0

0
0

文字

分享

0
0
0

歡場即戰場:那些有性卻無愛的動物們,一瞧自然界的性別戰爭!

曾 文宣
・2014/06/05 ・4568字 ・閱讀時間約 9 分鐘 ・SR值 527 ・七年級

說人類是一種被下半身支配的奇怪動物一點也不為過─我們的確是為數不多會透過性愛取樂,非單純為了繁殖而交配的物種之一。然而,對於某些動物而言,性的過程或許和「愉悅」這的詞相距甚遠。早先發表的兩篇論文告訴我們,在某些情形中,性更像是一場戰役。從「小雞雞擊劍」到「愛之飛鏢」,這兩篇文章提到的性形式並無美妙的體位,反而更像重口味的SM方式。

1897年,義大利動物學家Constantino Ribaga在雌性臭蟲(Cimex lectularius)腹部的中上區發現了一個奇怪的器官。Ribaga最初猜測這是一個類似於蟬發聲器的結構。但是當他進行解剖時卻發現,在這個器官的腹側細胞數中存放著大量的精子。(這個器官後來被稱做受精儲精器spermalege)

26sdgQ4NL1lQkj-YOnM25sq-1Gvhuoy_z3XW9P9sUFT0AQAAdgEAAEpQ
Ribaga在雌性臭蟲身上發現的受精儲精器官Photo credit: Nich Naylor

這些精子是如何到達那裡的呢?當時的科學家們對這個問題束手無策。在他們的猜想中,雄性臭蟲用大量的精子潮水般地淹向雌性臭蟲(我的愛如潮水…),雌性臭蟲透過這個器官消化多餘的精子,就像接受聘禮一樣。但這個理論並不可靠…

直到1913年,人們才觀察到雄性臭蟲是透過一個恐怖的、注射器針頭般的生殖器「刺穿」雌性臭蟲的這個器官,並在這個創口上與雌蟲進行交配。精子通過體腔徑直地游向卵巢,這種交配方式被稱為「創傷性授精」。

-----廣告,請繼續往下閱讀-----
PhCCn4eTpGm_5JoZSDlFF5nk0QEnwpze8ds4Rg1TxKS2AwAApQIAAEpQ_640x456
臭蟲的創傷性授精(上雌下雄),母蟲看起來好痛苦阿 Photo credit: Rickard Ignell

本文介紹的第一篇文獻來自《生物學回顧》(Biological Reviews。Rolanda Lange和來自德國杜賓根大學和英國謝菲爾德大學的同事共同發現,在很多無脊椎動物中都存在類似的破壞「性」活動。

作為雌雄同體生物,蝸牛有一種稱為「創傷性分泌物轉移」的性挑逗方式,透過近距離向潛在的交配對象發射一種被刺激神經的黏液包裹的「愛之飛鏢」(gypsobelum)來達成。可想而知,在這種求愛形式下沒有蝸牛希望被暗器射中─沒有人想要當M(好啦,對蝸牛來說就是不想要當女生)。某些情況下,被愛之飛鏢督中的一方在接受精子的同時也會反將一軍,再督回去正在督他的那個人(就是環形接龍的感覺拉)在另一種雌雄同體的生物扁蟲中,這種暴力性活動則以「陰莖擊劍」的形式呈現,雙方都試圖用陰莖捅傷對方,勝者透過創口強行授精。

K2-zJVvob3XhWr-YOPV8coZuibrOnpUEStjXtrl3F8qKAgAAzQEAAFBO_640x453
八種不同的有肺類(Pulmonata)蝸牛的愛之飛鏢(love duct),上突為側視圖;下圖為剖面圖面。 Image source: Joris M. Koene, Hinrich Schulenburg
dardo-del-amor-640x250
愛之飛鏢會在正式交配前射入對方的肉中,除了有極盡挑逗之意,另外飛鏢上的黏液具有某些激素,可提升精子品質,增加當爸爸的機會。 Image source: caracooles.com
Flatworm_sex
這兩位扁蟲先生(同時也是小姐)正掏出牠們的老二,準備拼個輸贏 Photo courtesy of Nico Michiels

為什麼一個雄性生物要如此殘暴地刺傷未來孩子他媽呢?今年1月發表在《昆蟲學年度回顧》(Annual Review of Entomology)的一篇文獻中,西澳大利亞博物館的Nik Tatarnic和同事們對節肢動物進行的深入研究。從演化的角度來看,他們把這種暴力行為解釋為雄性生物「改變局勢的戰術」。

要產生後代,交配當然是必不可少的過程,但是交配卻只是一個前奏。更加重要的是受精過程,而雌性生物顯然更希望控制受精的時間和地點還有孩子他爸是誰。在許多情況下,雌性在這件事上都做得非常成功,例如利用生殖道篩選出她比較偏愛的「客兄」。某些雌性動物能夠直接噴出或化學性過濾掉不受青睞的精子(這個現象稱為隱蔽雌性選擇 cryptic female choice),有時還可以完全關閉生殖器。雌性的受精調控在昆蟲中尤其普遍,雌蟲可以把精子存放在一個囊中,有時甚至可以存放好幾年,某天閒閒的時候拿出來一些來受精。

-----廣告,請繼續往下閱讀-----

另一方面,對雄性而言,起初他沒考慮這麼多,總之行有餘力就多播幾個種,簽越多中獎機率越大。但你想一想,如果你的素質就是沒有高富帥,那不就跟「左手只是輔助」一樣嗎。所以有些動物發揮了一點創意,為了確保雌性所受精的都是自己的精子,雄性不但要戰勝雌性的受精防禦系統,還要擊敗雌性的其他配偶。這或許就是一場沒有結局的「兩性軍備競賽」。

雄性擊敗對手的第一步,就是靠著花枝招展的求愛表演來給雌性留下好印象,這或許將幫助他們在受精階段時拔得頭籌。但是這樣的競爭方式實在是過於文明,雄性常常是更加卑劣的─他們演化出一些奇葩的行為來確保自己的精子可以獲勝,例如在交配後封閉雌性生殖道來阻止其他人再亂督,或是直接舀出前幾個對手的精液。我們雄性人類的生殖器就有人推斷具有「精液挖勺」般的第二功能。

m3m462qb-1394460823
蜻蜓是舀出對手精液的高手,陰莖呈現十分有利的舀狀 Image source: Jonathan Waage/Science

另一種辦法是正面強攻雌性的受精防禦系統。雄性果蠅在精子細胞中「加料」,利用化學物質促使雌性果蠅增加排卵量,儘管這個行為會導致雌果蠅免疫系統折損、壽命縮短。雌性小林姬鼠的陰道能分泌一種黏液,只有超強運動能力的精子才能穿透它。針對這一防禦措施,機智而富有團隊精神的雄性小林姬鼠精子擺出「長蛇陣」,前仆後繼地對黏液層發起高破壞力的群攻,無私地幫助它們中的一個幸運兒最終完成受精任務。

Y5ptX73H_jTUevZoPV4B69_7kyCbOOQqRv90uUQWecivAgAAtQAAAFBO_640x168
小林姬鼠的精子會用頂部的鉤狀結構勾住其他精子的鞭毛(箭頭處)或鉤子(星號處),從而形成列車式的精子陣型。 Image source:Harry Moore et al.(2002)Nature.

最後就是最惡劣的「奧步」,刺穿式的交配方式。透過直接地把精子混入雌性體液,雄性臭蟲繞開了雌性精心設計的卵子防禦佈局。就算雌性在這個過程中受到了傷害,產生的後代數目因此變少,但從研究的統計數據來看,最終雄性依然在這個過程中扮演受益者的角色─健康的雌性固然好,但是如果不能產生「我」的後代,那就是一無所有。透過穿透式交配,雄性既阻止了雌蟲對他精子的抗拒,也扼殺了雌性天生挑三揀四的超強能力。

-----廣告,請繼續往下閱讀-----
76g8kd3j-1394462564
臭蟲雄蟲的生殖器看起來真的想置雌蟲與死地 Image source: Cassandra Willyard

在雄性的角度上,這當然是一個成功的策略,以至於這種策略在動物界中不停地被重複演化出來。雄性吸口蟲(Myzostoma)的生殖器能分泌一種腐蝕性的酵素,從雌蟲的身上溶解出一個洞好讓他的精子得以進入;雄性巨烏賊能把其精液打包注入雌性的觸鬚中(儘管他們有時候會把「精液包」歪打正著地射到自己的腳裡XD);雄性捕潮蟲蛛則會撕咬雌性蜘蛛,然後通過針狀的生殖器刺札雌性蜘蛛,將精子從傷口注入雌蛛體內。

像寄椿這類昆蟲的雄性會胡亂地對雌性進行穿刺。在某些種類的動物中,不少雌性更上一層樓演化出減輕這樣傷害的構造,例如Ribaga所發現雌臭蟲腹部的「受精儲精器官」,透過提供方便的孔道導引雄蟲進入,以避免雄蟲不分青紅皂白的亂督。一些物種甚至棄置了本來的生殖系統,演化出一整套「副生殖系統」來引導精子進入卵巢,例如皮盲椿的雌蟲。

新圖片
皮盲椿的雌蟲發展一系列可導引雄蟲的「副生殖系統」 (d)圖為沒有發展副生殖系統的雌蟲,(e)到(h)圖顯示不同種類的雌蟲長出縫隙、孔洞、穴道等作為導引。 Image source: TATARNIC & CASSIS (2010) J . EVOL. BI O L . 23: 1321–1326

雄性臭蟲經常會不顧一切地撲向並刺扎一切的擋路者,甚至是其他物種的雌蟲,這常導致很多無辜血案發生,也在演化上促使這些倒楣的物種演化為其他的表型,避免被流彈強暴。雄性非洲臭蟲(Afrocimex constrictus)乾脆以暴制暴,雄蟲之間會用陰莖互戳,除了造成對方受傷外,也還是會把精子射進去落敗雄蟲體內,徹底地鄙視他。所以某些非洲臭蟲雄蟲又動了歪腦筋,不如讓演化把自己也加上了如雌蟲一般的「受精儲精器官」(沒錯,這就是偽娘)。

在這場生存博弈中,是沒有永遠的勝利者的─雄性可能會暫時占據上風,但是可想而知地雌性會馬上吹起反擊的號角。令人驚訝的是,一些非洲臭蟲的雌蟲逐步改變了其受精儲精器官的構造,改造地像那些偽娘身上的假「受精儲精器官」的樣式,以減少其他雄性的性騷擾事件。另外一些雌蟲則演化出消化精子的手段,並且把消化過後的能量拿來修補被穿刺的傷口,盡可能減輕傷害。

-----廣告,請繼續往下閱讀-----

如你所見,真愛的道路上總是一波三折。在這場兩性生殖鬥爭中,雄性和雌性都在不停地繞著圈子打轉,永遠無法分出勝負,這或許是大自然開的一個惡毒的玩笑。不過想一想,其實這跟大家熟悉的蝙蝠跟蛾來來回回的攻防戰是類似的,都是屬於共演化的範疇,我們學演化的人稱作性別擷抗式共演化(sexual antagonistic coevolution)。

故事到這邊已經結束了,不過讓我來想想,或許,我們應該慶幸生為人類,才得以與這些可怕的戰場性事絕緣──多一點浪漫,才是擊破這個魔咒的唯一手段。

y1pYNFn7_foKySZH2nAH7vWa9mf1qXcF8ngIWr1dEen3C551gJyWNV7N7fdSk_kpyDM
Image sourece: 電影《畫皮》截圖

PS. 最後我們一起來大聲地對無脊椎動物們說:「你們根本不懂甚麼叫做愛!!!」

 

參考資料:

-----廣告,請繼續往下閱讀-----
文章難易度
曾 文宣
22 篇文章 ・ 15 位粉絲
我是甩啊!畢業於臺灣師範大學生科系生態演化組|寫稿、審稿、審書被編輯們追殺是日常,經常到各學校或有關單位演講,寒暑假會客串帶小朋友到博物館學暴龍吼叫。癡迷鱷魚,守備領域從恐龍到哺乳動物,從陰莖到動物視覺,因此貴為「視覺系男孩」、或被稱呼「老二大大」。

0

3
2

文字

分享

0
3
2
精子從哪裡進入卵子會影響胚胎發育?——《生命之舞》
商周出版_96
・2023/10/20 ・2697字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

當我第一次驚喜瞥見打破對稱性的可能起源時,我驚訝地發現到這段歷程似乎很早就開始了,而這也為我運用綠色螢光蛋白追蹤細胞分化的研究鋪起了大道。卡羅琳娜與我想要進一步探索這個研究發現,所以我們提出了一個有關其終極源頭的簡單問題:精子進入卵子的位置是否對於胚胎一開始失去對稱性有任何影響?在線蟲與青蛙這類動物的胚胎中確實是這樣,但在哺乳動物(例如小鼠)的胚胎中也一樣嗎?

對稱藝術

當我們將生命的起源以動畫演繹出時,常常看到的影像就是精子設法進入沒有任何特徵的圓形卵子上,並融入其中。若情況是這樣的話,就很難看出精子進入卵子的位置是要如何對未來一切發育有所影響。在這個理想化的卵子上,任一處表面都與其他表面沒有任何差異。不過,當然還是存在有個參考指標,那個等同於「這邊是上面」的指標就是:極體。

圖/pexels

極體是從減數分裂的不對稱過程中所產生,細胞「骨架」在這個過程中會聚集以協助細胞進行分裂。這個細胞骨架稱為紡錘體,它會從細胞中心點往細胞邊緣移動,產生出一個大大的卵子與一個小小的極體。我們可以合理認為,紡錘體與染色體的移動可能打破了卵子的對稱性,也造成了擠壓極體的發育。許多人的確注意到極體最終總是會落在受精卵進行分裂的那個平面上。

理查.加德納這位我們之前見過的科學家,發現極體會附著在卵子上,它不只會確立受精卵首次分裂成兩個細胞的那個平面,它還會在幾天後確立出囊胚的對稱軸。這項發現讓我們有所啟發。這真的是因為卵子中的軸向資訊會一直持續到囊胚階段,還是有其他的因素會影響胚胎發育的對稱性?在我們進行科學研究的過程中,我與卡羅琳娜在當下這個時間點想要知道的是,精子進入卵子的位置是否也會影響胚胎發育,並提供第二個定位線索。

卵子上的座標——精子進入的位置會影響胚胎發育嗎?

就像在地表上某個地點跟北極的相對位置,可以定義所謂的經線,我與卡羅琳娜想要知道,精子進入卵子的位置是否也可以提供相對於極體位置的另一位置資訊。若真的是這樣,我們就能更精準確立進行首次分裂的那個平面。這感覺起來很合理,因為極體的形成與精子的進入位置都會重新排列之後會運用在卵子分裂上的細胞骨架。若不是這樣,分裂的那個平面與精子的進入位置之間就只有隨機的關係。

-----廣告,請繼續往下閱讀-----

以現代科技來說,我們很容易就可以解決這個問題。我們可以將這個過程拍成影片,來看看從精子進入卵子後到後續細胞進行分裂的幾天之間究竟發生了什麼事。但在我們開始研究的那個年代,不存在這樣的選項。我們無法拍攝小鼠胚胎從受精開始進入發育的影片,要等到幾天後胚胎進入囊胚階段才行。我們只能想辦法去標記精子進入的位置,以便可以追蹤它與受精卵在數小時後首次分裂的那個平面之間的關係。

圖/pexels

我一開始想著要用某種自然一點的東西,像是胚胎幹細胞這種非常微小的細胞,在卵子受精後馬上附著在精子進入點上,因為那時還可以看到進入點,但最後我有了更簡單的辦法:我們改用肉眼看不見的微小螢光珠。我們成功了,但我很後悔沒有給這些珠子取個像「微球體」這樣酷炫的科學名稱。當然,同領域人士不認同的不僅僅只是這些珠子要怎麼命名,但「珠子」這個名稱有種簡樸感,所以批評者會用這個名稱來貶低我們的研究,這就是我們得要付出的代價。

一開始很容易就能看到精子是從哪裡進入卵子的。它會留下一個名為受精錐(fertilization cone)的小小凸起。受精錐是由卵子的細胞骨架所建構,並由肌動蛋白的纖維所組成,它大約會凸起半個小時。這時間剛好足夠嵌入一至兩個珠子來標記位置。

我們將這些珠子浸到名為植物血凝素(phytohemagglutinin)的蛋白質混合物中,珠子就會具有黏性。植物血凝素常用於讓細胞聚集在一起。因為人的手不夠穩定,所以卡羅琳娜會以一隻機械手臂來拿取具有黏性的珠子,並將珠子放到卵子的表面上,同時還會以另一隻機械手臂牢牢固定住剛受精的卵子。

-----廣告,請繼續往下閱讀-----
圖/pexels

雖然珠子很小,直徑只有 0.0001 至 0.0002 公分,但在紫外線的照射下看起來大多了,亮綠色的點讓我們很容易就可以追蹤它的命運。觀察受精卵的發育時,我們發現珠子最終會來到細胞首次分裂所產生的兩個細胞之間的邊緣,或者是非常接近這個地方。

受精卵的分裂平面真的是由精子決定的嗎?

我們一直都在挑戰我們的思考與發現。上述情況有可能是任何落在卵子表面的珠子都會掉進分裂溝(cleavage furrow)中。所以為了確認,我們進行了一項對照實驗,卡羅琳娜將另一顆類似的珠子隨機放在卵子表面的其他地方。令我們欣慰的是,這顆珠子最終沒有掉進細胞分裂時所產生的分裂溝中。對我們而言,這表示精子進入卵子的位置以某種方式「被記住」了,並且成為受精卵偏好進行分裂的地點。換句話說,若我們是對的,受精卵之所以會在這個平面進行分裂,是因為偏好(biased)而非隨機(randomly)。

我們持續獲得了各種新發現。在胚胎從兩個細胞發育成四個細胞的階段中,帶有精子進入標記的那個細胞,會傾向於先進行分裂。這個細胞的命運之所以會改變,是因為精子帶入的物質滋養了它嗎?受精的三天後,精子進入標記會留置在囊胚兩部位之間的邊緣處,一個部位是含有會形成胚胎本體的胚胎部分,另一個則是胚外部分。

這表示了,兩細胞胚胎內的其中一個細胞較容易發育成胚胎,另一個則傾向於變成胚外部分。我們感到震驚。我們觀察影像好幾個小時,甚至好幾天。我一開始根本不敢相信這些發現,所以我請卡羅琳娜一再重複進行實驗,打破早期對稱性的證據怎麼這麼簡單,會不會太簡單了?

-----廣告,請繼續往下閱讀-----

可以理解地,對此感到懷疑的人士可能會吹毛求疵地表示,決定分裂平面的不是精子進入點,而是將珠子嵌在進入點的這個動作。為了驗證這個可能性,我們進行了許許多多的對照實驗,我之後會提到。我們已經確認過,將珠子放置在受精錐以外的任何一個地方,都不足以決定分裂的平面。但我們還有諸多其他事項要一而再、再而三的確認,因為我們必須很確定。

這張圖片的 alt 屬性值為空,它的檔案名稱為 0823--300.jpg

——本文摘自《生命之舞》,2023 年 9 月,商周出版,未經同意請勿轉載。

0

1
1

文字

分享

0
1
1
陸地上的首批動物是什麼?又是如何上岸的呢?——《直立猿與牠的奇葩家人》
大塊文化_96
・2023/08/19 ・3911字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

從志留紀末期到泥盆紀這段時間,地球的大陸成了首批陸生動物的家園。
狀似馬陸的呼氣蟲是最早的節肢動物先驅。
同時,蜘蛛與蠍子的早期親屬,也利用已在地球表面建立起來的植物與真菌生態系。
牠們在陸地上進食、繁殖與死亡,為陸地食物網增添了新的複雜性,也為後來從水邊冒險登陸的其他動物提供了獎勵。

動物隨著地球的演化踏上岸

隨著地球表面被植物染綠,動物跟隨植物的腳步上岸只是時間問題。

隨著地球表面被植物染綠,動物跟隨植物的腳步上岸只是時間問題。圖/envato

第一批維管束植物在地球大陸的年輕土壤中安家後不久,節肢動物踏進了這些矮樹叢。這些無畏探險家留下的最古老證據之一,是在蘇格蘭亞伯丁附近出土的一塊化石,名為呼氣蟲(Pneumodesmus)。

牠是一種多足類,與馬陸和蜈蚣屬於同一個群體。雖然原本將牠的年代界定在四億兩千三百萬年前的志留紀,但是近期研究顯示牠可能更年輕,生活在最早期的泥盆紀。

無論如何,到了泥盆紀,動物已經在陸地上站穩腳跟,而呼氣蟲更是最早在地球上行走的動物之一。

-----廣告,請繼續往下閱讀-----

發現目前唯一的呼氣蟲化石

目前出土的呼氣蟲化石只有一件,而且只是一塊一公分(○.四英寸)的身體碎片。

然而在這一小塊化石中,可以清楚看到很多隻腳,從一隻可識別的馬陸狀動物的六個體節長出來。

呼氣蟲的外觀可能和這種現代的馬陸很像。圖/大塊文化

更重要的是,呼吸結構的細節清楚可見:外骨骼角質層上有稱作氣門的孔。這些氣門讓氧氣與其他氣體進入並離開身體,這塊化石也是根據這項特徵而命名為呼氣蟲(Pneumodesmus 的「pneumo」來自希臘文的「呼吸」或「空氣」)。

這塊化石提供了第一個呼吸空氣的決定性證據,這是一種全新的演化適應,為數百萬微小的節肢動物探索者,以及追隨牠們的捕食者,開放了大陸的表面。

-----廣告,請繼續往下閱讀-----

最古老的多足類演化過程

在泥盆紀,呼氣蟲並非獨自生活在植被中。還有許多多足類和牠一起生活,最古老的多足類化石出現在志留紀與泥盆紀的岩層。

儘管不屬於任何現代的馬陸或蜈蚣群體,牠們是現存馬陸與蜈蚣的早期親戚,外表與馬陸和蜈蚣非常相似,具有分節的長條狀身體許多腳―馬陸每個體節的兩側各有兩隻腳,蜈蚣則只有一隻。

目前已知有最多腳的馬陸是全足顛峰馬陸(Illacme plenipes),擁有七百五十隻腳。現存的大多數馬陸都是食碎屑動物,以腐爛的植物為食。這些動物的化石紀錄很少,因此每一件化石對於我們瞭解生命從水裡浮現的過程都特別珍貴。

一隻有著 618 條腿的雌性 Illacme plenipes。圖/wikipedia

最早的多足類,可能是受到早期植物產生的新食物來源所吸引,才來到陸地上。

-----廣告,請繼續往下閱讀-----

最早的蛛形綱動物也充分利用了頭頂上的廣闊天地。蛛形綱動物包括蟎、蠍子、蜘蛛與盲蛛。牠們有八隻腳(不同於昆蟲的六隻腳),大多數仍生活在陸地上,儘管少數(如水蛛〔Argyroneta〕)又回到水中生活。

奧陶紀與志留紀的化石顯示,蛛形綱動物和其他節肢動物可能在更早的時候就偶爾會出現在陸地上,但是到了泥盆紀,有些已經完全過渡到能夠呼吸空氣的狀態。最早的蛛形綱動物是角怖蛛,這是一個已經滅絕的群體,看起來像是蜘蛛與蟎的雜交體。

蟎與擬蠍也很多,後來還有類似蜘蛛、具有吐絲管能製造絲的始蛛(Attercopus)。就像今天一樣,這些早期的蛛形綱動物大多是捕食者,可能以其他從水邊冒出來的節肢動物為食。

到泥盆紀末期,出現了第一批昆蟲,據估計,昆蟲構成今日地球上所有動物生命的 90%。最後,一些脊椎動物也過渡到陸地上,這或許是受到尋找新的食物來源所驅動。

-----廣告,請繼續往下閱讀-----

我們所知的陸地生命基礎終於到位了。自此之後,演化在這些群體中繼續發揮作用,創造出我們今日所見的驚人多樣與多量。

節肢動物牠們有什麼用處呢?

節肢動物通常被看作是害蟲,昆蟲尤其如此。

然而,牠們在整個地球的運行中扮演十分重要的角色。現在有超過一萬六千個多足類物種、六萬種蛛形綱動物,以及大約一千萬種的昆蟲。

牠們不僅在地球最早期生態系中舉足輕重,至今對自然界及人類的世界仍然非常重要。

-----廣告,請繼續往下閱讀-----

多足類處理森林中的落葉,成為營養循環中的一個重要齒輪。蜈蚣通常是捕食者,最大的蜈蚣甚至能吃小型哺乳動物與爬蟲類。

蛛形綱動物大多也是捕食性的,因此在調節獵物的族群數量方面,發揮重要的作用。這裡所指的包括昆蟲害蟲在內,這些害蟲數量不受控制,就會損害植物的族群數量。因此,不起眼的蜘蛛對人農業非常重要。

蟎與蜱可以寄生並傳染疾病,對人類及其他動物構成威脅,其他昆蟲也會造成類似的危險。然而,昆蟲的角色變化多端,其價值確實無法估量,包括生產蜂蜜,甚至以其勤奮的活動精明操控整個生態系,例如蜜蜂、螞蟻與白蟻。

許多節肢動物都有毒,有些對人類甚至具有致命性。然而,讓獵物喪失能力和死亡的毒液也可發揮其他用處;蜘蛛毒液已被用作替代的殺蟲劑,科學家也正在研究其醫藥用途,以及在新材料上的應用。

-----廣告,請繼續往下閱讀-----
蜘蛛毒液已被用作替代的殺蟲劑,科學家也正在研究其醫藥用途,以及在新材料上的應用。圖/envato

此外,節肢動物可以為包括彼此在內的無數動物提供食物來源。許多節肢動物是人類的食物,包括狼蛛、蠍子、蚱蜢、白蟻與象鼻蟲等。

目前,世界各地有多達二千零八十六種節肢動物被當成食物,而且至少從舊石器時代開始,牠們已經成為食物的來源。

有人認為,隨著人類人口不斷增加,昆蟲尤其可能在未來提供重要的蛋白質來源―這是資源密集型肉類養殖的替代方案。

我們很難想像一個沒有節肢動物的地球;事實上,這樣的地球可能無法存在。早在泥盆紀,世界就是節肢動物的天下。

-----廣告,請繼續往下閱讀-----

但牠們冒險去到的地方,捕食者也在不遠處。節肢動物的存在,為另一個從水中出現的動物群體提供了食物,而這個動物群體在人類的演化史上特別重要:這裡講的是四足動物。

——本文摘自《直立猿與牠的奇葩家人:47種影響地球生命史的關鍵生物》,2023 年 7 月,大塊文化,未經同意請勿轉載。

大塊文化_96
11 篇文章 ・ 13 位粉絲
由郝明義先生創辦於1996年,旗下擁有大辣出版、網路與書、image3 等品牌。出版領域除了涵括文學(fiction)與非文學(non-fiction)多重領域,尤其在圖像語言的領域長期耕耘不同類別出版品,不但出版幾米、蔡志忠、鄭問、李瑾倫、小莊、張妙如、徐玫怡等作品豐富的作品,得到讀者熱切的回應,更把這些作家的出版品推廣到國際市場,以及銷售影視版權、周邊產品的能力與經驗。

0

3
1

文字

分享

0
3
1
黔金絲猴物種起源,竟是近親雜交形成?
寒波_96
・2023/08/11 ・3267字 ・閱讀時間約 6 分鐘

新物種如何誕生,是演化最重要的主題之一,正如達爾文代表作的書名《物種起源》(The Origin of Species,也常譯作《物種源始》)。隨著基因體學帶來愈來愈多新知識,人們對物種的想法也不斷演變。

2023 年發表的一項研究調查多種金絲猴的基因組,意外發現有一種金絲猴,竟然直接由不同物種合體形成。這是靈長類的第一個案例,動物中也相當少見。

黔金絲猴。圖/Current status and conservation of the gray snub-nosed monkey Rhinopithecus brelichi (Colobinae) in Guizhou, China

五種金絲猴的親戚關係

金絲猴(snub-nosed monkey,學名 Rhinopithecus,也稱為仰鼻猴)主要住在中國西南部和東南亞,目前有五個物種。牠們的中文名字依照地名,英文名字則多半根據顏色。

古時候金絲猴的分布範圍更廣,像是台灣也曾經存在過,如今卻只剩下化石。現今五個物種分別為:

-----廣告,請繼續往下閱讀-----

*(雲南)滇金絲猴(black-white 黑白,學名 Rhinopithecus bieti

* 緬甸金絲猴(black 黑,學名 Rhinopithecus strykeri

*(四川)川金絲猴(golden 金,學名 Rhinopithecus roxellana

*(貴州)黔金絲猴(gray 灰,學名 Rhinopithecus brelichi

-----廣告,請繼續往下閱讀-----

* 越南金絲猴(Tonkin 越南東京,學名 Rhinopithecus avunculus

五種金絲猴。圖/參考資料1

比對五款吱吱的 DNA 差異,可知滇、緬甸金絲猴的親戚關係最近,川金絲猴則和黔金絲猴較近,但是黔金絲猴明顯介於兩者之間。黔金絲猴在自己獨特的變異之外,僅管基因組整體更接近川金絲猴,也有不少部分和滇、緬甸金絲猴相似。

見到不同物種之間共享血緣,最直覺的想法是,兩者的祖先發生過遺傳交流。但是詳細比對後,研究猿認為還有機率更高的可能性。

最滑順的劇本是,大約 197 萬年前,滇、緬甸金絲猴的共同祖先,和川金絲猴分家;又經過十幾萬年,約莫 187 萬年前,兩群金絲猴再度合體,形成一個全新的支系,也就是黔金絲猴的祖先;後來滇、緬甸金絲猴再衍生出兩個物種。

-----廣告,請繼續往下閱讀-----

這形成如今我們見到的狀態:黔金絲猴大約 75% 血緣來自川金絲猴,25% 源於滇、緬甸金絲猴的共同祖先。

四種金絲猴的親戚關係,與遺傳交流。圖/參考資料1

靈長類首見,雜交直接形成新物種

或許有人會疑惑,看起來都是共享 DNA 變異,上述說法和「不同物種之間,發生過遺傳交流」有何差別?

差別在於,所謂「不同物種之間」,指的是新物種已經誕生一段時間以後,彼此間又發生 DNA 交流,這個一點都不稀奇。例如 A、B 物種間發生關係,變成 A 的遺傳背景下,又有一點 B 血緣的物種。

但是黔金絲猴的狀況是,新物種之所以誕生,就是不同物種直接合體所致。例如 A、B 物種發生關係,衍生出差異更大,不是 A 也不是 B,足以認定為新物種的 C。

-----廣告,請繼續往下閱讀-----

假如重建的劇本為真,這就是首度在靈長類中觀察到,不同物種直接合體形成新物種的「hybrid speciation」。可以翻譯為「雜交種化」,不過「合體種化」似乎更直觀。

哥倫比亞猛獁,想像畫面。圖/wiki

經由兩個物種雜交,直接產生新物種的方式,植物較為常見,哺乳類動物極少。此前古代 DNA 研究認為,已經滅絕的美洲大象「哥倫比亞猛獁」(Columbian mammoth,學名 Mammuthus columbi)是不同猛獁象合體產生的新物種,但是證據沒那麼充分。

或許沒有那麼罕見?

直接雜交產生新物種,會很難想像嗎?仔細想想,金絲猴的案例可能沒那麼驚悚,或許還有某種程度的普遍性。

回到當初的情境,所謂「兩個物種」在當時其實只分家十萬年而已,差異應該仍很有限。是又累積 180 萬年的分歧到今日,才顯得親戚之間明顯有別。

-----廣告,請繼續往下閱讀-----

這邊 197 萬、187 萬、十萬年都是根據 DNA 變異的估計,實際數字未必如此。不過順序大概差不太多,就是首先分出兩群,很短的時間後又合體產生第三群,再經歷好幾倍的時間直到現在。

假如川金絲猴不幸滅團,缺乏樣本可供比較,那麼黔金絲猴與另外兩種近親,看起來就單純是 187 萬年前分家。

值得注意的是,我們能判斷演化樹上的不同分枝曾經合流,來自對樹形的比對。假如川金絲猴不幸滅團,這棵演化樹中我們只剩下三個物種的樣本,便會判斷黔金絲猴是跟另外兩種親戚分家而成,卻完全不會察覺有過合體種化。

這麼想來,雜交誕生新物種的現象,或許沒那麼罕見,只是時光抹去了許多痕跡。

血緣融合,猴毛也是奇美拉

另一有趣的發現是毛色演化。金絲猴現今四個物種,外表的毛色為一大差異。毛色與深色素有關,深色素愈多,毛色會顯得愈黑,相對則是愈淡,會呈現白毛、黃毛、金毛。

-----廣告,請繼續往下閱讀-----

身為不同演化支系合體的產物,黔金絲猴的毛色也混合兩邊的風格。頭和肩膀的淺色,類似川金絲猴;手腳的深色,則類似滇、緬甸金絲猴。

基因組合體以後,兼具兩群影響毛色的基因,形成混合的毛色搭配。圖/參考資料1

金絲猴毛的顏色深淺,取決於不同色素的相對比例。棕黑色素(pheomelanin)愈高,毛色愈淡;真黑素(eumelanin)愈高,毛色愈深。例如猴毛中含有大量棕黑色素、少量真黑素,便會呈現金毛。

很多基因有機會影響色素與毛色。分析得知金絲猴們有 5 個基因和毛色關係密切,黔金絲猴的基因組來自兩個支系,比對發現,三個基因 SLC45A2MYO7AELOVL4 繼承自川金絲猴,兩個基因 PAHAPC 則源於滇、緬甸金絲猴。

這些基因如何影響毛色,仍有許多不明朗之處。最明確知道的是,SLC45A2 基因表現降低,會使得棕黑色素產量上升,令顏色變淡。PAH 基因表現增加,可以讓顏色加深。

-----廣告,請繼續往下閱讀-----

同一隻金絲猴不同部位的細胞,同一批基因經由不同調控,就能控制毛色深淺。

這篇文章介紹的演化基因體學分析手法,對許多人大概不算容易,但是這些研究帶來的趣味,倒是不難體會。

延伸閱讀

參考資料

  1. Wu, H., Wang, Z., Zhang, Y., Frantz, L., Roos, C., Irwin, D. M., … & Yu, L. (2023). Hybrid origin of a primate, the gray snub-nosed monkey. Science, 380(6648), eabl4997.
  2. The Primate Genome Project unlocks hidden secrets of primate evolution
  3. Biggest ever study of primate genomes has surprises for humanity
  4. Hundreds of new primate genomes offer window into human health—and our past
  5. van der Valk, T., Pečnerová, P., Díez-del-Molino, D., Bergström, A., Oppenheimer, J., Hartmann, S., … & Dalén, L. (2021). Million-year-old DNA sheds light on the genomic history of mammoths. Nature, 591(7849), 265-269.

本文亦刊載於作者部落格《盲眼的尼安德塔石匠》暨其 facebook 同名專頁

寒波_96
193 篇文章 ・ 1018 位粉絲
生命科學碩士、文學與電影愛好者、戳樂黨員,主要興趣為演化,希望把好東西介紹給大家。部落格《盲眼的尼安德塔石器匠》、同名粉絲團《盲眼的尼安德塔石器匠》。