Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

巨量重現時代的知識生產

活躍星系核_96
・2014/02/07 ・2090字 ・閱讀時間約 4 分鐘 ・SR值 618 ・十年級

-----廣告,請繼續往下閱讀-----

文 / 陳紹慶(慈濟大學人類發展學系專任助理教授)

現代科學知識的生產流程是專業研究者定義有意義的研究問題,再運用的研究方法搜集與分析資料,寫成論文投稿經過同行審查,才能在專業期刊或出版管道正式發表。科學社群發展這套流程的初衷是尊重每位科學研究者都有維持科學知識結構性誠篤(structural integrity)的自律意識,提出的研究結果都經得起再現研究的考驗。然而即使到今天,資料造假與抄襲等違反學術倫理的事件依然在許多科學領域不斷發生,而無法用具體倫理規範約束,卻會損害結構性誠篤的問題,是通過同行的專業審查才出版的研究成果,卻不能被其它研究者以相同或接近的方式重現(replication)。就以心理學來說,先前曾有台灣的學界大老對此問題挑起公開批判,只是後續輿論焦點都擺在由此衍生的計畫經費補助不公、專業人士翻譯錯誤等爭議,最初的批判起點反而沒有激起更深刻的了解與思考。在此介紹去年底由維吉尼亞大學的心理學教授Brian Nosek領導多位心理學實驗室主持人進行的跨國性開放式研究專案,以及一些對此專案成果的回應。

Figure1.Colored

這項專案的實驗刺激及程式、原始實驗資料、還有分析程序,以及最後的論文初稿,完全公開在開放科學平台網站,上圖是所有實驗結果總結,讀者可至專案網頁,瀏覽或下載公開的研究資料。Nosek教授與幾位主要主持人,挑選已發表於專業心理學期刊的10篇論文,其中13項實驗。加入此專案的所有實驗室主持人,以邀請受試者到實驗室,或透過網路徵求自願者登錄指定網站進行實驗。為了各實驗室執行的實驗內容一致,且能快速完成,這13項實驗被選擇的考量是因為能透過網路進行,執行時間不長(每項實驗進行長度不超過2分鐘),設計簡單(只有一組實驗組與一組控制組),以及實驗效應的多樣性。這些實驗的測量變項是受試者的答對率、量表分數或同組內回答人數等等,因此每個實驗室完成一項實驗結果的分析,就轉換成效果量(effect size),評估每項實驗的原始研究結果與重現結果的差異,上圖中的每一點代表原始研究結果與每次重現結果的效果量,依所有重現結果的平均效果量大小由上而下排列。

對心理學研究有相當認識的讀者應能發現,13項實驗都是來自決策的認知心理學或相關的社會認知研究,例如Tversky與Kahneman建立學術權威的錨點效應(anchoring)與框架效應(framing)。但Nosek教授與其它共同主持人是根據容易執行的考量選擇進行這些實驗,並非每個實驗背後心理學理論有何關聯。所以即使重現研究的結果證實錨點效應與框架效應確實經得起考驗,再現的結果並不能告訴我們在這些議題上有什麼更新的知識。真正要注意的是所有原始研究公佈的統計結果都有達到顯著水準,轉換為標準化的效果量也都有顯示原始研究報告的實驗組與控制組有起碼差異,然而重現結果顯示排序最末的三項實驗重現結果平均效果量幾乎等於0,代表原始論文報告的效應並不能運用論文作者公開的方法做到起碼的重現。這些實驗都是經過同行審查的知識生產流程發表,如果同一個學術領域內所有研究者對自已發表的結果都有相同的自律意識,所有實驗的原始結果與再現結果應是一致,這個領域產生的知識才具備結構性誠篤。上圖所列的實驗原始出處,讀者可以從專案網頁公開的報告中了解更多背景資訊。

