Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

關於我們臉上的小生物,你不知道的三件事

昱夫
・2014/08/30 ・1264字 ・閱讀時間約 2 分鐘 ・SR值 536 ・七年級
相關標籤: 共生 (12) 蟎 (1)

-----廣告,請繼續往下閱讀-----

Demodex brevis. Credit: Dan Fergus and Megan Thoemmes.
Demodex brevis. Credit: Dan Fergus and Megan Thoemmes.

地球上存在許多生物共生的例子,但你知道嗎?其實人的身上也有許多小生物和我們住在一起噢!我們的身體就像是移動城堡,提供微生物、蕈類甚至是其他動物生活的空間。事實上,你並非唯一在使用你的臉的生物,這話聽起來有些詭異,不過就在看文章的當下,你鼻子附近至少就有兩種以上的蟎生活著!

對於這些小生物,目前科學家的了解仍十分有限,像是哺乳類身上常可以發現蠕形蟎(Demodex mite),這類小型蜘蛛普遍存在於除了鴨嘴獸之外的哺乳類物種。一隻哺乳類身上會帶有超過ㄧ種以上的生物,例如一些老鼠的臉部就住著四種蟎類,這些蟎與老鼠維持著良好的共生關係,一旦關係的平衡被破壞,蟎可能引發老鼠產生疥癬或其他皮膚疾病。

最近在PLoS ONE發表的ㄧ篇研究[1],則特別針對住在人臉上的小夥伴提出了3項有趣的發現:

每個人身上都有蟎

第一項重要的發現,就是”每個人”身上都住著這些蟎!這對大多數人來說可能有點意外,畢竟我們並不常親眼「看」到有小蜘蛛在我們臉上跑來跑去。過去傳統的採樣方法(用顯微鏡找)估計只有12~25%的成人臉上有蟎;而在這篇研究中,科學家們拋棄了顯微鏡,直接在臉上試圖搜集蟎的DNA,結果顯示,每位參與實驗的成人臉上,都可以檢驗出蟎的DNA,表示蟎確實出現在每個人的臉上。

-----廣告,請繼續往下閱讀-----

蟎的來源

當知道了人臉上有蟎,第一個會想到的延伸問題就是:牠們從哪裡來?研究發現,人臉上普遍存在的兩種蟎:Demodex folliculorumDemodex brevis,然而牠們在基因上的關係並沒有很接近,代表這兩種蟎應該是從不同的途徑接觸人體;其中,brevis的基因上反而與狗身上的蟎較接近,這或許意味著,人類有可能是從最好的動物朋友身上意外得到了這些小生物。

蟎可以告訴我們人類的歷史

由於蟎類與人類共生的歷史十分久遠,甚至可能幫助我們了解人類從出非洲之後的遷移路徑。這項想法的可行性目前已得到初步驗證,科學家們分析了全球不同地區人臉上Demodex brevis的DNA,發現來自中國的蟎確實與美國的蟎有普遍性的不同,由於東亞和歐美的人類遷移分歧大約可以追溯到40000年前,這項結果,意味著人臉上的蟎也隨著人類遷移的分歧而有所改變。未來,我們便可能透過調查人身上的蟎,來對人類遷移的歷史有更深入的了解。(值得注意的是,相較於Demodex brevis,美國與中國的Demodex folliculorum的DNA則沒有顯著的差異,這是因為在居住環境上,Demodex brevis生活在人臉上比較深的區域,不容易與外界的品種有所交換;而Demodex folliculorum則存在比較外層,容易透過人與人的交流而互相交換,進一步普遍化)

這篇研究提出了許多對於人臉上蟎類的觀察,同時更丟出了更多未來可以研究的題目,畢竟過去,我們都太缺少對這些與我們共處小生物的認識。不論從生活上或是演化上,牠們或許可以說是人類最忠誠的夥伴呢~

延伸閱讀:

-----廣告,請繼續往下閱讀-----

資料來源:

  1. Thoemmes MS, Fergus DJ, Urban J, Trautwein M, Dunn RR (2014) “Ubiquity and Diversity of Human-Associated Demodex Mites.” PLoS ONE 9(8): e106265. DOI: 10.1371/journal.pone.0106265

參考資料:

