Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

產品認證真的有那麼大的影響?

Y. M. Huang
・2013/11/05 ・1445字 ・閱讀時間約 3 分鐘 ・SR值 552 ・八年級

-----廣告,請繼續往下閱讀-----

1461992_760164957334416_45260532_n
(圖檔版權為GMP台灣食品發展協會所有)

最近打開新聞,就會發現又一家油品公司出了問題,食品安全成了大家相當關注的議題。這次新聞不斷重複強調,連GMP認證的東西都會出問題,那還有甚麼可以相信。有些聲音就開始檢討GMP的認證,並說明這個認證有哪些可以改善的部分。但民眾究竟怎麼想呢?民眾究竟怎麼做呢?

我們回顧了一些以台灣民眾為樣本的研究,探討認證對於消費意願的影響。多數的研究都採用問卷調查的方式,而且很喜歡了解民眾願意多花多少錢來買有認證的產品。這樣的做法雖然沒有不妥,但似乎不能真實反映了消費者的消費行為。例如針對漁產品HACCP安全認證的調查,結果顯示,消費者平均而言願意多花近40%的費用,來購買有漁產品安全認證的東西(1)。但另一個針對CAS有機蔬果的調查,則發現消費者僅願意多花6%來購買有機蔬菜(註記:研究中並沒有計算,是根據平均購物金額以及願意多花多少錢買有機蔬菜來推估的)(2)。

但是有機產品和非有機產品間存在甚麼樣的價差呢?根據一份調查顯示,有機食品和非有機的價差從1.56-3.50倍都有,在這份調查中價差最低的是米、價差最高的是蛋。如果比對上述的研究結果,消費者在真實情境中,大概都不會去選擇比較安全的產品,因為即使針對漁產品的價格容忍度較高,也無法接受有機商品的高價格。從有機產業的產值和農產的產值相比,也可以發現比例相當懸殊,根據行政院農委會的調查,101年度,有機農產品的產值為30億元,整體農產品的產值為477.9億元,也就是說有機農產品僅占了不到7%。

研究雖然證實了,消費者願意多花錢購買有認證的產品,但購買的意願和實際的價差,是有一段落差的!再者,有研究針對電器產品的部分去作調查,企圖釐清品牌及節能標章有甚麼不同的影響。結果發現,有品牌的產品,會讓消費者願意花比較多錢;標章本身也會讓消費者願意多花錢,但幅度不及品牌的影響(3)。用符合時事的術語來說,就是消費者較願意買聽過的品牌(例如:味全),而較不願意買沒品牌僅有標章的油品。

-----廣告,請繼續往下閱讀-----

最後,其實現有的標章非常的多,光針對有機農產品來說,就有17種不同的標章,如果再加上其他不同類型的標章,數量相當可觀,消費者有可能認識每一個標章嗎?標章的信賴度及滿意度也被證實,會影響消費的行為(4)。那台灣的消費者在面對這麼多不同的標章時,究竟是否都能夠了解標章的意涵?還是只要有甚麼看似標章的小圖示,就會覺得這東西是好的?

這些議題其實都是值得進一步探討的,但若僅採用問卷去作調查,難免會有很多的偏誤,以及很可能與現實脫節。最理想的做法應該是結合大型的賣場,去做一些真實場域的研究,也可以紀錄消費者在賣場瀏覽商品時,究竟注意商品的哪些細節,或許就能夠更真實的反應消費者如何受到產品認證的影響。

 

特別感謝「科普推廣」修課的同學幫忙找資料,以及分享閱讀後的心得。

參考文獻:
  1. 詹滿色與傅祖壇。(2007)。臺灣漁産品 HACCP 安全認證的價值評估-雙界二分假設市場評估法之應用。農業經濟叢刊,12(2),163-188。
  2. 黃錦煌、林正士、郭岑伊與李能慧。(2011)。金門農產品標章消費認知與市場區隔分析。行銷評論,8(3),315-330。
  3. 楊國樑、趙家民與謝佩諭。(2009)。環保標章品牌效應與產品價差之探究。臺北海洋技術學院學報,2(1),109-127。
  4. 刘艳秋、周星。(2008)。QS认证与消费者食品安全信任关系的实证研究。消费经济,6,76-80。
-----廣告,請繼續往下閱讀-----
文章難易度
Y. M. Huang
95 篇文章 ・ 4 位粉絲
輔大心理系副教授,主要研究領域:探討情緒與認知之間的關係、老化對認知功能的影響、以及如何在生活中落實認知心理學的研究成果。 部落格網址:認知與情緒新聞網 (http://cogemonews.com)

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

1

4
0

文字

分享

1
4
0
現金和消費券差在哪?普發到底好不好?
PanSci_96
・2023/04/10 ・3051字 ・閱讀時間約 6 分鐘

過去也有多次政府發錢刺激消費的作法,但他們發的不是錢,而是有使用限制的「消費券」。

既然可以發錢,為什麼之前要發消費券呢?這次又為什麼要發現金?