-----廣告,請繼續往下閱讀-----

2013年11月下旬專案結果初次發表後,我注意到專業科普作家Ed Young與Zwaan教授隔天的回應。Ed Young在去年底之前撰寫了三篇與此專案有關的文章,分別發表在個人部落格《Nature》期刊、與《Discovery Magazine》探討方向和近年來他持續追蹤的心理科學研究造假案例,剛好也是社會認知的研究有關。他肯定Nosek教授等人的做法,並提倡推廣開放科學研究,做為強化科學研究成果出版後審查機制(post-publication review)的概念。Zwaan教授在我之前的文章曾介紹他對重現研究的看法,原則上他也肯定出版後審查機制的重要性,他的回應提出更進一步的願景,就是專業的科學研究者,在提出原創性研究成果的時候,就能檢驗實驗結果的可重現性,讓同行研究者不必耗費更多的人力物力,來驗證或推翻一個概念不週全,但是有統計顯著的結果支持的主張。

為何有統計顯著的結果還要檢驗能否重現?因為一次實驗結果只是呈現多次實驗的一種可能性,如果最初的研究剛好是最極端的結果,其它研究者必須進行更多次實驗,或者招募更多受試者收集資料,才能說服所有人接受這項研究無法帶來有意義的知識。然而從最初的研究到後續研究的重現檢驗,這類研究發現完全不能帶來任何新的知識,我認為這是心理學等行為與社會科學被批評並非硬科學的主因。不過還是有許多經得起考驗的研究結果,不僅在相同或接近的研究條件下可被重現,在符合目的的範圍內改變研究設計或測量方法後,依然顯現同樣的結果,例如Stroop效應遺忘曲線。一個成熟的科學領域需要經得起考驗的研究案例支持,才能建立整體的結構性誠篤,說服大眾相信一個科學社群生產的知識。而Nosek教授等研究者的作法,示範一種願意促進科學知識進步的專業與業餘人士,理解與檢驗公開的科學研究成果有沒有帶來真正有意義的知識。

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
228 篇文章 ・ 316 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

6

20
2

文字

分享

6
20
2
阿茲海默風暴:通訊作者的辯駁與責任
胡中行_96
・2022/07/28 ・3231字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

「關於《科學》…控訴我的前同事 Sylvain Lesné 博士可能篡改影像,我不予置評,畢竟後者正在接受明尼蘇達大學的正式調查。然而,文中的科學陳述我有意見,因為針對我的學理描述並不正確。」[1] 2022 年 7 月 21 日,知名期刊《科學》的新聞專題,指出影響深遠的 2006 年阿茲海默症論文造假,向全球醫療圈投下震撼彈。[2] 隔天當事人之一,明尼蘇達大學的 Karen Hsiao Ashe 教授親上火線,在阿茲海默症新聞論壇 Alzforum 上,發出嚴正聲明,同時引發學界熱烈討論。[1]

《自然》期刊 2022 年 7 月 14 日的(黃色底線)編按,提到正在調查遭質疑的圖像。
圖/參考資料 3(Screenshot used as fair dealing for news report.)

《科學》期刊報導,去年 8 月,二名希望 Cassava Sciences 製藥公司股票下跌,以從中獲利的投資人,[註] 透過律師聘雇時年 37 歲的范德比大學神經科學家 Matthew Schrag 。他們付了美金 1 萬 8 千元,要求調查該公司的阿茲海默症實驗藥物 Simufilam 。執行任務的過程中, Schrag 發現一篇 2006 年刊登於《自然》期刊的論文,十分可疑。[2] 該研究的第一作者是 Sylvain Lesné ,而 Karen Hsiao Ashe 則是通訊作者。[3]

明尼蘇達大學 Karen Hsiao Ashe 教授。圖/University of Minnesota(Image used as fair dealing for news report.)

Karen H. Ashe 教授是中國裔美國人,本姓蕭,但冠上第二任丈夫的姓氏 Ashe 。[4] 母親為生化學家袁昭穎(Joyce C.Y. Yuan),曾任諾貝爾得主 Alexander Todd 實驗室的訪問學者;[5] 父親則是明尼蘇達大學航太工程榮譽教授蕭之㑺(Chih Chun Hsiao),於兩次國共內戰之間移民美國,後來曾受邀赴共產中國教書,並致力於中美交流。[4, 6, 7] 不枉其家學淵源, Ashe 教授 3 歲立志當科學家, 17 歲跳級進入哈佛大學二年級就讀, 27 歲時不僅已經唸完哈佛大學醫學系,還取得麻省理工的博士學位。她曾追隨諾貝爾得主 Stanley Prusiner 教授進行腦部研究;後來在自己領導的團隊中,和法國科學家 Sylvain Lesné 合作阿茲海默症相關主題,[4] 還因此獲得重要獎項。[2] 2012 年明尼蘇達的世紀老報《明星論壇》,在專訪中更描述她多才多藝,且具有謙遜的中國傳統美德。[4]

明尼蘇達大學 Sylvain Lesné 副教授。
圖/University of Minnesota
(Image used as fair dealing for news report.)

在 2006 年《自然》期刊關鍵性的論文中, Lesné 和 Ashe 表示注射到腦袋裡的 Aβ*56 ,會令年輕小鼠失智,並認為此發現將有助未來的阿茲海默症研究。[2, 3] Aβ*56 唸作「 amyloid beta star 56 」,是一種 β 澱粉類蛋白(amyloid beta,縮寫成Aβ)。[2]如何減少 Aβ 的累積,至今仍是阿茲海默症研究的方向之一;[2, 8, 9] 而 Cassava Sciences 的 Simufilam ,則是以預防 Aβ 與特定受器結合,來達此效果[10, 11]

范德比大學神經科學家 Matthew Schrag 。
圖/Vanderbilt University Medical Center
(Image used as fair dealing for news report.)

這次新聞事件的吹哨者 Matthew Schrag ,此前就曾公開批評美國食品藥管理局,不該核准另一款抗 Aβ 藥物;而他自己的研究也與 Cassava Sciences 的主張相悖,認定 Simufilam 對受試者有弊無利。當 Schrag 開始懷疑 Lesné 不只是在 2006 年《自然》刊載的影像上動手腳,《科學》期刊請來 George Perry 和 John Forsayeth 等頂尖專家協助鑑定。他們均認同 Schrag 的看法,也就是對 Lesné 發表於超過 70 篇論文中的上百張影像存疑。[2]

-----廣告,請繼續往下閱讀-----

這把燒毀阿茲海默症重要研究根基的熊熊烈火,一發不可收拾,向四面八方蔓延開來。美國國家衛生研究院、《自然》、《神經科學期刊》、《PLOS ONE》,以及與《科學》同屬美國科學促進會的《科學信號》等單位,通通重新審視 Lesné 參與的論文,而且其中部份已遭撤回。 Schrag 批評這些錯誤資訊,不單浪費國家衛生研究院為數可觀的贊助經費,還被引用數千次,「因此誤導了整個學界。」另外,他也揪出 34 篇由其他作者撰寫,跟 Cassava Sciences 直接相關的問題論文,並上報國家衛生研究院。[2] 因此,那斯達克股票交易所警告投資人, Cassava Sciences (股票代號: SAVA )的情況岌岌可危。如果未來美國食品藥物管理局不批准 Simufilam ,其股價或許會慘跌至個位數字。[12]

儘管事件主要聚焦在 Lesné 上,就學術倫理來說,身為 2006 年那篇論文的通訊作者, Ashe 教授也得為研究品質負責。[13-15]面對「誤導整個學界」的指控,她在 Alzforum 上以自己過去發表的研究,說明 Aβ 分為第一型與第二型。當年害小鼠失智的 Aβ*56 ,屬於第一型;而第二型則是在類澱粉蛋白斑塊(amyloid plaques)中找到的。「後者是藥物研發者屢戰屢敗的目標。」Ashe 教授寫道:「從來就沒有臨床試驗針對第一型,但那才是我在研究中點出的失智關聯。」[1]

阿茲海默新聞論壇 Alzforum 上,Karen H. Ashe 教授和其他學者,對此事件公開表態。
圖/參考資料1(Screenshot used as fair dealing for news report.)