-----廣告,請繼續往下閱讀-----
文章難易度
昱夫
57 篇文章 ・ 2 位粉絲
PanSci實習編輯~目前就讀台大化學所,研究電子與質子傳遞機制。微~蚊氫,在宅宅的實驗室生活中偶爾打點桌球,有時會在走廊上唱歌,最愛929。

0

2
1

文字

分享

0
2
1
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

8
4

文字

分享

1
8
4
陸上生命的根源:菌根菌——《真菌微宇宙》
果力文化
・2021/09/26 ・1538字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

  • 作者 / 梅林.謝德瑞克
  • 譯者 / 周沛郁

我們目前還不清楚菌根關係最初是怎麼形成的。有些人大膽提出,最初的相遇溼黏而沒有條理──藻類被沖上泥濘的湖岸和河岸,而真菌在這些藻類體內尋找食物和庇護。有些則主張,藻類來到陸地時,體內已經帶著真菌夥伴了。里茲大學(University of Leeds)教授凱蒂.菲爾德(Katie Field)解釋,不論如何,「它們很快就變得依賴彼此」。

常出現於兒童繪本的毒蠅傘,就是一種能與植物共生的菌根真菌。圖/WIKIPEDIA by R Henrik Nilsson

菲爾德是一位傑出的實驗者,投入多年的時間研究現存最古老的植物支系。菲爾德用生長箱模擬遠古的氣候,並用放射性示蹤劑,測量生長箱裡真菌和植物之間的交換作用。真菌與植物的共生方式提供了線索,讓我們了解植物和真菌遷移到陸地的最早階段是怎麼互動的。化石也讓我們一瞥這些早期的聯盟。最精細的樣本來自大約四億年前,含有明確的菌根菌痕跡──羽狀瓣和今日一模一樣。菲爾德讚歎道:「你可看到真菌居然就長在植物細胞裡。」

最早的植物幾乎只是一坨綠色組織,沒有根或其他特化的結構。而這些植物逐漸演化出粗糙的肉質器官來容納真菌同伴,真菌則搜尋土壤中的養分和水。最初的根演化出來時,菌根關係已經存在五千萬年了。菌根菌是陸地上後續所有生命的根源。菌根(mycorrhiza)這個詞真是取得好。根(rhiza)隨著真菌(mykes)存在於世。

數億年後的今天,植物演化出更細、生長更快、更能見機行事的根,這些根表現更像真菌。不過即使是這些根,探索土壤的表現也無法超越真菌。菌根的菌絲比最細的根細了五十倍,長度可以超越植物根部達一百倍,比植物根部更早出現在植物上,延伸到根系之外。有些研究者更進一步。我的一位大學教授向一班吃驚的學生吐露:「植物其實沒有根,只有真菌根,也就是菌根。」

-----廣告,請繼續往下閱讀-----
毒蠅傘在樹的細根上形成的外生菌根。圖/WIKIPEDIA by Ellen Larsson

菌根菌太多產,菌絲體占土壤中活生物量的二分之一到三分之一。根本是天文數字。全球土壤表層十公分之中,菌根菌絲的總長度大約是我們銀河系寬度的一半(菌絲長 4.5 × 1017 公里,銀河系寬度 9.5 × 1017 公里)。如果把這些菌絲熨成一片,總表面積是地球上乾燥土地面積的二點五倍。然而,真菌不會停滯不動。菌根菌絲迅速死去、再度生長(一年十到六十次),一百萬年後,累積的長度會超過已知宇宙的直徑(菌絲長 4.8 × 1010 光年,已知宇宙直徑是 9.1 × 109 光年)。菌根菌已經存在了大約五億年之久,而且不限於土壤表層十公分的地方,所以這些數字顯然低估了。

植物和菌根菌在彼此的關係中產生一種極化現象──植物的莖處理光與空氣,真菌和植物的根則處理周圍的土壤。植物把光和二氧化碳打包成醣類和脂質。菌根菌則把固著在岩石裡的養分拆開,分解物質。這些是真菌在雙重棲位下的情況──真菌一部分的生命發生在植物體內,一部分在土壤中。菌根菌駐紮在碳進入陸生生命循環的入口,牽起大氣和土地的關係。時至今日,菌根菌就像擠進植物葉和莖裡的共生真菌,會幫助植物應付乾旱、炎熱和其他許多陸地生命一開始就有的逆境。我們稱為「植物」的,其實是演化成來栽培藻類的真菌,以及也演化來栽培真菌的藻類。