從經濟學的角度來看,過往的消費券到底是什麼,與這次發現金的使用情境有什麼不一樣?

什麼是消費劵

對消費者來說,消費券就是被限定用途的紙鈔或者是折價券;但從政府的角度,或從經濟學的角度來看,消費券並非這麼簡單。在了解消費券前,要先有兩個概念:「經濟活動循環」及「景氣循環」。

在最簡單的經濟行為流程裡,我們看的是「家計部門」與「廠商」,也就是消費者與生產者之間的互動。「家計部門」需要買各式各樣的產品維持生存或生活品質,「廠商」則提供這些產品,這兩者組成了「產品市場」;「廠商」為生產商品所需的勞動力,就由「家計部門」提供,形成了「勞動市場」或是「生產要素市場」。

-----廣告,請繼續往下閱讀-----

將上述概念再加入相反的資金流向,如:購買產品的消費支出、提供勞動力的薪水所得等,就可繪製成「經濟活動循環圖」。

經濟活動循環圖。圖/PanSci YouTube

而在一次的「景氣循環」中,會分別經歷擴張期與收縮期;根據國家發展研究院的定義,每個時期所持續時間的至少為 5 個月,走完一次循環則需至少 15 個月。

在擴張期中會先經歷探底復甦,接者是穩定成長,最後來到高峰繁榮期;在這之後就會進入收縮期,開始經濟衰退,直到觸底復甦進入新循環。

舉一個不遠的經濟衰退案例,那就是 2008 年全球金融危機。當時由於美國房地產市場崩潰,房價急劇下跌,許多人失去了房屋資產,造成負債問題;導致消費者信心下降、消費減少,進而使生產減少。此外,由於銀行與金融機構資產負債問題激增,使得貸款停止,造成資金不流動;這麼一來企業也必須減少生產,進而裁員、倒閉,失業率隨之攀升。 

-----廣告,請繼續往下閱讀-----
景氣循環週期。圖/PanSci YouTube

有了「經濟活動循環」和「景氣循環」概念,我們可以幫消費券下個定義了:就是透過增加家庭的消費支出,來復甦產品市場;通常在經濟衰退時使用。也就是說,消費券是政府發給我們的消費工具,希望再補點錢把廠商的庫存清光,增加消費來維持市場穩定,避免持續經濟衰退。

發消費券與現金的成效

那麼,直接發錢跟消費券的功能一樣嗎?發現金也會刺激消費,但消費券刺激的力道理論上會再強一些。

由於消費券在設計上會「排除基本必須開支」,這麼一來便會減少用於「消費替代」的機會,像是水電費、勞健保費、或是繳稅跟罰金,而消費券的各種優惠跟加碼活動,都激勵我們花超過原本支出的錢。另外,「限時用完」、「不找零」、「排除儲值跟預付類消費」都是消費券的關鍵設計,目的就是要在短時間內激發經濟流動性。

反過來說,發現金不像消費券,有明確的優惠活動可以刺激我們亂花錢,在沒有使用期限跟排除開支項目的情況下,這些錢還可以自由分配到每個月的日常支出裡;假如沒有多花一些錢,發的現金將不會幫助消費增長。

-----廣告,請繼續往下閱讀-----

新冠疫情影響下,美國在 2020 年普發現金:成人發 1200 美元、兒童 500 美元,年底再加碼 600 美元,2021 年又發 1400 美元。根據美國聯準會紐約分行研究,截至 2020 年 6 月底,民眾取得的現金補助中,有 36% 為儲蓄、35% 償還債務,僅 29% 用於消費,民眾甚至表示,在收到 2021 年的補助金後,會花更多錢去還債。

新冠疫情下,美國在 2020 年普發紓困現金。圖/Envato Elements

而日本則於 2021 年底,向全民普發 10 萬日圓的特別定額給付金,日本 Money Forward Lab、早稻田大學與澳洲昆士蘭大學的共同研究研究指出,給民眾的給付金中,只有 6% 到 27% 用於消費,其中非日常用品的支出沒有明顯改變。