在 Ashe 教授的辯駁下方,有幾名學者留言強調學界不該以偏概全,為了一則新聞報導,抹滅相關研究的重要性。[1] 此外,目前仍在進行中的 Simufilam 臨床試驗,也與 Aβ*56 無關。他們當初挑選受試者的條件,包含某種蛋白質跟 Aβ42 的比例(CSF tau/Aβ42 ratio ≥ 0.28);[16] 所發表的論文,也是在分析是否能抑制 Aβ42 的負面影響。[10]

這是本文未提及,但也是針對 Aβ 的研究。由左至右: Aβ 逐漸累積成塊,右上為接受免疫療法的(灰色)神經元,右下則缺乏治療。
圖/Esang M and Gupta M. (2021) ’Aducanumab as a Novel Treatment for Alzheimer’s Disease: A Decade of Hope, Controversies, and the Future.’ Cureus, 13, 8, e17591. (CC BY 4.0)

然而,就因為阿茲海默症的藥物臨床試驗,都不是和 Aβ*56 直接相關,[11, 16] Ashe 教授便責無旁貸了嗎?美國軍醫學校的 David Brody 博士在 Alzforum 的討論串中提到,他的團隊以前試圖重複 Aβ *56 的研究,花了約一整年的時間,卻徒勞無功。[11] 《科學》也提及不少實驗室,遇到一樣的情形。[2] 這些想要以經典為基石向前邁進的人,都被謊言所羈絆,而使得醫學的進展停滯不前。失敗的研究當然不太有論文發表,[2] 更甭論人體臨床試驗。害大家耗費精力走冤枉路,難道不是對阿茲海默症研究的嚴重傷害?

「你可以靠作弊發表論文,獲取學位,贏得補助」, Schrag 對《科學》的記者說:「但你不能用欺騙來治癒疾病」。[2] 諷刺的是,十年前《明星論壇》也記錄了 Ashe 教授類似的談話。她當時鼓勵人們要勇於挑戰她,因為錯誤的理論「不會迎來解藥」。[4]

-----廣告,請繼續往下閱讀-----

  

備註

根據美國第一證券的解釋,「賣空」(short selling)的投資人會將非己有的股票售出,計劃未來以較低的股價買回。[17] (筆者完全沒聽懂為何這樣能獲利,還請會玩股票的讀者不吝指教,謝謝。)

  1. Sylvain Lesné, Who Found Aβ*56, Accused of Image Manipulation (Alzforum, 2022)
  2. Charles Piller. (2022) ‘Blots On A Field?’ Science, 377, 6604.
  3. Lesné, S., Koh, M., Kotilinek, L. et al. (2006) ‘A specific amyloid-β protein assembly in the brain impairs memory’. Nature, 440, pp. 352–357.
  4. Dr. Karen Ashe: Stalking Alzheimer’s (Star Tribune, 2012)
  5. MCFGS ADVISORS (明州中国友好花园协会,accessed on 26 JUL 2022)
  6. CC Hsiao Memorial (The University of Minnesota Digital Conservancy, 2009)
  7. Changsha Garden History (明州中国友好花园协会,accessed on 26 JUL 2022)
  8. Multiple Dose Study of Aducanumab (BIIB037) (Recombinant, Fully Human Anti-Aβ IgG1 mAb) in Participants With Prodromal or Mild Alzheimer’s Disease (PRIME) (ClinicalTrials.gov, 2020)
  9. An Extension Study of V203-AD Study to Evaluate the Safety, Tolerability, Immunogenicity, and Efficacy of UB-311 (ClinicalTrials.gov, 2021)
  10. Wang HY, Bakshi K, Frankfurt M, et al. (2012) ‘Reducing Amyloid-Related Alzheimer’s Disease Pathogenesis by a Small Molecule Targeting Filamin A’. Journal of Neuroscience, 32, 29, pp. 9773-9784.
  11. Simufilam (Alzforum, 2022)
  12. 7 Meme Stocks Trading at a Massive Discount Right Now (Nasdaq, 2022)
  13. 想一想:共同作者是誰(臺灣學術倫理教育資源中心,accessed on 26 JUL 2022)
  14. 科技部對研究人員學術倫理規範(科技部,2017)
  15. Corresponding author defined (Springer, 2020)
  16. Simufilam (PTI-125), 100 mg, for Mild-to-moderate Alzheimer’s Disease Patients (ClinicalTrials.gov, 2021)
  17. 投資辭彙(FirstTrade,accessed on 28 JUL 2022)
-----廣告,請繼續往下閱讀-----
所有討論 6
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

1

3
2

文字

分享

1
3
2
超過 50% 的癌症研究實驗無法被重現?RPCB 耗時 8 年點出「再現性危機」
Yiting_96
・2022/01/14 ・2375字 ・閱讀時間約 4 分鐘

你聽過科學研究的「再現性」(reproducibility)嗎?如果一個科學研究結果具有再現性,代表它可以被另一個研究團隊,以同樣的控制條件、操作步驟進行重複測量,並獲得與前人相近的結果。這也代表著這項實驗是可以被驗證的,該研究的可信度也越高。

近年來,許多領域都開始重視科學研究的再現性問題,例如 2015 年由科學開放平台(Open Science Framework, OSF)發表在《科學》(Science)的一篇心理學實驗再現性的研究,就重複了三個重要的心理學期刊,包括 Psychological ScienceJournal of Personality and Social PsychologyJournal of Experimental Psychology: Learning, Memory, and Cognition 在 2008 年間發表的 100 個研究,結果顯示僅有 36%的研究具有統計顯著性[1]

而在 2016 年刊載於《自然》(Nature)的一篇報導中,團隊以線上問卷調查了 1576 位研究者,發現有超過 70% 的研究者,無法重現其他科學家曾經做過的研究結果;更有超過 50% 研究者無法重現「自己的」研究結果[2]

再現研究論文時,會遇到哪些困難?

同樣的科學研究再現性驗證也出現在生醫領域。一項由 RPCB(Reproducibility Project: Cancer Biology)團隊耗資 200 萬美元、歷時 8 年,嘗試複製各大具影響力的臨床前癌症研究,其結果於去年(2021)12 月發表於 eLife[3]

-----廣告,請繼續往下閱讀-----

在看這項研究結果之前,或許我們可以先了解 RPCB 究竟是何方神聖?RPCB 是一個由非營利組織「開放科學中心」(Center for Open Science)與學術平台「科學交流」(Science Exchange),在 2013 年開始合作執行的一項計畫。團隊期望能系統性地重現出 53 篇於 2010~2012 年間,刊登在知名期刊《自然》、《科學》、《細胞》(Cell)中的臨床前癌症相關研究。

cos_logo
非營利組織「開放科學中心」的標誌。圖/RPCB

即使一開始團隊預計重複 53 篇論文中共 193 項實驗,但最終能成功執行的僅有來自 23 篇論文裡的 50 個實驗,且仍使該計畫延宕了五年才完成。為什麼理想這麼豐滿,現實卻如此骨感?研究團隊在論文中提到了幾項實驗再現的困難與挑戰,例如:

  1. 許多原始論文缺少敘述統計(descriptive statistics)和推論統計(inferential statistics)的關鍵數據,像是效果量(effect size)、統計檢定力(power)等資訊,儘管團隊聯繫了原始論文的作者,仍有 68% 的數據無法取得。
  2. 在這 193 項實驗中,沒有一個具有足夠詳細的說明,令團隊能設計出重複的實驗步驟。這使得他們不得不轉向論文原始作者,以尋求更進一步的實驗建議,而在詢問的過程中,約 26% 作者給了極大的幫助,而有約 32% 作者對實驗完全沒幫助(或是無任何回應)。

癌症研究實驗的再現性僅 46%?

在缺乏合作、需要詳細檢查並調整實驗步驟的情況下,研究團隊平均需要花費 197 週的時間才能複製出一項實驗。此外,每複製一次實驗的成本高達 5 萬 3000 美元——大約是原先預估花費的兩倍,因此再現 193 項實驗的雄心壯志終究無法達成。

那麼這項耗時 8 年、斥資百萬的實驗再現性研究,給了我們什麼結果呢?

-----廣告,請繼續往下閱讀-----

根據團隊在 eLife 發布的第二篇論文顯示,這些臨床前癌症相關研究的實驗再現性僅有 46%,且平均的統計效果量也比原始論文低了 85%[4]

在這些被再現的實驗中,原始研究效果量大的往往更容易被複製,而動物實驗則是再現性最差的,這可能是因為在生物體內(in vivo)實驗的效果量,大多低於體外(in vitro)實驗。

白色實驗室禮服的女人
RPCB 團隊發現,再現一個實驗需要將近四年的時間,且成本是預想中的兩倍,無法完成 193 項實驗。圖/Pexels

只做一次的再現實驗,公信力足夠嗎?

發表在知名期刊上的臨床前癌症研究論文,其實驗再現性居然不到一半,這對於生物醫學相關領域的研究者來說,無疑是一項沉重的打擊。

不過僅憑一次的再現實驗,就評斷一項研究的公信力,對這些研究者來說公平嗎?其中一位研究無法被 RPCB 再現的學者就表示:「他無法確定這些一次性實驗有多少價值。」而那些被選中重現的實驗,當中也不乏已經開始進行第二期藥物臨床試驗的研究。同時也有研究者指出,RPCB 在複製實驗時使用了與原研究不同的細胞株(cell line),也並未在實驗中進行三重複確認最終結果[5]

有丝分裂, 减数分裂, 细胞, 细胞分裂, 人类, 癌症, 紧急情况, 血, 生物学, 科学, 药品, 健康
若能使用相同細胞株並進行三重複,應該能減少再現實驗的誤差。圖/Pixabay

針對這些指控,RPCB 說明這項計畫的目的,並非藉此斷言某些特定研究是無用,或需要被停止的,而是為了點出現今研究的再現性危機(reproducibility crisis),以期望找出相對應的解方。目前也有一些提升研究再現性的方法被提出,像是以盲性研究(blinding)進行體外實驗或動物實驗、採用更大的樣本量、更嚴謹的統計分析方法,以及研究計畫的預先註冊制度(preregistration)[註 1]

-----廣告,請繼續往下閱讀-----

雖然這項大型研究充滿著許多爭議,但也提醒了各領域的研究人員:對於自身研究的每個步驟、統計方法等,都應更加詳盡、仔細的記錄。除了能使後人有辦法針對已發表的內容,進行深入探討外,亦可以提升該實驗被再現的可能性,增加研究的公信力。

而看完文章的你,對於科學研究的再現性又有什麼看法呢?

註解

  • 註 1:研究計畫的預註冊是指研究者在進行科學研究之前,先對他提出的假設、方法、分析方式上傳到註冊機構,經由該單位的期刊編輯、同儕審查通過後,再進行研究的一種做法。
  1. Open Science Collaboration, Estimating the reproducibility of psychological science, Science, Vol 349, Issue 6251, 2015. https://www.science.org/doi/10.1126/science.aac4716
  2. Monya Baker, 1,500 scientists lift the lid on reproducibility, Nature, volume 533, pages452–454, 2016. https://www.nature.com/articles/533452a
  3. Timothy M Errington et al., Reproducibility in Cancer Biology: Challenges for assessing replicability in preclinical cancer biology, eLife, 2021. https://elifesciences.org/articles/67995
  4. Timothy M Errington et al.,Investigating the replicability of preclinical cancer biology, eLife, 2021. https://elifesciences.org/articles/71601
  5. Asher Mullard, Half of top cancer studies fail high-profile reproducibility effort, Nature, 09 December 2021. https://www.nature.com/articles/d41586-021-03691-0
-----廣告,請繼續往下閱讀-----
所有討論 1
Yiting_96
4 篇文章 ・ 1 位粉絲
在鳳梨田裡唸生科的人類,畢業後意外走上了科普路,目前還在緩慢前行中。喜歡有趣怪知識、諧音爛笑話,還有床。