的毒性到底有多強?其實它在非蛋白質類的生物毒中是最強的,就小鼠腹腔注射之 LD50 來看,為 0.15~0.72 μg/kg (體重)[3],大約是河魨毒素 (tetrodotoxin) 之 20~80 倍[註 2],毒性強度遠高於之前筆者所介紹過的麻痺性貝毒及河魨毒。

延伸閱讀

《在海產店吃盤「塔香西施舌」然後就死掉了?——來認識致命的「麻痺性貝毒」》
《推理系動畫毒殺利器!——認識致命的「河魨毒」》

不知道的海洋生物不要摸也不要吃

令人眼花撩亂的菟葵毒及其各類似物,毒性雖略有差異,但致毒機制大致相同。

-----廣告,請繼續往下閱讀-----

身為神經毒素的菟葵毒,其引起中毒主要的症狀為發燒、噁心、嘔吐、呼吸困難、心律不整,或橫紋肌溶解所造成之肌肉疼痛,亦會引發其它藥理反應,如骨骼肌、平滑肌和心肌的收縮,及血小板的聚集等[2, 3]

菟葵毒的毒性不但猛烈,菟葵本身分佈的地區也不算少數——太平洋地區、西印度群島、牙買加、波多黎各及巴哈馬,以及臺灣的東北角、墾丁與綠島,均有出現的記錄[2]

此外,菟葵毒的研究歷史,不如麻痺性貝毒、河魨毒來得悠久,還有許多未知的地方。故呼籲大家,在進行夏日戲水活動時,請不要隨意觸摸不知名的海洋生物,也不要食用自行捕撈或來路不明的水產品,以避免菟葵毒中毒。

註解

-----廣告,請繼續往下閱讀-----
  1. 結構類似物 (structural analog),是指一系列的化合物在主結構上大致相同,但部分結構會有一個或多個原子、官能基或子結構不同,造成它們之間的化學特性不太一樣。
  2. 河魨毒素 (tetrodotoxin) 之腹腔注射之 LD50 是 12.5~16 μg/kg (體重)[8]

參考資料

  1. 鄭源斌,2021。美麗菟葵 新藥寶庫?。科學人,230: 12。
  2. 吳尚宜,2017。基隆產珊瑚菟葵種屬的基因鑑定及其毒素對細胞毒性之探討。國立台灣海洋大學食品科學所碩士學位論文。基隆。
  3. 葉子寧,2018。基隆產菟葵 Palythoa tuberculosa 之季節毒性分析及菟葵毒萃取液之細胞毒性探討。國立台灣海洋大學食品科學所碩士學位論文。基隆。
  4. 社團法人台灣環境資訊協會,2016。海中的有毒含羞草—菟葵。台灣珊瑚礁體檢志工快訊。
  5. Moore, R. E. and Scheuer, P. J. 1971. Palytoxin: a new marine toxin from a coelenterate. Science 172: 3982 495-498.
  6. Aratake, S., Taira, Y., Fujii, T., Roy, M. C., Reimer, J. D., Yamazaki, T. and Jenke-Kodama, H. 2016. Distribution of palytoxin in coral reef organisms living in close proximity to an aggregation of Palythoa tuberculosa. Toxicon 111 86-90.
  7. Pelin, M., Brovedani, V., Sosa, S. and Tubaro, A. 2016. Palytoxin-containing aquarium soft corals as an emerging sanitary problem. Marine drugs 14: 2 33.
  8. Abal, P., Louzao, M. C., Antelo, A., Alvarez, M., Cagide, E., Vilariño, N., Vieytes M. R. and Botana, L. M. 2017. Acute oral toxicity of tetrodotoxin in mice: Determination of lethal dose 50 (LD50) and no observed adverse effect level (NOAEL). Toxins 9: 3 75.
-----廣告,請繼續往下閱讀-----
Evelyn 食品技師_96
23 篇文章 ・ 29 位粉絲
一名食品技師兼食品生技研發工程師,個性鬼靈精怪,對嗅覺與味覺特別敏銳,經訓練後居然成為專業品評員(專業吃貨)?!因為對食品科學充滿熱忱,希望能貢獻微薄之力寫些文章,傳達食品科學的正確知識給大家!商業合作請洽:10632015@email.ntou.edu.tw

0

3
0

文字

分享

0
3
0
40 年珊瑚之謎終於揭密——「滿月後的黑暗」是同步產卵的關鍵
研之有物│中央研究院_96
・2022/05/09 ・5967字 ・閱讀時間約 12 分鐘

-----廣告,請繼續往下閱讀-----

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/林承勳、簡克志
  • 美術設計/林洵安、蔡宛潔

解開 40 年珊瑚同步產卵謎團

早在 1980 年代科學家就發現,珊瑚彼此之間很有默契,會在短時間內一起繁殖,附近水域瀰漫大量珊瑚卵,形成令人歎為觀止的壯麗畫面。對於珊瑚同步產卵現象,過去學者推測是受到溫度、潮汐、光線等因素影響,但觸發產卵的關鍵原因一直都沒有被確認。

經過 40 年,在中央研究院生物多樣性研究中心團隊努力下,終於揭開秘密!中研院「研之有物」專訪野澤洋耕副研究員與林哲宏博士後研究員,他們發現珊瑚同步產卵的關鍵就在於日落到月昇的黑暗時間

野澤洋耕的團隊在臺灣綠島進行長期觀察和研究,終於發現珊瑚同步產卵的關鍵因素。珊瑚繁殖季(南臺灣約 4-6 月)滿月過後,日落到月昇之間的黑暗期觸發了珊瑚產卵的條件。圖片為正在產卵的環菊珊瑚。圖/林哲宏

奇怪的知識增加了:原來珊瑚是一群型態差異相當大的動物!

由於珊瑚只能附著在固定位置、無法移動,因此曾被誤認為是植物。而且珊瑚的外觀又很容易誤導民眾,直覺認為一大株珊瑚就是一個生物體。但事實上,大多數的珊瑚其實是一群珊瑚蟲的聚落;只有少數像蕈珊瑚科(Fungiidae)部分種類,才是一隻巨大珊瑚蟲為一株珊瑚個體。

-----廣告,請繼續往下閱讀-----

以造礁珊瑚為例,珊瑚蟲聚落可分成非生物與生物兩個部分:成分為碳酸鈣的珊瑚石是保護殼和居所;覆蓋在珊瑚石上面的就是無數隻活跳跳的珊瑚蟲。

珊瑚蟲被分類在刺絲胞動物門,牠們外觀跟同門的海葵相似,有著圓筒身軀、一個開口,開口周圍分布數隻觸手,觸手上密布著刺絲胞,能捕撈浮游生物來吃。珊瑚蟲另一種食物來源是由互利共生的蟲黃藻提供,蟲黃藻會行光合作用產生養分與氧氣,同時也為白色的珊瑚石、透明的珊瑚蟲帶來繽紛色彩。

造礁珊瑚(又稱石珊瑚)的珊瑚蟲聚落,最初都是從一隻珊瑚蟲開始,透過緩慢持續的生長過程,才逐漸長成我們看到的珊瑚礁。圖/iStock

在海裡看到大大小小的珊瑚,最初都是由一隻體積微小的珊瑚蟲,分裂再分裂而來,珊瑚蟲們不斷進行無性生殖,經年累月分裂出大量個體。為數眾多的珊瑚蟲們世世代代分泌的碳酸鈣逐漸堆積,一直到如城堡般巨大,就形成所謂的「珊瑚礁」。珊瑚礁被科學家們認為是海中的熱帶雨林,提供魚類、甲殼類等生物棲息地與豐富食物、能量。

中研院副研究員野澤洋耕認為,珊瑚是種非常神奇的生物,從原本微小到肉眼無法辨認的一隻珊瑚蟲個體,居然能不停分裂生殖,最後數以億計隻珊瑚蟲群聚成唯一能夠從外太空觀察到的地球生命:大堡礁。

-----廣告,請繼續往下閱讀-----

只是,珊瑚蟲用分裂生殖新增的,是跟上一代基因、外形一模一樣的個體,這類無性生殖無法增加基因多樣性,還會讓族群失去面對環境變動的適應能力。因此珊瑚必須要另外花費時間、能量排精產卵,行有性生殖製造具有嶄新基因的後代。

珊瑚可以透過無性生殖和有性生殖繁衍個體。圖/研之有物(資料來源│Global Foundation for Ocean Exploration

珊瑚也懂投資?雞蛋分籃放與孤注一擲的產卵選擇

不像魚類可以找到配偶後再產卵受精,固定不動的珊瑚只能直接把精卵釋放到海水中。為了克服無法移動的劣勢,牠們會採取同步策略,約好在短時間內一起排出數量驚人的精卵。如此一來就能大大提高精卵濃度來增加受精成功率,即使有掠食者在旁想趁機飽餐一頓,也會頓時眼花撩亂、顧此失彼。

人們眼中珊瑚產卵的美景,同時也是生物為了繁衍而克服大自然困境的努力。

珊瑚同步產卵還能再細分成兩種模式,野澤洋耕指出,珊瑚一年只產卵一次,有些種類偏好分散風險,群體內珊瑚同時產卵,各群體間則是彼此錯開,可能往前往後幾天;另外有些珊瑚則是孤注一擲,約好「全部」一起生。相對來說後者受精機率當然更大,但當天要是碰到暴雨、颱風等天氣因素攪局,該年可能幾乎不會有後代成功生存。

看起來風險很高,只是既然會演化出不同方法,就代表雙方各有優勢。」野澤洋耕解釋地說。但不管是謹慎還是賭性堅強的種類,無法移動、不能彼此溝通的珊瑚,到底是用什麼方法約好一起產卵?自從 1980 年同步產卵現象被發現後,這謎團足足讓世人困惑了 40 年之久。

-----廣告,請繼續往下閱讀-----

七年田野調查資料顯示,關鍵因子藏在月週期裡

從 2010 年開始,野澤洋耕的研究團隊每年都會在珊瑚繁殖季(南臺灣通常是四、五、六月),來到綠島潛水調查。調查期間,團隊每晚下水記錄珊瑚種類、數量與排卵時間,在累積七年的調查資料後,博士後研究員林哲宏發現每一種珊瑚都有明顯的生殖模式。

根據研究團隊現有紀錄,隸屬於繩紋珊瑚科(Merulinidae)的珊瑚是採取分散風險策略,不同群體分批同步產卵。雖然群體間產卵日子錯開,但時程非常固定,都是在「滿月」之後五到八天;綠島還有另一大宗珊瑚,是分在軸孔珊瑚屬(Acropora)下的一些種類,牠們是「全部」約好在同一天產卵,但到底是哪一天,每年觀察到的日期都不太一樣。

「繩紋珊瑚科就是固定在滿月後五到八天產卵;軸孔珊瑚屬也是在滿月後,但毫無規則可言。」林哲宏說。即使如此,兩者都是在滿月後產卵,研究團隊於是鎖定月週期的因子:月光,來進行檢驗。

繩紋珊瑚科 vs 軸孔珊瑚屬。圖/研之有物(資料來源:Wikipedia、iStock)

室內室外重複操作結果都顯示:夜間光源會抑制珊瑚產卵

由於繩紋珊瑚科的環菊珊瑚(Dipsastraea speciosa)在綠島很常見,觀察、樣本取得都很容易,加上生殖時間又有跡可循,團隊就選擇該物種來進行實驗。「將月光遮住後,環菊珊瑚就提早產卵了。」野澤洋耕表示,初步實驗結果意味著滿月後的黑暗,就是通知珊瑚準備產卵的環境訊號

-----廣告,請繼續往下閱讀-----
環菊珊瑚隸屬於繩紋珊瑚科,群體間大量產卵通常發生在滿月之後五到八天。圖/林哲宏

為了避開其他環境因子干擾,實驗首先是在研究室的水缸中進行;接著團隊來到綠島北邊的公館附近,要確認珊瑚不論是在人工環境或自然棲地中,都會因為黑暗籠罩提前產卵。「我們每天都下水,在滿月前三天、前一天,還有滿月後一天幫珊瑚蓋上不透光的鋁箔布或透明布。」林哲宏說。結果符合預期:珊瑚越早被蓋上黑布,就會越快產卵,很規律地在接收到黑暗訊號之後的五到八天大量產卵。

研究團隊在綠島設置實驗觀察環菊珊瑚產卵,人工控制在滿月前三天、前一天和後一天都不照月光,發現珊瑚越早蓋上布,就會越早觸發產卵時機。圖/PNAS

不同光譜的光源,都會有相同的抑制效果

除了照光與否,林哲宏還加入光源光譜與密集度的試驗。因為 2006 年刊登在《Science》期刊的一篇論文指出,珊瑚可能會偵測月光。野澤洋耕提到,論文中說明珊瑚只要照到月光,體內的 cry 基因就會表現,而且 cry 基因對藍光特別有反應。

所以團隊再回到研究室內,用人工光源模擬月光強度,分別給予紅、藍、綠三種不同色光,想確認是否真的如文獻資料敘述,不同光譜光源會給珊瑚帶來不同程度的刺激。但實驗證實,三種色光照下去,珊瑚都一樣不產卵。也就是說,目前蒐集到的線索都指向:黑暗是珊瑚產卵的關鍵

40 年珊瑚之謎,謎底就是日昇與月落之間的黑暗時段

經過一連串抽絲剝繭,終於確認夜間光線會抑制珊瑚產卵。然而團隊想進一步了解,珊瑚於漫漫長夜中只要一瞬間照到光就會被干擾,還是要有多長曝光才能達到抑制效果。因此團隊在實驗室環境中,個別探討了整晚黑暗、整晚照光、前半夜(日落到午夜)照光,還有下半夜(午夜到日出)照光等四種情形。

-----廣告,請繼續往下閱讀-----

結果顯示,下半夜照光跟整晚保持黑暗的組別一樣,珊瑚在五天之後同步排卵;前半夜照光,效果與整晚照光相同,會讓珊瑚延遲生產且產卵同步率下降。「看到這現象,我們推測珊瑚感應光線的受器應該有『營業時間』。」林哲宏笑著說,受器營業時間大概是在日落後到午夜,不過不同珊瑚個體還是存在著些許差異。

答案終於揭曉:以環菊珊瑚來說,只要連續兩個夜晚,於日落後有一小時左右的黑暗時段,就達成同步產卵的要件。這也解釋了珊瑚為什麼都挑在滿月後繁殖,林哲宏指出,因為地球自轉同時月球又繞地球轉的緣故,每天月球升起的時間會延遲約莫 30-70 分鐘[註1]。對照繁殖季四月的月週期,月初時月球升起會落在下午兩點多,之後每天延遲直到滿月,月球才會於日落後升起,而中間的黑暗期就是在告訴珊瑚:可以準備生產了。

選在滿月後生產是有其優勢的,野澤洋耕提醒說,環菊珊瑚產卵適逢黑暗、小潮,昏暗的環境能稍微蒙蔽掠食者目光,加上小潮時海浪沒那麼強,精卵不至於馬上被沖散。

研究團隊經過長年自然觀察以及實驗條件的控制,終於找出珊瑚同步產卵的秘密,關鍵就在繁殖季的滿月日之後的黑暗期。圖1顯示滿月日之前,月光會抑制珊瑚產卵,圖2顯示滿月日之後,日落月昇中間的黑暗期,觸發了珊瑚產卵的條件。圖/PNAS

收到「暗」示後,珊瑚卵需要五天催熟

至於繩紋珊瑚科固定在滿月後五到八天產卵的微觀機制,研究團隊還在努力研究中,有可能與精、卵的成熟機制有關,以下是研究團隊針對觀察現象的推測。

-----廣告,請繼續往下閱讀-----

繩紋珊瑚科是雌雄同體,珊瑚蟲體內先產生精子與尚未成熟的卵子,當珊瑚接收到連續兩天黑暗的刺激,卵子的細胞核就會逐漸往卵細胞邊緣移動。整個過程稱作胚核遷移(germinal vesicle migration, GVM),需要花費五天左右。

胚核遷移完成後,卵細胞核會開始瓦解,耗時約莫三到四個小時,稱作胚核破裂(germinal vesicle breakdown, GVBD),此時卵細胞幾乎已經為受精做好準備。接著,成熟的卵子與精子會被打包在一起,變成叫做「精卵束」的構造。野澤洋耕提到,精卵束被珊瑚排出體外後,會一路浮到水面,畢竟精卵在二維的海面相遇機率要比在三維的水下空間來得大些。

精卵束在水面破裂,釋出的卵子只剩最後一個步驟:擠出細胞內的極體(polar body),就可以跟精子結合了。有趣的是,年輕的卵會優先跟不同珊瑚的精子結合;但時間一長,即使是同一個珊瑚的精子也會接受。「不然再等下去,不是被沖散就是被吃掉,受精機會只會越來越渺茫。」林哲宏補充地說。

成功受精後受精卵會沉到水裡,並發育成一隻具有纖毛、可以自由活動的實囊幼蟲。實囊幼蟲會花好幾天在海底尋尋覓覓,待找到合適的地點,就附著、變態成為再也無法隨意移動的珊瑚蟲。接著珊瑚蟲會不停地分裂、分泌碳酸鈣,長成一株株珊瑚。

-----廣告,請繼續往下閱讀-----
野澤洋耕副研究員解釋目前正在研究中的珊瑚產卵微觀機制。圖/研之有物

奇妙機緣讓多年研究心血登上國際期刊

「說起來實在幸運,原本稿子都投到其他期刊去了。」論文第一作者林哲宏笑著說,前一陣子日本學者高橋俊一來臺灣訪問交流,意外讓這次珊瑚產卵新發現得以刊登在《美國國家科學院院刊》(PNAS)上。

琉球大學教授高橋俊一在中研院停留時,順道拜訪同鄉人野澤洋耕的研究室,閒聊之下發現兩人居然還是大學同學。「大學時我們僅是點頭之交,畢業後再也沒有對方消息了。」野澤洋耕表示,高橋俊一後來在琉球大學進行熱帶生物基因、分子領域研究;自己則是在中研院、綠島兩邊奔走,做珊瑚生態、行為調查,沒想到老同學會偶然在學術圈再度相遇。

在高橋俊一的建議之下,雙方合作將實驗擴展得更加完善。林哲宏提到,高橋提供一些安排實驗、投稿期刊的秘訣,像是在實驗室內與自然環境中重複出相同結果,增加成果的說服力;撰寫論文時盡量保守,只寫已經確定的內容,不要節外生枝;還有花心思修飾文字段落安排,保持耐心與審查委員溝通等等。

巧妙的緣分促成臺日研究團隊跨國合作,也讓野澤洋耕與林哲宏等人多年來勤奮研究的成果有機會能夠被刊登在重量級期刊中,讓珊瑚產卵真相可以得到更多注意。

珊瑚產卵研究需要長時間投入,野澤洋耕副研究員(中)與林哲宏博士後研究員(右)團隊多年研究成果,終於刊登在美國國家科學院院刊(PNAS)。圖/研之有物

艱難的生態研究柳暗花明,組成跨國團隊再出發

回想起當初因為潛水的興趣才選擇珊瑚當作研究主題,經過 20 多年後,野澤洋耕慢慢開始期待自己的研究,能為持續減少的珊瑚族群帶來些貢獻。野澤洋耕提到:「很開心可以在這裡研究,中研院的支持讓我沒有後顧之憂。」

解開環菊珊瑚的同步產卵之謎後,林哲宏接下來要到現任老闆的老同學:高橋俊一在琉球大學的實驗室,展開新的珊瑚研究計畫。而野澤洋耕表示,他還是會繼續協助林哲宏的博士後研究,因為這次主要聚焦在環菊珊瑚,他們還想知道同樣是繩紋珊瑚科的其他種類,是否也是因為黑暗刺激同步產卵;還有軸孔珊瑚滿月後不規律的產卵模式,以及缺乏光照反而不產卵的現象,背後是否有更多秘密。

另外值得一提的是,珊瑚產卵的成果發表後,野澤洋耕收到來自以色列巴伊蘭大學學者 Levy Oren 的來信。Levy Oren 是在紅海研究光害對於當地珊瑚族群的影響,他對這次刊登的研究內容非常感興趣,更期待有機會能合作。原本珊瑚產卵的主題,因為一年只有一次觀察產卵機會,還要天天夜間潛水調查,風險之高、過程之辛苦,讓許多學者望之卻步。如今野澤洋耕與林哲宏等人多年來的堅持有了回報,而且橫跨紅海、綠島、琉球三地的搶救珊瑚大冒險,就在前方等待著他們。

註解

註 1:因為月球繞地球轉的軌道不是正圓,因此每天月亮升起的延遲時間會依照月相時間(新月/滿月)和季節而有所變化,延遲時間大約從 30-70 分鐘不等。

延伸閱讀

-----廣告,請繼續往下閱讀-----
研之有物│中央研究院_96
296 篇文章 ・ 3674 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook