0

0
0

文字

分享

0
0
0

葉太太的由來 —《鐵與血之歌》

PanSci_96
・2014/08/11 ・3673字 ・閱讀時間約 7 分鐘 ・SR值 519 ・六年級
相關標籤: 葉克膜 (3)

鐵與血之歌3同事茵茵是「體外循環師」,工作的職責就是在心臟手術時,負責操作俗稱「心肺機」(heart-lung machine)的「體外循環」(extra corporeal circulation,簡稱ECC)機器,讓心臟外科醫師在人為操作的環境下,使得病患心肺功能暫時停止,成為沒有搏動的「無血」(bloodless) 狀態,搶時間完成開心手術。

所以,心臟外科醫師的技巧好不好固然可以決定開心手術的成敗,但若是缺乏有經驗的「體外循環師」,再好的手術技巧亦可能是徒然,因為病患可能會死於體外循環的種種併發症,諸如流血不止、灌流不足造成的中風、肝腎衰竭,或者是氣栓病(air embolism)。

既然體外循環師如此重要,你一定也可以想像,在心臟外科醫師的值班過程裡,這些幕後無名英雄必定要跟著不分晝夜地奮鬥,尤其在緊急的開心手術之後,如果病患的心臟功能沒有辦法立即恢復,造成無法脫離體外循環機的情形時,心臟外科的醫師常得和體外循環師一起苦惱地看著病患與機器間拔河,想辦法幫助病人脫離它的援助。

除了上述的工作外,體外循環師有時還得負責一些額外的繁重業務,這也是茵茵在值班時,在某些狀況下要稱呼自己為「葉太太」的原因。

-----廣告,請繼續往下閱讀-----

不明就理的人會以為茵茵可能已經嫁人了,或是她有個貼心的「葉」姓男友會來醫院陪值班,但是上述的說法都不成立。而是茵茵在值班時,若加護病房裡有病患靠著「葉克膜」延續生命時,任何操作或突發狀況發生,身為體外循環師茵茵就得出面排除問題,隨時候命。

「葉太太」的自稱,是茵茵在值班時的自嘲!

也許你不知道「葉克膜」為何物,但是在新聞版面上,它一直是常客。光是臺大醫院在2014 年4 月17 日為止,經過了二十年的努力,已經替兩千個病患安裝上了「葉克膜」延續生命,不只在亞洲醫界排名第一,和全世界的醫院相比,亦是名列前茅。

當然,葉克膜在臺灣並非今日才威名遠播。早在2006 年,當時的臺中市長夫人邵曉鈴女士,為了高雄市市長選舉南下幫忙站臺,回程時卻在高速公路上發生了重大的車禍,她最後就是靠了葉克膜而保住一命;2014 年有意挑戰臺北市市長大位的臺大名醫柯文哲,就是號稱全世界最厲害的「葉克膜專家」,常常藉由他犀利的發言,讓普羅大眾認識被暱稱為「葉醫師」的「葉克膜」。

-----廣告,請繼續往下閱讀-----

葉克膜究竟是何方神聖呢?它的原名是”extra-corporeal membrane oxygenation”,醫療上的翻譯應該叫「體外膜氧合」,或是「體外膜肺」。但由於直譯常讓一般民眾不知所云,因此,在它剛引進臺灣時,亞東醫院院長朱樹勳醫師,利用了它的縮寫「E.C.M.O」,將它音譯為「葉克膜」,使得它比較親切,也容易朗朗上口(雖然聽到之後,還是不知道它是什麼東西)。

簡單來說,葉克膜是一種醫療急救設備,用以協助對當前的醫療方法皆無任何好效果的重度心、肺衰竭病患,進行體外呼吸循環的氧氣交換,此舉能暫時替代患者的心、肺功能,減輕其負擔,也能為醫療團隊爭取更多的時間,想出辦法救治該名病患。

只是三言兩語帶過,想必各位讀者已對葉克膜肅然起敬,覺得它是個了不起的機器—它的確也是如此,尤其隱藏其後的,說它代表了一部簡要的心臟外科發展史也不為過。

在心臟外科手術的演進中,最難的莫過於要找出方法,讓心臟暫時停止跳動,呈現靜止柔軟的狀態,以方便手術順利進行,而在這段時間,要能有機器取代它的功能,源源不斷提供給身體「充氧血」。

-----廣告,請繼續往下閱讀-----

早在十九世紀,科學家們就絞盡腦汁,要利用充氧血灌注離體的器官,以延續其活力。這些實驗看起來就令人毛骨悚然,不敢恭維。

在 1812 年,法國學者朱利安・尚・切薩羅・加盧瓦(Julien-Jean Cesar le Gallois)就做了有上述概念的實驗。他將一隻兔子砍頭,想用其它兔子動脈的充氧血灌注這顆離體的頭,卻因為沒有合適的「抗擬血劑」而失敗;接著在 1821 年,另外兩位科學家都門斯(Dumans)及普雷沃斯特(Prevost)找到了讓血液暫時不凝固的方法,於是到了1849 年,羅貝爾(Lobell)就利用此一方法,灌注了實驗動物離體的腎臟,讓它存活了一段時間。

而學者布朗・賽卡爾(Brown Sequard)有了上述的實驗激勵,在 1858 年模仿了加盧瓦的方法,利用加壓注射血液的方式,做了離體的狗頭實驗,第一次提出了缺氧五分鐘,會對腦組織造成不可逆的傷害,而且這個觀念還保留迄今。

但是利用活的動物血液,去灌注其它離體的器官是比較麻煩的方式,於是也有不少科學家想出替代辦法,就是將離體的血液,直接變成充氧血,做為灌注實驗器官的來源,這種製造充氧血的工具可稱之為「氧合器」(oxygenator),也可說是「人體肺臟」的雛型。

-----廣告,請繼續往下閱讀-----

最有名的例子是1882 年在德國同一實驗室的三位同事。

第一位是生理學家馮・施羅德(Von Schröder),他利用氧氣的氣泡,成功將密閉容器內的血液的氧氣飽和度提高,這就是後來「氣泡式氧合器」(bubble oxygenator)的原型;而另兩位施羅德的伙伴,弗雷(Frey)及格魯伯(Gruber),卻利用了不同的方法,將血液曝露在充滿氧氣的旋轉薄片上,達到了增加血中氧氣飽和度的目的,亦即是簡單型的「薄片氧合器」(film oxygenator)。

上述兩方的發明各有其擁護者,也提供了諸如學者霍克(Hooker)與理查斯(Richards)分別於 1910 年及 1915 年獲得靈感後,將它們修正與改進。不過此時仍有個大問題:那就是隨著實驗的規模更大與用血量的增加,原有的抗擬血方式已不合時宜,直到一位醫學系學生的發明出現,才使得問題迎刃而解。

傑・麥克萊(Jay Maclean)是一位在約翰霍普金斯大學實驗室做研究的學生,他在 1916 年的時候,藉由萃取狗的心肌細胞,成功找出一種可以阻抗血液凝固的物質,而這種物質也可以在狗的肝臟裡找到,因此被取名為「肝素」(heparin)」。自此,科學家才能順利朝設計真正的心肺機前進。

-----廣告,請繼續往下閱讀-----

在 1920 年到 1950 年之間,確實有幾個心肺機的雛型被設計出來,不過由於材料科學還不甚發達,僅流於實驗室使用的範疇。加上兩次世界大戰的蹂躪,歐洲大陸民生凋敝,所以在第二次世界大戰之後,幾乎所有的重要醫學研究,漸漸由美國開始主導,自然連「心肺機」也不例外。

雖然號稱有祕密使用於戰爭的先進技術被釋出,早期的心肺機在美國仍只是土法煉鋼的方式。抱著必死決心的外科醫師,屢次使病患曝露於「險境」中,看看底下有關醫學期刊的報告,就能了解其中的曲折。

在1951年到1955年間,有十八位病患在六個不同的醫學中心,以使用「心肺機」的方式做開心手術,結果只有一例存活,不過熟悉內情的醫師都知道,不敢見諸期刊的死亡人數,可能有好幾倍之多。

唯一接受開心手術並存活下來的病患,是由在傑佛遜醫學院(Jefferson Medical College)的約翰・吉本(John Gibbon)醫師完成的,其成功的故事也是滿傳奇的,可以在這裡和讀者分享一下。

-----廣告,請繼續往下閱讀-----

原來吉本醫師研究心肺機不是為了做開心手術,而是想解救「急性肺栓塞」(Acute Pulmonary Embolism)的病患。在做了十幾年的研究之後,他得到了 IBM 工程師的協助,設計了一部重達兩千磅,由複雜機械組合成的心肺機,更可怕的是, 它使用時必須要有三位工程師隨侍在側,避免有突發狀況時,造成手忙腳亂的情形。

吉本醫師利用了這臺心肺機替四位病患進行開心手術。第一位病患是個十五個月大的嬰兒,結果因為診斷錯誤,小嬰兒直接死在手術檯上;第二位病患是十八歲的女性,罹患了「先天性心房中膈缺損」(Ventricular Septal Defect,簡稱VSD),在1953年5月6日,吉本醫師替她實施修補手術,但由於抗凝血劑肝素使用不足,沒有多久心肺機出現血塊,於是他只得草草結束,還好手術是成功的,病人也存活下來。

至於第三位及第四位病患,都因為手術中的突發狀況而不幸死亡,讓吉本醫師覺得灰心喪志。一方面他覺得心臟內科術前診斷未臻成熟,會讓手術瀕於迷航的情況,陷病患於死亡風險;另一方面,他對心肺機用於開心手術有著嚴重的不信任感。所以,學者性格的他就此封刀,寧願往學術研究方向努力,不再投入開心手術。

但吉本醫師不是藏私的學者,他將十多年的研究成果,連同心肺機的設計分享給在馬約診所(Mayo Clinic)服務的約翰・科克林(John Kirklin) 醫師,讓他的團隊設計出更先進的機型—馬約・吉本式心肺機(Gibbon Heart-lung Bypass Machine),使得科克林醫師得以在它的幫助下,在1958 年替八位病患實施開心手術,而且竟然有一半的患者存活,降低了開心手術的困難度。

-----廣告,請繼續往下閱讀-----

在同一時期,其他美國醫學中心的團隊也陸續設計出成功的心肺機,像是在明尼蘇達大學醫學院(University of Minnesota Medical School)的團隊使用迪沃(DeWall)氧合器的機型,還有在克里夫蘭的團隊,以凱・克羅斯(Kay‧Cross)氧合器組出了新型的心肺機,慢慢在開心手術中累積經驗,讓心肺機逐漸在1970 年代之後,成為開心手術安全進行的重要輔助。

不過前述的心肺機都脫離不了氣泡式與薄片式的氧合器設計,常在開心手術後產生很多併發症,主要原因還是充氧過程造成血球破壞而溶血,導致病患在術後容易有出血不止或器官衰竭的情況發生。

但是在材料科學進步之下,科學家由人工腎臟的設計中找到靈感,把氧合器設計成今日眾多微細小管組合成的薄膜氧合器(membrane oxygenator),此舉除了增加氧氣在血液中交換的速率之外,也降低了血球的破壞,讓開心手術後的併發症大幅減少,使開心手術的技術得以突飛猛進。

故事說到這裡,我想讀者們心中會有個疑問,那葉克膜和心肺機有什麼關係呢?那必須要從1970 年代後兩個重要的醫學研究說起,這次病患又被當成了實驗品,在生死一線間掙扎。不同的結果,造成了日後「葉克膜」被賦予延續重病病患生命的角色,實在是當初始料未及的,且看我下回分解。

 

摘自泛科學2014八月選書《鐵與血之歌:一場場與死神搏鬥的醫學變革》,大邑文化出版。

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1256 篇文章 ・ 2383 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
人與 AI 的關係是什麼?走進「2024 未來媒體藝術節」,透過藝術創作尋找解答
鳥苷三磷酸 (PanSci Promo)_96
・2024/10/24 ・3176字 ・閱讀時間約 6 分鐘

本文與財團法人臺灣生活美學基金會合作。 

AI 有可能造成人們失業嗎?還是 AI 會成為個人專屬的超級助理?

隨著人工智慧技術的快速發展,AI 與人類之間的關係,成為社會大眾目前最熱烈討論的話題之一,究竟,AI 會成為人類的取代者或是協作者?決定關鍵就在於人們對 AI 的了解和運用能力,唯有人們清楚了解如何使用 AI,才能化 AI 為助力,提高自身的工作效率與生活品質。

有鑑於此,目前正於臺灣當代文化實驗場 C-LAB 展出的「2024 未來媒體藝術節」,特別將展覽主題定調為奇異點(Singularity),透過多重視角探討人工智慧與人類的共生關係。

-----廣告,請繼續往下閱讀-----

C-LAB 策展人吳達坤進一步說明,本次展覽規劃了 4 大章節,共集結來自 9 個國家 23 組藝術家團隊的 26 件作品,帶領觀眾從了解 AI 發展歷史開始,到欣賞各種結合科技的藝術創作,再到與藝術一同探索 AI 未來發展,希望觀眾能從中感受科技如何重塑藝術的創造範式,進而更清楚未來該如何與科技共生與共創。

從歷史看未來:AI 技術發展的 3 個高峰

其中,展覽第一章「流動的錨點」邀請了自牧文化 2 名研究者李佳霖和蔡侑霖,從軟體與演算法發展、硬體發展與世界史、文化與藝術三條軸線,平行梳理 AI 技術發展過程。

圖一、1956 年達特茅斯會議提出「人工智慧」一詞

藉由李佳霖和蔡侑霖長達近半年的調查研究,觀眾對 AI 發展有了清楚的輪廓。自 1956 年達特茅斯會議提出「人工智慧(Artificial Intelligence))」一詞,並明確定出 AI 的任務,例如:自然語言處理、神經網路、計算學理論、隨機性與創造性等,就開啟了全球 AI 研究浪潮,至今將近 70 年的過程間,共迎來三波發展高峰。

第一波技術爆發期確立了自然語言與機器語言的轉換機制,科學家將任務文字化、建立推理規則,再換成機器語言讓機器執行,然而受到演算法及硬體資源限制,使得 AI 只能解決小問題,也因此進入了第一次發展寒冬。

-----廣告,請繼續往下閱讀-----
圖二、1957-1970 年迎來 AI 第一次爆發

之後隨著專家系統的興起,讓 AI 突破技術瓶頸,進入第二次發展高峰期。專家系統是由邏輯推理系統、資料庫、操作介面三者共載而成,由於部份應用領域的邏輯推理方式是相似的,因此只要搭載不同資料庫,就能解決各種問題,克服過去規則設定無窮盡的挑戰。此外,機器學習、類神經網路等技術也在同一時期誕生,雖然是 AI 技術上的一大創新突破,但最終同樣受到硬體限制、技術成熟度等因素影響,導致 AI 再次進入發展寒冬。

走出第二次寒冬的關鍵在於,IBM 超級電腦深藍(Deep Blue)戰勝了西洋棋世界冠軍 Garry Kasparov,加上美國學者 Geoffrey Hinton 推出了新的類神經網路算法,並使用 GPU 進行模型訓練,不只奠定了 NVIDIA 在 AI 中的地位, 自此之後的 AI 研究也大多聚焦在類神經網路上,不斷的追求創新和突破。

圖三、1980 年專家系統的興起,進入第二次高峰

從現在看未來:AI 不僅是工具,也是創作者

隨著時間軸繼續向前推進,如今的 AI 技術不僅深植於類神經網路應用中,更在藝術、創意和日常生活中發揮重要作用,而「2024 未來媒體藝術節」第二章「創造力的轉變」及第三章「創作者的洞見」,便邀請各國藝術家展出運用 AI 與科技的作品。

圖四、2010 年發展至今,高性能電腦與大數據助力讓 AI 技術應用更強

例如,超現代映畫展出的作品《無限共作 3.0》,乃是由來自創意科技、建築師、動畫與互動媒體等不同領域的藝術家,運用 AI 和新科技共同創作的作品。「人們來到此展區,就像走進一間新科技的實驗室,」吳達坤形容,觀眾在此不僅是被動的觀察者,更是主動的參與者,可以親身感受創作方式的轉移,以及 AI 如何幫助藝術家創作。

-----廣告,請繼續往下閱讀-----
圖五、「2024 未來媒體藝術節——奇異點」展出現場,圖為超現代映畫的作品《無限共作3.0》。圖/C-LAB 提供

而第四章「未完的篇章」則邀請觀眾一起思考未來與 AI 共生的方式。臺灣新媒體創作團隊貳進 2ENTER 展出的作品《虛擬尋根-臺灣》,將 AI 人物化,採用與 AI 對話記錄的方法,探討網路發展的歷史和哲學,並專注於臺灣和全球兩個場景。又如國際非營利創作組織戰略技術展出的作品《無時無刻,無所不在》,則是一套協助青少年數位排毒、數位識毒的方法論,使其更清楚在面對網路資訊時,該如何識別何者為真何者為假,更自信地穿梭在數位世界裡。

透過歷史解析引起共鳴

在「2024 未來媒體藝術節」規劃的 4 大章節裡,第一章回顧 AI 發展史的內容設計,可說是臺灣近年來科技或 AI 相關展覽的一大創舉。

過去,這些展覽多半以藝術家的創作為展出重點,很少看到結合 AI 發展歷程、大眾文明演變及流行文化三大領域的展出內容,但李佳霖和蔡侑霖從大量資料中篩選出重點內容並儘可能完整呈現,讓「2024 未來媒體藝術節」觀眾可以清楚 AI 技術於不同階段的演進變化,及各發展階段背後的全球政治經濟與文化狀態,才能在接下來欣賞展區其他藝術創作時有更多共鳴。

圖六、「2024 未來媒體藝術節——奇異點」分成四個章節探究 AI 人工智慧時代的演變與社會議題,圖為第一章「流動的錨點」由自牧文化整理 AI 發展歷程的年表。圖/C-LAB 提供

「畢竟展區空間有限,而科技發展史的資訊量又很龐大,在評估哪些事件適合放入展區時,我們常常在心中上演拉鋸戰,」李佳霖笑著分享進行史料研究時的心路歷程。除了從技術的重要性及代表性去評估應該呈現哪些事件,還要兼顧詞條不能太長、資料量不能太多、確保內容正確性及讓觀眾有感等原則,「不過,歷史事件與展覽主題的關聯性,還是最主要的決定因素,」蔡侑霖補充指出。

-----廣告,請繼續往下閱讀-----

舉例來說,Google 旗下人工智慧實驗室(DeepMind)開發出的 AI 軟體「AlphaFold」,可以準確預測蛋白質的 3D 立體結構,解決科學家長達 50 年都無法突破的難題,雖然是製藥或疾病學領域相當大的技術突破,但因為與本次展覽主題的關聯性較低,故最終沒有列入此次展出內容中。

除了內容篩選外,在呈現方式上,2位研究者也儘量使用淺顯易懂的方式來呈現某些較為深奧難懂的技術內容,蔡侑霖舉例說明,像某些比較艱深的 AI 概念,便改以視覺化的方式來呈現,為此上網搜尋很多與 AI 相關的影片或圖解內容,從中找尋靈感,最後製作成簡單易懂的動畫,希望幫助觀眾輕鬆快速的理解新科技。

吳達坤最後指出,「2024 未來媒體藝術節」除了展出藝術創作,也跟上國際展會發展趨勢,於展覽期間規劃共 10 幾場不同形式的活動,包括藝術家座談、講座、工作坊及專家導覽,例如:由策展人與專家進行現場導覽、邀請臺灣 AI 實驗室創辦人杜奕瑾以「人工智慧與未來藝術」為題舉辦講座,希望透過帶狀活動創造更多話題,也讓展覽效益不斷發酵,讓更多觀眾都能前來體驗由 AI 驅動的未來創新世界,展望 AI 在藝術與生活中的無限潛力。

展覽資訊:「未來媒體藝術節——奇異點」2024 Future Media FEST-Singularity 
展期 ▎2024.10.04 ( Fri. ) – 12.15 ( Sun. ) 週二至週日12:00-19:00,週一休館
地點 ▎臺灣當代文化實驗場圖書館展演空間、北草坪、聯合餐廳展演空間、通信分隊展演空間
指導單位 ▎文化部
主辦單位 ▎臺灣當代文化實驗場

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
從認證到實踐:以智慧綠建築三大標章邁向淨零
鳥苷三磷酸 (PanSci Promo)_96
・2024/11/15 ・4487字 ・閱讀時間約 9 分鐘

本文由 建研所 委託,泛科學企劃執行。 


當你走進一棟建築,是否能感受到它對環境的友善?或許不是每個人都意識到,但現今建築不只提供我們居住和工作的空間,更是肩負著重要的永續節能責任。

綠建築標準的誕生,正是為了應對全球氣候變遷與資源匱乏問題,確保建築設計能夠減少資源浪費、降低污染,同時提升我們的生活品質。然而,要成為綠建築並非易事,每一棟建築都需要通過層層關卡,才能獲得標章認證。

為推動環保永續的建築環境,政府自 1999 年起便陸續著手推動「綠建築標章」、「智慧建築標章」以及「綠建材標章」的相關政策。這些標章的設立,旨在透過標準化的建築評估系統,鼓勵建築設計融入生態友善、能源高效及健康安全的原則。並且政府在政策推動時,為鼓勵業界在規劃設計階段即導入綠建築手法,自 2003 年特別辦理優良綠建築作品評選活動。截至 2024 年為止,已有 130 件優良綠建築、31 件優良智慧建築得獎作品,涵蓋學校、醫療機構、公共住宅等各類型建築,不僅提升建築物的整體性能,也彰顯了政府對綠色、智慧建築的重視。

-----廣告,請繼續往下閱讀-----

說這麼多,你可能還不明白建築要變「綠」、變「聰明」的過程,要經歷哪些標準與挑戰?

綠建築標章智慧建築標章綠建材標章
來源:內政部建築研究所

第一招:依循 EEWH 標準,打造綠建築典範

環境友善和高效率運用資源,是綠建築(green building)的核心理念,但這樣的概念不僅限於外觀或用材這麼簡單,而是涵蓋建築物的整個生命週期,也就是包括規劃、設計、施工、營運和維護階段在內,都要貼合綠建築的價值。

關於綠建築的標準,讓我們先回到 1990 年,當時英國建築研究機構(BRE)首次發布有關「建築研究發展環境評估工具(Building Research Establishment Environmental Assessment Method,BREEAM®)」,是世界上第一個建築永續評估方法。美國則在綠建築委員會成立後,於 1998 年推出「能源與環境設計領導認證」(Leadership in Energy and Environmental Design, LEED)這套評估系統,加速推動了全球綠建築行動。

臺灣在綠建築的制訂上不落人後。由於臺灣地處亞熱帶,氣溫高,濕度也高,得要有一套我們自己的評分規則——臺灣綠建築評估系統「EEWH」應運而生,四個英文字母分別為 Ecology(生態)、Energy saving(節能)、Waste reduction(減廢)以及 Health(健康),分成「合格、銅、銀、黃金和鑽石」共五個等級,設有九大評估指標。

-----廣告,請繼續往下閱讀-----

我們就以「台江國家公園」為例,看它如何躍過一道道指標,成為「鑽石級」綠建築的國家公園!

位於臺南市四草大橋旁的「台江國家公園」是臺灣第8座國家公園,也是臺灣唯一的濕地型的國家公園。同時,還是南部行政機關第一座鑽石級的綠建築,其外觀採白色系列,從高空俯瞰,就像在一座小島上座落了許多白色建築群的聚落;從地面看則有臺南鹽山的意象。

因其地形與地理位置的特殊,生物多樣性的保護則成了台江國家公園的首要考量。園區利用既有的魚塭結構,設計自然護岸,保留基地既有的雜木林和灌木草原,並種植原生與誘鳥誘蟲等多樣性植物,採用複層雜生混種綠化。以石籠作為擋土護坡與卵石回填增加了多孔隙,不僅強化了環境的保護力,也提供多樣的生物棲息環境,使這裡成為動植物共生的美好棲地。

台江國家公園是南部行政機關第一座鑽石級的綠建築。圖/內政部建築研究所

第二招:想成綠建築,必用綠建材

要成為一幢優秀好棒棒的綠建築,使用在原料取得、產品製造、應用過程和使用後的再生利用循環中,對地球環境負荷最小、對人類身體健康無害的「綠建材」非常重要。

-----廣告,請繼續往下閱讀-----

這種建材最早是在 1988 年國際材料科學研究會上被提出,一路到今日,國際間對此一概念的共識主要包括再使用(reuse)、再循環(recycle)、廢棄物減量(reduce)和低污染(low emission materials)等特性,從而減少化學合成材料產生的生態負荷和能源消耗。同時,使用自然材料與低 VOC(Volatile Organic Compounds,揮發性有機化合物)建材,亦可避免對人體產生危害。

在綠建築標章後,內政部建築研究所也於 2004 年 7 月正式推行綠建材標章制度,以建材生命週期為主軸,提出「健康、生態、高性能、再生」四大方向。舉例來說,為確保室內環境品質,建材必須符合低逸散、低污染、低臭氣等條件;為了防溫室效應的影響,須使用本土材料以節省資源和能源;使用高性能與再生建材,不僅要經久耐用、具高度隔熱和防音等特性,也強調材料本身的再利用性。


在台江國家公園內,綠建材的應用是其獲得 EEWH 認證的重要部分。其不僅在設計結構上體現了生態理念,更在材料選擇上延續了對環境的關懷。園區步道以當地的蚵殼磚鋪設,並利用蚵殼作為建築格柵的填充材料,為鳥類和小生物營造棲息空間,讓「蚵殼磚」不再只是建材,而是與自然共生的橋樑。園區的內部裝修選用礦纖維天花板、矽酸鈣板、企口鋁板等符合綠建材標準的系統天花。牆面則粉刷乳膠漆,整體綠建材使用率為 52.8%。

被建築實體圍塑出的中庭廣場,牆面設計有蚵殼格柵。圖/內政部建築研究所

在日常節能方面,台江國家公園也做了相當細緻的設計。例如,引入樓板下的水面蒸散低溫外氣,屋頂下設置通風空氣層,高處設置排風窗讓熱空氣迅速排出,廊道還配備自動控制的微噴霧系統來降溫。屋頂採用蚵殼與漂流木創造生態棲地,創造空氣層及通風窗引入水面低溫外企,如此一來就能改善事內外氣溫及熱空氣的通風對流,不僅提升了隔熱效果,減少空調需求,讓建築如同「與海共舞」,在減廢與健康方面皆表現優異,展示出綠建築在地化的無限可能。

-----廣告,請繼續往下閱讀-----
島式建築群分割後所形成的巷道與水道。圖/內政部建築研究所

在綠建材的部分,另外補充獲選為 2023 年優良綠建築的臺南市立九份子國民中小學新建工程,其採用生產過程中二氧化碳排放量較低的建材,比方提高高爐水泥(具高強度、耐久、緻密等特性,重點是發熱量低)的量,並使用能提高混凝土晚期抗壓性、降低混凝土成本與建物碳足跡的「爐石粉」,還用再生透水磚做人行道鋪面。

2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所
2023 年優良綠建築的臺南市立九份子國民中小學。圖/內政部建築研究所

同樣入選 2023 年綠建築的還有雲林豐泰文教基金會的綠園區,首先,他們捨棄金屬建材,讓高爐水泥使用率達 100%。別具心意的是,他們也將施工開挖的土方做回填,將有高地差的荒地恢復成平坦綠地,本來還有點「工業風」的房舍告別荒蕪,無痛轉綠。

雲林豐泰文教基金會的綠園區。圖/內政部建築研究所

等等,這樣看來建築夠不夠綠的命運,似乎在建材選擇跟設計環節就決定了,是這樣嗎?當然不是,建築是活的,需要持續管理–有智慧的管理。

第三招:智慧管理與科技應用

我們對生態的友善性與資源運用的效率,除了從建築設計與建材的使用等角度介入,也須適度融入「智慧建築」(intelligent buildings)的概念,即運用資通訊科技來提升建築物效能、舒適度與安全性,使空間更人性化。像是透過建築物佈建感測器,用於蒐集環境資料和使用行為,並作為空調、照明等設備、設施運轉操作之重要參考。

-----廣告,請繼續往下閱讀-----

為了推動建築與資通訊產業的整合,內政部建築研究所於 2004 年建立了「智慧建築標章」制度,為消費者提供判斷建築物是否善用資通訊感知技術的標準。評估指標經多次修訂,目前是以「基礎設施、維運管理、安全防災、節能管理、健康舒適、智慧創新」等六大項指標作為評估基準。
以節能管理指標為例,為了掌握建築物生命週期中的能耗,需透過系統設備和技術的主動控制來達成低耗與節能的目標,評估重點包含設備效率、節能技術和能源管理三大面向。在健康舒適方面,則在空間整體環境、光環境、溫熱環境、空氣品質、水資源等物理環境,以及健康管理系統和便利服務上進行評估。

樹林藝文綜合大樓在設計與施工過程中,充分展現智慧建築應用綜合佈線、資訊通信、系統整合、設施管理、安全防災、節能管理、健康舒適及智慧創新 8 大指標先進技術,來達成兼顧環保和永續發展的理念,也是利用建築資訊模型(BIM)技術打造的指標性建築,受到國際矚目。

樹林藝文綜合大樓。圖/內政部建築研究所「111年優良智慧建築專輯」(新北市政府提供)

在興建階段,為了保留基地內 4 棵原有老樹,團隊透過測量儀器對老樹外觀進行精細掃描,並將大小等比例匯入 BIM 模型中,讓建築師能清晰掌握樹木與建築物之間的距離,確保施工過程不影響樹木健康。此外,在大樓啟用後,BIM 技術被運用於「電子維護管理系統」,透過 3D 建築資訊模型,提供大樓內設備位置及履歷資料的即時讀取。系統可進行設備的監測和維護,包括保養計畫、異常修繕及耗材管理,讓整棟大樓的全生命週期狀況都能得到妥善管理。

智慧建築導入 BIM 技術的應用,從建造設計擴展至施工和日常管理,使建築生命周期的管理更加智慧化。以 FM 系統 ( Facility Management,簡稱 FM ) 為例,該系統可在雲端進行遠端控制,根據會議室的使用時段靈活調節空調風門,會議期間開啟通往會議室的風門以加強換氣,而非使用時段則可根據二氧化碳濃度調整外氣空調箱的運轉頻率,保持低頻運作,實現節能效果。透過智慧管理提升了節能效益、建築物的維護效率和公共安全管理。

-----廣告,請繼續往下閱讀-----

總結

綠建築、綠建材與智慧建築這三大標章共同構建了邁向淨零碳排、居住健康和環境永續的基礎。綠建築標章強調設計與施工的生態友善與節能表現,從源頭減少碳足跡;綠建材標章則確保建材從生產到廢棄的全生命週期中對環境影響最小,並保障居民的健康;智慧建築標章運用科技應用,實現能源的高效管理和室內環境的精準調控,增強了居住的舒適性與安全性。這些標章的綜合應用,讓建築不僅是滿足基本居住需求,更成為實現淨零、促進健康和支持永續的具體實踐。

建築物於魚塭之上,採高腳屋的構造形式,尊重自然地貌。圖/內政部建築研究所

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
瑞德西韋治療 COVID-19 有效嗎?來看看兩個初步研究結果
miss9_96
・2020/04/29 ・3173字 ・閱讀時間約 6 分鐘 ・SR值 575 ・九年級

最受矚目的瑞德西韋,臨床試驗如何進行?

多國研究團隊於 4 月 10 日發佈了對於瑞德西韋(Remdesivir)初步療效的結果。初步顯示,使用瑞德西韋(Remdesivir)治療 53 名罹患新型冠狀病毒之疾病(COVID-19)的重症病人,有 36 例(約 68%)好轉。 1

瑞德西韋的臨床試驗設計:觀察疾病的變化,藉此判斷瑞德西韋的療效。

  1. 研究限制:僅有實驗組(即提供 Remdesivir),缺少對照組(不給藥)。
  2. 研究人數:53 名重症患者
  3. 療效判定:以供應氧氣的狀態,區分疾病嚴重程度。
  4. 嚴重程度分為 6 種等級
    • 等級1:不須住院/出院(discharged)
    • 等級2:住院,無須給氧(not requiring supplemental oxygen)
    • 等級3:住院,低流量給氧(low-flow oxygen)
    • 等級4:住院,非侵入式給氧(noninvasive mechanical ventilation)
    • 等級5:住院,侵入式給氧(invasive mechanical ventilation, ECMO)
    • 等級6:死亡(Death)

治療前患者的狀態

狀態/級別 等級 1 等級 2 等級 3 等級 4 等級 5 等級 6
住院與否 住院 住院 住院 住院 死亡
治療措施 無須給氧 低流量給氧 非侵入式給氧 侵入式給氧
人數(人) 0 2 10 7 34 0

瑞德西韋(Remdesivir)的臨床試驗結果

本研究中的 53 人、治療 18 天,有 36 人好轉(68%),若拉長觀察至 28 天,則好轉比例提升至 84 %。

而 7 例(13%)給藥後仍然死亡。32 位患者(60%)出現副作用,為肝酶升高(暗示肝臟損傷),腹瀉,皮膚出疹,腎功能不全和低血壓。

-----廣告,請繼續往下閱讀-----

治療後患者的狀態(追蹤 18 天)

狀態 嚴重程度級別/人數 治療前
等級 5 等級 4 等級 3 等級 2
34 人 7 人 10 人 2 人
死亡 治療後 等級 6 6 人(18%) 1 人(14%) 0 0
侵入式給氧 等級 5 9 人(26%) 1 人(14%) 0 0
非侵入式給氧 等級 4 3 人( 9%) 0 0 0
低流量給氧 等級 3 0 0 0 0
未額外給氧 等級 2 8 人(24%) 0 0 0
出院 等級 1 8 人(24%) 5 人(71%) 10 人(100%) 2 人(100%)
改善比例 19 人(56%) 5 人(71%) 10 人(100%) 2 人(100%)

由上表知,34 例嚴重等級 5 的患者(使用葉克膜,或侵入式給氧),總共有 19 人改善(8人出院、8人移除給氧裝置、3人改以非侵入式給氧)。無改善計 9 人,死亡 6 人。

與過往的紀錄比較,如:武漢市住院且接受侵入式給氧的 67 例患者,其死亡率為 66%(44 例死亡)。相較於本研究的瑞德西韋治療,約 13% 的死亡率而言,瑞德西韋似乎展現了治療潛力。

療效比較:越年輕、症狀越輕微越有效

再以「侵入式給氧」和「非侵入式給氧」分組,發現「非侵入式給氧」組好轉速度較快。而以年齡分組,可發現越年輕、好轉的更快。因此可知,即使給予瑞德西韋,年長患者仍有較高的風險。

-----廣告,請繼續往下閱讀-----

初步結果中,有 84% 重症患者好轉,似乎瑞德西韋就是人類期待的真.勇者。但再次說明,此非最終結果,我們仍須保持冷靜。

上圖:以給氧的支持程度分組,觀察患者好轉的速度。From: 參考文獻1

以年齡分組,觀察患者好轉的程度。From: 參考文獻1

使用瑞德西韋在受感染的猴子上,有療效嗎?

美國國家衛生院在 4/17 發佈新聞,說明讓猴子感染新型冠狀病毒後,用瑞德西韋治療,展現了療效2,3

-----廣告,請繼續往下閱讀-----

瑞德西韋的猴子試驗設計:觀察猴子肺部病毒量、X 光、犧牲後肺臟狀況,發現瑞德西韋對治療新型冠狀病毒疾病有幫助

  • 研究限制:尚未通過同儕審核,為預先公佈
  • 研究數量:12 隻猴子,6 隻給藥(實驗組)、6隻不給藥(對照組)
  • 實驗設計:猴子感染新型冠狀病毒(SARS-CoV-2),感染 12 小時後開始給藥。靜脈注射瑞德西韋,每日給藥。觀察七天後犧牲動物。
實驗組(給藥) 對照組(不給藥) 總計
數量 6 6 12

瑞德西韋的猴子試驗結果

在首次治療 12 小時(感染後第 1 天)後,兩組病猴的支氣管沖洗液裡,其病毒RNA 量無差異。但瑞德西韋組的支氣管沖洗液,檢體的病毒感染力降低了約 100 倍,且第 3 天時,用藥組就再也沒有活病毒了(6 隻對照組病猴,仍有 4 隻驗出活病毒)。兩組的病毒 RNA 量沒有差異,但給藥組的病毒感染力較弱,顯示瑞德西韋可能阻礙了病毒的繁殖,讓它們無法產出活的下一代 註1

另一個值得注意的是,儘管下呼吸道的活病毒減少,但用藥組的上呼吸道或直腸的病毒 RNA 量、感染力均未降低。研究團隊認為,此現象可能是藥物在體內組織分佈濃度的差異,可考慮設計其他給藥途徑,提高藥物在上呼吸道的濃度,從而減少患者透過鼻水、口水傳播活病毒的風險。

感染後,兩組病猴的支氣管沖洗液裡的病毒量,和感染力檢測。
橫軸皆為感染後時間 (天),縱軸皆為病毒 RNA 量 (對數尺度) (copies/mL);紅圓圈為實驗組,藍方塊為對照組。圖/參考文獻3

而從 X 光判斷肺部浸潤或病變,也發現用藥組的肺部病變較少。

-----廣告,請繼續往下閱讀-----

兩組實驗動物的 X 光影像,紅圈處為肺部病變處,R 處為猴子的右側。
上圖為實驗組,下圖為對照組。圖/參考文獻3

治療第 7 天,犧牲動物。發現給藥組的「肺臟重量/體重比值」較低,顯示瑞德西韋改善了肺臟發炎(肺部發炎、充斥體液的現象越嚴重,肺臟重量越大)。

兩組實驗動物的肺臟重量/體重比值。圖/參考文獻3

而肺臟外觀和組織學裡,6 隻給藥組的病猴,有 1 隻觀察到肺部病變;未給藥組則是 6 隻病猴全都發現肺部病變。在定性和定量層面,都暗示了瑞德西韋似乎有減輕病毒攻擊肺臟的潛力。

-----廣告,請繼續往下閱讀-----

兩組實驗動物的肺臟外觀、組織學影像。
右上圖中的白色圓圈處是肺臟出現異樣的外觀。右中圖可觀察到肺組織間的空隙,因水腫和充斥發炎細胞而擴大。圖/參考文獻3

綜合兩篇研究,筆者觀點

  • 兩篇研究皆有設計限制,因此瑞德西韋究竟是否有療效,或僅對感染初期有效?仍有待討論。
  • 以人體試驗結果而言,瑞德西韋對重症患者可能有效。但並非靈丹妙藥,對年長者、呼吸能力非常衰弱的患者,仍有治療的極限。
  • 以恆河猴的研究而言,筆者認為,關注的重點是「接觸病毒 12 小時後,立即給藥」,因此「即早投藥,避免發展重症」,可能是使用瑞德西韋的關鍵。
  • 綜合兩篇研究,使用瑞德西韋治療最好的族群,可能是「感染初期的輕症患者」。而重症患者的治療,可能仍待科學界努力。

保持冷靜,繼續前進。Keep Calm and Carry On.

註釋

  1. 感染力的實驗,是將檢體和活細胞(Vero E6 cell)共同培養,觀察活細胞被殺死的程度。RNA量未降低,但病毒感染力降低的現象,推測的原因可參考〈出現症狀就有高病毒量?新型冠狀病毒感染者體內的病毒量如何變化?〉一文。

參考資料

  1. Jonathan Grein, M.D., Norio Ohmagari, M.D., Ph.D., Daniel Shin, M.D., George Diaz, M.D., Erika Asperges, M.D., Antonella Castagna, M.D., Torsten Feldt, M.D., Gary Green, M.D., Margaret L. Green, M.D., M.P.H., François-Xavier Lescure, M.D., Ph.D., Emanuele Nicastri, M.D., Rentaro Oda, M.D., Kikuo Yo, M.D., D.M.Sc., Eugenia Quiros-Roldan, M.D., Alex Studemeister, M.D., John Redinski, D.O., Seema Ahmed, M.D., Jorge Bernett, M.D., Daniel Chelliah, M.D., Danny Chen, M.D., Shingo Chihara, M.D., Stuart H. Cohen, M.D., Jennifer Cunningham, M.D., Antonella D’Arminio Monforte, M.D., Saad Ismail, M.D., Hideaki Kato, M.D., Giuseppe Lapadula, M.D., Erwan L’Her, M.D., Ph.D., Toshitaka Maeno, M.D., Sumit Majumder, M.D., Marco Massari, M.D., Marta Mora-Rillo, M.D., Yoshikazu Mutoh, M.D., Duc Nguyen, M.D., Pharm.D., Ewa Verweij, M.D., Alexander Zoufaly, M.D., Anu O. Osinusi, M.D., Adam DeZure, M.D., Yang Zhao, Ph.D., Lijie Zhong, Ph.D., Anand Chokkalingam, Ph.D., Emon Elboudwarej, Ph.D., Laura Telep, M.P.H., Leighann Timbs, B.A., Ilana Henne, M.S., Scott Sellers, Ph.D., Huyen Cao, M.D., Susanna K. Tan, M.D., Lucinda Winterbourne, B.A., Polly Desai, M.P.H., Robertino Mera, M.D., Ph.D., Anuj Gaggar, M.D., Ph.D., Robert P. Myers, M.D., Diana M. Brainard, M.D., Richard Childs, M.D., and Timothy Flanigan, M.D. (2020) Compassionate Use of Remdesivir for Patients with Severe Covid-19. New England Journal of Medicine. DOI: 10.1056/NEJMoa2007016
  2. Antiviral remdesivir prevents disease progression in monkeys with COVID-19. 2020/04/17. National Institutes of Health
  3. Brandi N. Williamson, Friederike Feldmann, Benjamin Schwarz, Kimberly Meade-White, Danielle P. Porter, Jonathan Schulz, Neeltje van Doremalen, Ian Leighton, Claude Kwe Yinda, Lizzette Pérez-Pérez, Atsushi Okumura, Jamie Lovaglio, Patrick W. Hanley, Greg Saturday, Catharine M. Bosio, Sarah Anzick, Kent Barbian, Tomas Cihlar, Craig Martens, Dana P. Scott, View ORCID ProfileVincent J. Munster, Emmie de Wit (2020) Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. BioRxiv. DOI: https://doi.org/10.1101/2020.04.15.043166
-----廣告,請繼續往下閱讀-----
miss9_96
170 篇文章 ・ 1076 位粉絲
蔣維倫。很喜歡貓貓。曾意外地收集到台、清、交三間學校的畢業證書。泛科學作家、科學月刊作家、故事作家、udn鳴人堂作家、前國衛院衛生福利政策研究學者。 商業邀稿:miss9ch@gmail.com 文章作品:http://pansci.asia/archives/author/miss9

0

0
0

文字

分享

0
0
0
葉太太的由來 —《鐵與血之歌》
PanSci_96
・2014/08/11 ・3673字 ・閱讀時間約 7 分鐘 ・SR值 519 ・六年級
相關標籤: 葉克膜 (3)

鐵與血之歌3同事茵茵是「體外循環師」,工作的職責就是在心臟手術時,負責操作俗稱「心肺機」(heart-lung machine)的「體外循環」(extra corporeal circulation,簡稱ECC)機器,讓心臟外科醫師在人為操作的環境下,使得病患心肺功能暫時停止,成為沒有搏動的「無血」(bloodless) 狀態,搶時間完成開心手術。

所以,心臟外科醫師的技巧好不好固然可以決定開心手術的成敗,但若是缺乏有經驗的「體外循環師」,再好的手術技巧亦可能是徒然,因為病患可能會死於體外循環的種種併發症,諸如流血不止、灌流不足造成的中風、肝腎衰竭,或者是氣栓病(air embolism)。

既然體外循環師如此重要,你一定也可以想像,在心臟外科醫師的值班過程裡,這些幕後無名英雄必定要跟著不分晝夜地奮鬥,尤其在緊急的開心手術之後,如果病患的心臟功能沒有辦法立即恢復,造成無法脫離體外循環機的情形時,心臟外科的醫師常得和體外循環師一起苦惱地看著病患與機器間拔河,想辦法幫助病人脫離它的援助。

除了上述的工作外,體外循環師有時還得負責一些額外的繁重業務,這也是茵茵在值班時,在某些狀況下要稱呼自己為「葉太太」的原因。

-----廣告,請繼續往下閱讀-----

不明就理的人會以為茵茵可能已經嫁人了,或是她有個貼心的「葉」姓男友會來醫院陪值班,但是上述的說法都不成立。而是茵茵在值班時,若加護病房裡有病患靠著「葉克膜」延續生命時,任何操作或突發狀況發生,身為體外循環師茵茵就得出面排除問題,隨時候命。

「葉太太」的自稱,是茵茵在值班時的自嘲!

也許你不知道「葉克膜」為何物,但是在新聞版面上,它一直是常客。光是臺大醫院在2014 年4 月17 日為止,經過了二十年的努力,已經替兩千個病患安裝上了「葉克膜」延續生命,不只在亞洲醫界排名第一,和全世界的醫院相比,亦是名列前茅。

當然,葉克膜在臺灣並非今日才威名遠播。早在2006 年,當時的臺中市長夫人邵曉鈴女士,為了高雄市市長選舉南下幫忙站臺,回程時卻在高速公路上發生了重大的車禍,她最後就是靠了葉克膜而保住一命;2014 年有意挑戰臺北市市長大位的臺大名醫柯文哲,就是號稱全世界最厲害的「葉克膜專家」,常常藉由他犀利的發言,讓普羅大眾認識被暱稱為「葉醫師」的「葉克膜」。

-----廣告,請繼續往下閱讀-----

葉克膜究竟是何方神聖呢?它的原名是”extra-corporeal membrane oxygenation”,醫療上的翻譯應該叫「體外膜氧合」,或是「體外膜肺」。但由於直譯常讓一般民眾不知所云,因此,在它剛引進臺灣時,亞東醫院院長朱樹勳醫師,利用了它的縮寫「E.C.M.O」,將它音譯為「葉克膜」,使得它比較親切,也容易朗朗上口(雖然聽到之後,還是不知道它是什麼東西)。

簡單來說,葉克膜是一種醫療急救設備,用以協助對當前的醫療方法皆無任何好效果的重度心、肺衰竭病患,進行體外呼吸循環的氧氣交換,此舉能暫時替代患者的心、肺功能,減輕其負擔,也能為醫療團隊爭取更多的時間,想出辦法救治該名病患。

只是三言兩語帶過,想必各位讀者已對葉克膜肅然起敬,覺得它是個了不起的機器—它的確也是如此,尤其隱藏其後的,說它代表了一部簡要的心臟外科發展史也不為過。

在心臟外科手術的演進中,最難的莫過於要找出方法,讓心臟暫時停止跳動,呈現靜止柔軟的狀態,以方便手術順利進行,而在這段時間,要能有機器取代它的功能,源源不斷提供給身體「充氧血」。

-----廣告,請繼續往下閱讀-----

早在十九世紀,科學家們就絞盡腦汁,要利用充氧血灌注離體的器官,以延續其活力。這些實驗看起來就令人毛骨悚然,不敢恭維。

在 1812 年,法國學者朱利安・尚・切薩羅・加盧瓦(Julien-Jean Cesar le Gallois)就做了有上述概念的實驗。他將一隻兔子砍頭,想用其它兔子動脈的充氧血灌注這顆離體的頭,卻因為沒有合適的「抗擬血劑」而失敗;接著在 1821 年,另外兩位科學家都門斯(Dumans)及普雷沃斯特(Prevost)找到了讓血液暫時不凝固的方法,於是到了1849 年,羅貝爾(Lobell)就利用此一方法,灌注了實驗動物離體的腎臟,讓它存活了一段時間。

而學者布朗・賽卡爾(Brown Sequard)有了上述的實驗激勵,在 1858 年模仿了加盧瓦的方法,利用加壓注射血液的方式,做了離體的狗頭實驗,第一次提出了缺氧五分鐘,會對腦組織造成不可逆的傷害,而且這個觀念還保留迄今。

但是利用活的動物血液,去灌注其它離體的器官是比較麻煩的方式,於是也有不少科學家想出替代辦法,就是將離體的血液,直接變成充氧血,做為灌注實驗器官的來源,這種製造充氧血的工具可稱之為「氧合器」(oxygenator),也可說是「人體肺臟」的雛型。

-----廣告,請繼續往下閱讀-----

最有名的例子是1882 年在德國同一實驗室的三位同事。

第一位是生理學家馮・施羅德(Von Schröder),他利用氧氣的氣泡,成功將密閉容器內的血液的氧氣飽和度提高,這就是後來「氣泡式氧合器」(bubble oxygenator)的原型;而另兩位施羅德的伙伴,弗雷(Frey)及格魯伯(Gruber),卻利用了不同的方法,將血液曝露在充滿氧氣的旋轉薄片上,達到了增加血中氧氣飽和度的目的,亦即是簡單型的「薄片氧合器」(film oxygenator)。

上述兩方的發明各有其擁護者,也提供了諸如學者霍克(Hooker)與理查斯(Richards)分別於 1910 年及 1915 年獲得靈感後,將它們修正與改進。不過此時仍有個大問題:那就是隨著實驗的規模更大與用血量的增加,原有的抗擬血方式已不合時宜,直到一位醫學系學生的發明出現,才使得問題迎刃而解。

傑・麥克萊(Jay Maclean)是一位在約翰霍普金斯大學實驗室做研究的學生,他在 1916 年的時候,藉由萃取狗的心肌細胞,成功找出一種可以阻抗血液凝固的物質,而這種物質也可以在狗的肝臟裡找到,因此被取名為「肝素」(heparin)」。自此,科學家才能順利朝設計真正的心肺機前進。

-----廣告,請繼續往下閱讀-----

在 1920 年到 1950 年之間,確實有幾個心肺機的雛型被設計出來,不過由於材料科學還不甚發達,僅流於實驗室使用的範疇。加上兩次世界大戰的蹂躪,歐洲大陸民生凋敝,所以在第二次世界大戰之後,幾乎所有的重要醫學研究,漸漸由美國開始主導,自然連「心肺機」也不例外。

雖然號稱有祕密使用於戰爭的先進技術被釋出,早期的心肺機在美國仍只是土法煉鋼的方式。抱著必死決心的外科醫師,屢次使病患曝露於「險境」中,看看底下有關醫學期刊的報告,就能了解其中的曲折。

在1951年到1955年間,有十八位病患在六個不同的醫學中心,以使用「心肺機」的方式做開心手術,結果只有一例存活,不過熟悉內情的醫師都知道,不敢見諸期刊的死亡人數,可能有好幾倍之多。

唯一接受開心手術並存活下來的病患,是由在傑佛遜醫學院(Jefferson Medical College)的約翰・吉本(John Gibbon)醫師完成的,其成功的故事也是滿傳奇的,可以在這裡和讀者分享一下。

-----廣告,請繼續往下閱讀-----

原來吉本醫師研究心肺機不是為了做開心手術,而是想解救「急性肺栓塞」(Acute Pulmonary Embolism)的病患。在做了十幾年的研究之後,他得到了 IBM 工程師的協助,設計了一部重達兩千磅,由複雜機械組合成的心肺機,更可怕的是, 它使用時必須要有三位工程師隨侍在側,避免有突發狀況時,造成手忙腳亂的情形。

吉本醫師利用了這臺心肺機替四位病患進行開心手術。第一位病患是個十五個月大的嬰兒,結果因為診斷錯誤,小嬰兒直接死在手術檯上;第二位病患是十八歲的女性,罹患了「先天性心房中膈缺損」(Ventricular Septal Defect,簡稱VSD),在1953年5月6日,吉本醫師替她實施修補手術,但由於抗凝血劑肝素使用不足,沒有多久心肺機出現血塊,於是他只得草草結束,還好手術是成功的,病人也存活下來。

至於第三位及第四位病患,都因為手術中的突發狀況而不幸死亡,讓吉本醫師覺得灰心喪志。一方面他覺得心臟內科術前診斷未臻成熟,會讓手術瀕於迷航的情況,陷病患於死亡風險;另一方面,他對心肺機用於開心手術有著嚴重的不信任感。所以,學者性格的他就此封刀,寧願往學術研究方向努力,不再投入開心手術。

但吉本醫師不是藏私的學者,他將十多年的研究成果,連同心肺機的設計分享給在馬約診所(Mayo Clinic)服務的約翰・科克林(John Kirklin) 醫師,讓他的團隊設計出更先進的機型—馬約・吉本式心肺機(Gibbon Heart-lung Bypass Machine),使得科克林醫師得以在它的幫助下,在1958 年替八位病患實施開心手術,而且竟然有一半的患者存活,降低了開心手術的困難度。

-----廣告,請繼續往下閱讀-----

在同一時期,其他美國醫學中心的團隊也陸續設計出成功的心肺機,像是在明尼蘇達大學醫學院(University of Minnesota Medical School)的團隊使用迪沃(DeWall)氧合器的機型,還有在克里夫蘭的團隊,以凱・克羅斯(Kay‧Cross)氧合器組出了新型的心肺機,慢慢在開心手術中累積經驗,讓心肺機逐漸在1970 年代之後,成為開心手術安全進行的重要輔助。

不過前述的心肺機都脫離不了氣泡式與薄片式的氧合器設計,常在開心手術後產生很多併發症,主要原因還是充氧過程造成血球破壞而溶血,導致病患在術後容易有出血不止或器官衰竭的情況發生。

但是在材料科學進步之下,科學家由人工腎臟的設計中找到靈感,把氧合器設計成今日眾多微細小管組合成的薄膜氧合器(membrane oxygenator),此舉除了增加氧氣在血液中交換的速率之外,也降低了血球的破壞,讓開心手術後的併發症大幅減少,使開心手術的技術得以突飛猛進。

故事說到這裡,我想讀者們心中會有個疑問,那葉克膜和心肺機有什麼關係呢?那必須要從1970 年代後兩個重要的醫學研究說起,這次病患又被當成了實驗品,在生死一線間掙扎。不同的結果,造成了日後「葉克膜」被賦予延續重病病患生命的角色,實在是當初始料未及的,且看我下回分解。

 

摘自泛科學2014八月選書《鐵與血之歌:一場場與死神搏鬥的醫學變革》,大邑文化出版。

-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1256 篇文章 ・ 2383 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。