——本文摘自《真菌微宇宙:看生態煉金師如何驅動世界、推展生命,連結地球萬物》,2021 年 8 月,果力文化

-----廣告,請繼續往下閱讀-----
所有討論 1
果力文化
3 篇文章 ・ 3 位粉絲
以本土自製書系、獨到翻譯選書,提出創意的解讀;以創新編輯體例、設計風格、雜誌化的圖文整合。提供嶄新的觀點、有趣的知識、生活的提案。果然,為讀者創造閱讀的驚喜。

0

0
0

文字

分享

0
0
0
關於我們臉上的小生物,你不知道的三件事
昱夫
・2014/08/30 ・1264字 ・閱讀時間約 2 分鐘 ・SR值 536 ・七年級
相關標籤: 共生 (12) 蟎 (1)

Demodex brevis. Credit: Dan Fergus and Megan Thoemmes.
Demodex brevis. Credit: Dan Fergus and Megan Thoemmes.

地球上存在許多生物共生的例子,但你知道嗎?其實人的身上也有許多小生物和我們住在一起噢!我們的身體就像是移動城堡,提供微生物、蕈類甚至是其他動物生活的空間。事實上,你並非唯一在使用你的臉的生物,這話聽起來有些詭異,不過就在看文章的當下,你鼻子附近至少就有兩種以上的蟎生活著!

對於這些小生物,目前科學家的了解仍十分有限,像是哺乳類身上常可以發現蠕形蟎(Demodex mite),這類小型蜘蛛普遍存在於除了鴨嘴獸之外的哺乳類物種。一隻哺乳類身上會帶有超過ㄧ種以上的生物,例如一些老鼠的臉部就住著四種蟎類,這些蟎與老鼠維持著良好的共生關係,一旦關係的平衡被破壞,蟎可能引發老鼠產生疥癬或其他皮膚疾病。

最近在PLoS ONE發表的ㄧ篇研究[1],則特別針對住在人臉上的小夥伴提出了3項有趣的發現:

-----廣告,請繼續往下閱讀-----

每個人身上都有蟎

第一項重要的發現,就是”每個人”身上都住著這些蟎!這對大多數人來說可能有點意外,畢竟我們並不常親眼「看」到有小蜘蛛在我們臉上跑來跑去。過去傳統的採樣方法(用顯微鏡找)估計只有12~25%的成人臉上有蟎;而在這篇研究中,科學家們拋棄了顯微鏡,直接在臉上試圖搜集蟎的DNA,結果顯示,每位參與實驗的成人臉上,都可以檢驗出蟎的DNA,表示蟎確實出現在每個人的臉上。

蟎的來源

當知道了人臉上有蟎,第一個會想到的延伸問題就是:牠們從哪裡來?研究發現,人臉上普遍存在的兩種蟎:Demodex folliculorumDemodex brevis,然而牠們在基因上的關係並沒有很接近,代表這兩種蟎應該是從不同的途徑接觸人體;其中,brevis的基因上反而與狗身上的蟎較接近,這或許意味著,人類有可能是從最好的動物朋友身上意外得到了這些小生物。

蟎可以告訴我們人類的歷史

由於蟎類與人類共生的歷史十分久遠,甚至可能幫助我們了解人類從出非洲之後的遷移路徑。這項想法的可行性目前已得到初步驗證,科學家們分析了全球不同地區人臉上Demodex brevis的DNA,發現來自中國的蟎確實與美國的蟎有普遍性的不同,由於東亞和歐美的人類遷移分歧大約可以追溯到40000年前,這項結果,意味著人臉上的蟎也隨著人類遷移的分歧而有所改變。未來,我們便可能透過調查人身上的蟎,來對人類遷移的歷史有更深入的了解。(值得注意的是,相較於Demodex brevis,美國與中國的Demodex folliculorum的DNA則沒有顯著的差異,這是因為在居住環境上,Demodex brevis生活在人臉上比較深的區域,不容易與外界的品種有所交換;而Demodex folliculorum則存在比較外層,容易透過人與人的交流而互相交換,進一步普遍化)

這篇研究提出了許多對於人臉上蟎類的觀察,同時更丟出了更多未來可以研究的題目,畢竟過去,我們都太缺少對這些與我們共處小生物的認識。不論從生活上或是演化上,牠們或許可以說是人類最忠誠的夥伴呢~

-----廣告,請繼續往下閱讀-----

延伸閱讀:

資料來源:

  1. Thoemmes MS, Fergus DJ, Urban J, Trautwein M, Dunn RR (2014) “Ubiquity and Diversity of Human-Associated Demodex Mites.” PLoS ONE 9(8): e106265. DOI: 10.1371/journal.pone.0106265

參考資料:

-----廣告,請繼續往下閱讀-----
文章難易度
昱夫
57 篇文章 ・ 2 位粉絲
PanSci實習編輯~目前就讀台大化學所,研究電子與質子傳遞機制。微~蚊氫,在宅宅的實驗室生活中偶爾打點桌球,有時會在走廊上唱歌,最愛929。

1

11
4

文字

分享

1
11
4
尼安德塔人與穿越時代的腸道菌!與古代人共生,是怎樣的微生物?
寒波_96
・2021/06/08 ・4807字 ・閱讀時間約 10 分鐘

人體內外住著許多微生物,腸道、皮膚、生殖器官、口腔等部位有不少微生物與人共生,可謂小小生態系。這些迷你生物們種類繁多,多半無法人為培養,從前難以研究。

受惠於科技進步,如今可以直接定序樣本中所有 DNA,拼湊不同生物的基因組。因此即使是無法培養、甚至是前所未知的微生物,都有機會被新的辦法找到。

同樣概念也能用於古時候的樣本,了解古代的共生微生物。最近有 2 篇論文發表,分別探討和古代人類共生的口腔與腸道菌。

尼安德塔人會吃草嗎?圖/取自 Mauricio Anton

從牙結石獲得古代口腔微生物

研究古人口腔中的微生物,比研究皮膚、腸道等其他部位容易。這是因為軟組織很難保存,即使有軟組織,除了冰人奧茲等罕見案例之外,裡頭的微生物也很難留下蹤影;相較之下,口腔中的各種成分卻常常會進入牙結石,和牙齒一同遺留至今。

-----廣告,請繼續往下閱讀-----

過往曾有一些古代智人牙結石的研究問世,而距今數萬年之久的尼安德塔人,也有過幾件樣本發表。

這次的兩篇新論文,除了 15 個已知樣本之外,又獲得 109 個新的牙結石;這總共 124 件的樣本,分別來自美洲的吼猴,非洲的大猩猩、黑猩猩,數萬年前的尼安德塔人和智人,以及更近期的智人。[1, 2]

貢獻牙結石樣本的古代、現代智人們。圖/取自 [參考資料 1]

各種靈長類動物之間,有些共通的微生物款式,由此可以推論,某些微生物,與靈長類應該有著長期的共生關係,也許超過千萬年。口腔中的微生物,主要有鏈球菌屬(Streptococcus)、放線菌屬(Actinomyces)、細梭菌屬(Fusobacterium)、棒狀桿菌屬(Corynebacterium)幾大類。

研究微生物常常碰到的困難是,近親彼此間變化太多,也有很多不知道的款式。這回由人類牙結石取得的口腔微生物們,根據遺傳差異總共可以歸類為 27 個屬(genus)的層級,可是其中 3 群竟然連名字都沒有。

-----廣告,請繼續往下閱讀-----

也就是說,儘管它們曾經是人類口中主要的微生物,整個屬卻都沒有已知的資訊。對於共生微生物,還有太多未知之處。

貢獻牙結石樣本的尼安德塔人們。圖/取自 [參考資料 1]

歐洲智人與尼安德塔人,口腔共享微生物?

這回獲得年代最早的樣本,是距今約 10 萬年的尼安德塔人,來自東歐的塞爾維亞 Pešturina 遺址,其餘數萬年前的尼安德塔人,則位於西班牙、比利時、義大利。

有趣的是,早於 1.4 萬年前的歐洲智人,和更早的尼安德塔人有類似的口腔微生物組成;晚於 1.4 萬年的歐洲智人卻明顯不同,接近後來的智人。已經知道距今 1.4 萬年過後有不少移民進入歐洲。看來狀況是:不同人群,也攜帶不同的口腔微生物。

歐洲較早智人的口腔微生物,和尼安德塔人有直接關係嗎?口腔微生物的形成和寶寶的照顧者有關,研究者因此推論,當初進入歐洲見到尼安德塔人的智人,雙方有過小孩,也獲得了尼安德塔人的口腔微生物。[3]

超過 4 萬年的歐洲智人(以 Zlatý Kůň 為代表)和後來歐洲、亞洲人的遺傳關係。非洲以外的智人尚未分家以前,已經與尼安德塔人發生遺傳交流;但是歐洲較晚的智人,遺傳上和較早的智人移民沒有直接關係。圖/取自 A bumpy ride to the re-discovery of Zlatý Kůň

問題是,上述推論不符合已知證據。智人繼承的尼安德塔人 DNA 皆來自超過 5 萬年前,非洲外族群尚未分家以前的階段。超過 4 萬年前進入歐洲的智人,確實見過尼安德塔人,有些人還有過更多遺傳交流;但是他們後來都滅團了,和更晚的歐洲智人沒有直接關係。[4, 5]

-----廣告,請繼續往下閱讀-----

與尼安德塔人擁有類似口腔微生物,距今 1.4 到 3 萬多年前的歐洲智人,非常可能是在尼安德塔人消失以後才進入歐洲,其實沒有見面的機會。雙方的口腔微生物之所以相似,我想並非來自直接交流,而是另有原因。

即使沒有農業,智人與尼安德塔人都吃很多澱粉?

另一項值得一提的發現是,尼安德塔人與智人的口腔,都存在不少會消化澱粉的鏈球菌型號。如果飲食中沒什麼澱粉,這類微生物不太可能這麼豐富;由此推論,尚未發明農業的智人,甚至是尼安德塔人,或許平時都攝取不少澱粉。

古今的智人飲食可謂千變萬化,即使沒有米、麥、玉米等農作物,不依賴農業,光憑採集塊根、塊莖、果果等食物,也能獲得大量澱粉。

美國的猶他,富含澱粉的野生馬鈴薯 Solanum jamesii。考古研究發現,尚未出現農業的一萬年前,當地人已經會食用這種植物。圖/取自 Starch granule evidence for the earliest potato use in North America

至於尼安德塔人吃什麼,目前了解仍很有限。有些研究認為尼安德塔人主要吃肉,尤其是大型植食動物的肉。這回提出的大量澱粉,仍是需要驗證的論點。

我個人的想法是,即使沒有農業,仰賴所謂的採集、狩獵、漁業,不同時空的智人飲食也差異很大,尼安德塔人或許也是如此。有些吃肉當主食,有些大量攝取澱粉,搞不好更接近實際狀況。至今取樣非常有限下,難以評估尼安德塔人的飲食多元性。

一千多年前美洲古人的腸道菌

住在腸道的微生物們會影響消化、免疫等功能,近年來知名度大增,可能連榕樹下的阿伯都知道。

近日發表的另一項研究,獲得了距今 1000 到 2000 年前,幾位美洲古人的腸道菌。取樣腸道菌通常不會深入腸道,而是由糞便採樣。新研究也是如此,稀有的樣本來自美國西南部 3 處遺址的糞便化石。[6, 7, 8, 9, 10]

-----廣告,請繼續往下閱讀-----

研究者嘗試 15 個樣本,成功 8 個,定序當中所有 DNA 後,總共拼湊出 498 種細菌的基因組。這兒想要探索的對象是「古代」「腸道菌」,排除疑似非古代的樣本後剩下 209 個,其中只有 181 種源自腸道,最有機會真的是古代人的腸道菌。

圖/取自 PHIL MARDEN

微生物數量多、突變多,品系差異千變萬化,大部分不在人類的認知內;這類研究方法又是靠拼湊 DNA 推測,沒有獲得完整的真正細菌。因此這兒的「種」和一般講的物種不太ㄧ樣,指的是 species-level genome bin,簡稱 SGB。為求方便,本文直接寫成種。

181 種古代腸道菌中有 39%,也就是 61 種之前沒有見過。它們或許已經消失,或是古代美國西南部獨特的款式。探索古代微生物時,發現未知的微生物算是常態。

呼應人類大歷史的腸道共生關係

古代和 789 位現代人相比,大部分腸道菌種類還是共通的,不過遺傳上有點出入。古代樣本拼湊出 2 款 Methanobrevibacter smithii,中文姑且稱之為「史密斯甲烷短桿菌」。甲烷短桿菌常常在腸道發現,它們不是細菌,是古生菌(archaea,也叫作太古生物)。

-----廣告,請繼續往下閱讀-----
古代與現代的史密斯甲烷短桿菌,根據基因組差異建構的演化樹。紅色是來自古代美洲人的樣本。圖/取自 [參考資料 6]

超過一千年的 2 款史密斯甲烷短桿菌,遺傳上彼此最相似,落在現代樣本的 DNA 變異之內。估計所有這類古生菌共同祖先的年代,介於距今 5.1 到 12.8 萬年之間,平均 8.5 萬年前。似乎是智人祖先離開非洲時,裝在肚子裡,一起帶著走的腸道菌之一。

有意思的是,美洲古代古生菌和最近同類分家的年代,介於距今 1.6 到 4 萬年之間,平均 2.7 萬年前。倘若估計正確,大概落在智人移民美洲,與亞洲漸漸分家的年代範圍。

這些與人共生的微生物,也隱藏著遷徙移民史的線索。

尚未工業化,沒有抗生素的年代

生活環境、日常飲食,都是影響腸道菌組成的主要原因。和 789 位現代人相比,古人的腸道菌較接近非工業化社會的人,和工業化社會的人差異很明顯,符合預期。

在 PCA 之下的腸道菌組成,古代美洲人較類似非工業化社會的現代人,不像工業化社會的現代人。圖/取自 [參考資料 7]

基因層次上,工業化社會現代人的腸道菌,有比較多分解聚糖(glycan)的基因(endo-4-O-sulfatase、SusD-like protein)。

相對地,古人和非工業化現代人的腸道菌,則有較多分解澱粉、肝糖(glycogen)的基因(carbohydrate-active enzyme,簡稱 CAZyme);另外它們的可動遺傳因子也比較多(mobile genetic element,例如轉座子),也許在變動的環境下,有助於增加適應力。

-----廣告,請繼續往下閱讀-----

但是不論工業化或非工業化社會的現代人,腸道菌配備對抗抗生素的基因,都明顯比古人更多。讓我們一瞥抗生素廣泛使用後,對腸道菌的影響。

上述兩項研究,不管論點有無道理,樣本都相當難得,肯定是酷炫的研究!

延伸閱讀

參考資料

  1. Yates, J. A. F., Velsko, I. M., Aron, F., Posth, C., Hofman, C. A., Austin, R. M., … & Warinner, C. (2021). The evolution and changing ecology of the African hominid oral microbiome Proceedings of the National Academy of Sciences, 118(20).
  2. Turns out developing a taste for carbs wasn’t a bad thing
  3. The surprising evolutionary history of our oral bacteria
  4. Hajdinjak, M., Mafessoni, F., Skov, L., Vernot, B., Hübner, A., Fu, Q., … & Pääbo, S. (2021). Initial Upper Palaeolithic humans in Europe had recent Neanderthal ancestry. Nature, 592(7853), 253-257.
  5. Prüfer, K., Posth, C., Yu, H., Stoessel, A., Spyrou, M. A., Deviese, T., … & Krause, J. (2021). A genome sequence from a modern human skull over 45,000 years old from Zlatý kůň in Czechia. Nature Ecology & Evolution, 1-6.
  6. Wibowo, M. C., Yang, Z., Borry, M., Hübner, A., Huang, K. D., Tierney, B. T., … & Kostic, A. D. (2021). Reconstruction of ancient microbial genomes from the human gut. Nature, 1-6.
  7. Ancient human faeces reveal gut microbes of the past
  8. Ancient gut microbiomes may offer clues to modern diseases
  9. Research reveals ancient people had more diverse gut microorganisms
  10. Piles of ancient poop reveal ‘extinction event’ in human gut bacteria

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

-----廣告,請繼續往下閱讀-----
所有討論 1
寒波_96
193 篇文章 ・ 1094 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。