那消費券的成效呢?根據經濟部對 2020 發放的振興三倍券評估成效,考量印製、宣傳與行政,包含發給我們的 2000 元,總成本為 510.5 億元,以領取率接近 100% 來計算,大約就是 2300 萬人去攤這 510.5 億,政府在每一個人身上花約 2220 元,而每人平均消費了 5785 元;等於政府花 1 元能換來 2.6 元的消費,是有效果的。

不過由於使用情境不同,不好將日美發放的現金與我們的振興券相比較。

-----廣告,請繼續往下閱讀-----

日美發放的是「紓困金」,目的是幫助人民度過難關;針對這些「紓困金」得用社會投資報酬率(SROI)來考慮,也就是衡量投入資源,所得到「非財務面」的回饋與報酬,例如社會安全、社會價值等。

搞笑諾貝爾經濟學獎

那這次台灣發現金的目的到底是什麼呢?假設是要振興經濟,應該不是個好方法。若用社會投資報酬率來看,不少人提出更該把要拿來發的 1800 億用於投資科學技術研究、大學經費或減免高等教育學費,而非普發 6000。

讓我們回顧 2022 年搞笑諾貝爾經濟學獎,研究團隊以每隔五年會獲得「政府資金」補助,並在模型裡設計了好幾種情境,除了把經費徹底平均分配的普發式外,還有只補助過去表現好的人的菁英式,一部分重點補助菁英,剩下再普發的折衷式,以及最後一個亂槍打鳥樂透式。每一式再加入補助金額高低變化,總共有 18 種方案。

延伸閱讀:
【2022 年搞笑諾貝爾經濟獎】不想努力的我,把運氣點滿就對了

透過這個人生遊戲模組,若以研究定義的成功率來看,折衷式的其中一種方案讓「高能力族群」的成功率從沒有補助的 32.05% ,一口氣提高到 94.82%,其結果最好,但也是所有方案中最貴的;相較之下,如果採取普發式的其中一種方案,成功率也可以達到 94.40%,政府花費還低了將近一半。

-----廣告,請繼續往下閱讀-----

若不只看成功率,而是看政府每花一塊錢能增加多少高能力族群成功率的效率來判斷,竟然還是普發式的方案結果最好,能用最少的花費,就讓成功率提升到 69.48%!表現最差的方案,都是菁英式,其中只把錢給過往表現前 10% 的極端菁英方案,效率只有最佳普發方案的 1/25。

研究者也提到,在真實世界中,折衷式方案一方面人人有獎,一方面也給表現較好的人鼓勵,可能產生激勵效果,讓所有人都更加努力,發揮更大的整體效果。

再回到一開始討論的,現在政府有一筆多出來的錢,而預期目標是讓人民的生活過得更好,這筆錢該直接給民眾,還是執行特定的菁英投資政策呢?若是按照搞諾經濟學獎,就是直接普發!(難道政府裡也有和我們一樣熱愛搞笑諾貝爾獎的好捧油?XD)

然而,不管是從經濟學基本原理、過往發現金跟消費券的效益評估,還是搞笑諾貝爾經濟學獎的人生遊戲模型,其實都無法替普發 6000 還稅於民的政策效果背書,一時半刻也很難看出效益。

-----廣告,請繼續往下閱讀-----

說到這裡,6000 元你打算怎麼花呢?

歡迎抖內!圖/GIPHY

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----
所有討論 1

1

2
1

文字

分享

1
2
1
來趟蕉心之旅?購買有產地履歷的香蕉好安心
鳥苷三磷酸 (PanSci Promo)_96
・2022/06/02 ・2160字 ・閱讀時間約 4 分鐘

本文由 家樂福食物轉型計畫 委託,泛科學企劃執行。

  • 文/陳彥諺

你喜歡吃香蕉嗎?香蕉是台灣人從小到大非常熟悉的水果,不僅方便攜帶、營養價值豐富,更符合現代的養生概念,很適合健身者、節食者。不過,你是從哪裡買到香蕉的呢?
你知道現在已經有專屬香蕉的「驗證」了嗎?

從以前到現在的台灣「蕉傲」

為什麼香蕉也有驗證?在談到驗證之前,首先讓我們聊聊過去。

作為常見的、隨手可得的水果,香蕉不只是台灣重要的水果產業之一,也是全球重要的經濟果樹及糧食作物。在巔峰時候,香蕉曾經是全球產量最多的水果,經濟價值非常高,僅次於蘋果、柑橘及葡萄,而糧食重要性也僅次於小麥、稻米和玉米。

而我們的台灣,曾經有「香蕉王國」美名,當時因爲產量大,加上風土及氣候適合栽種,台灣種植出來的香蕉特別好吃,價格和出口銷量的成績都非常亮眼。在香蕉的黃金年代中,台灣東西南北都有種植。

-----廣告,請繼續往下閱讀-----

只是,雖然台灣是香蕉王國,外銷成績乍看亮眼,但蕉農的辛苦卻很少人知道。行話裡有種說法是「種蕉如賭」,因為種植香蕉必須靠天吃飯,將蕉苗種下之後,接著蕉農便得對賭著天氣氣候環境市場狀況——如果自然條件不佳,會導致收成慘澹,不過,若整體銷量過剩,也將造成價格大跌。又如果非常好運,成功撐過上述的局面,最終在進入市場銷售前,還將面臨到中盤、行口(台語)的層層轉手。作為一個蕉農,有太多變數不能掌控,收入也因此起伏不定。

吃好蕉!守護蕉農大行動!

台灣香蕉,從過去的出口黃金年代,邁入今天的另一個美好時代。如今,香甜軟糯的台灣香蕉,仍然是我們生活中的重要存在。

今天的台灣,因為經歷了多次爆發的食安問題,消費者越來越注重食品安全。與此同時,農民們仍然有收入穩定的需求。要如何平衡這兩點呢?

家樂福認為,比起讓蕉農單打獨鬥,有另一個能兼顧農民與消費者雙方利益的方法,那就是以賣場的力量,支持小農。家樂福賣場內,只販售通過驗證的香蕉,藉由驗證,不僅可以做到產地溯源、驗證履歷,鼓勵且支持小農轉型,讓蕉農可以專注栽種,不需擔心後端銷售問題,同時,顧客也能藉由驗證得知透明資訊,進而安心選購。

四大金蕉:履歷蕉、有機蕉、金蕉伯、石虎香蕉

家樂福的香蕉驗證共有四大種。家樂福的「履歷蕉」,是從雲林屏東產區中挑選出來當季的、品質最優良的香蕉,並且全產品都需具備「產銷履歷(TAP)標章」,也需要遵循「家樂福農藥規範」,履歷蕉的每一根香蕉,都有其栽種來源用藥是否符合歐盟標準的紀錄,且只有在經過政府委託的第三方驗證機構定期抽檢合格後才能販售。

-----廣告,請繼續往下閱讀-----

家樂福 BIO 有機香蕉」則是來自全台最大的「有機驗證(Organic)」香蕉農園,位於屏東。「有機」的標章並不好取得,蕉農必須以全天然農法栽種,不施化肥不催生催熟,以人工除草代替除草劑,讓土壤是自然健康的狀態,健康的土壤所種植出來的香蕉,除了來源健康,口感香氣也特別好。

金蕉伯履歷香蕉」不是一個人,而是一群人!10 多年前,家樂福已開始在全台各地找尋志同道合的農友,終於在雲林遇到願意為食品安全環境永續共同努力的蕉農,後來更成為長期契作的對象。他們以友善農法耕種,呵護土地,種出好蕉。

石虎山蕉」則是南投中寮的一群農友。他們為了保育瀕臨絕種的台灣保育類動物石虎,不擴大農地面積、不使用化學肥料及除草劑,保留給石虎一塊乾淨安全友善的棲息地。

家樂福的 Act For Food 食物轉型計畫

家樂福與民生息息相關,通路可以單純只是販售點,也可以帶來改變、產生力量。因此,家樂福推動食物轉型計畫,希望建立起與農民、農民團體相互信賴的合作連結,藉由大量計畫性種植、保證收購降低平均成本,一來讓農民能獲得合理的農務所得,二來讓消費者能以合理價格買到安全的食物,三來,通路能成為穩定供貨的角色。

-----廣告,請繼續往下閱讀-----

買香蕉選擇家樂福香蕉驗證,不僅食得安心,更是以行動支持在地農民。家樂福相信每個人都值得最好的,以家樂福 AFF 食物轉型作為領航,一同創造友善農民、土地、消費者的共好模式。

家樂福以行動,開創對所有人與土地共生共好的食物轉型模式,也邀請大家一同參與支持。

-----廣告,請繼續往下閱讀-----
所有討論 1
鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia