0

0
0

文字

分享

0
0
0

《精準預測 The Signal and the Noise》-好賭徒如何思考

PanSci_96
・2013/09/25 ・2149字 ・閱讀時間約 4 分鐘 ・SR值 541 ・八年級

伏加瑞斯怎麼知道他下注湖人隊可以過關呢?他不知道。成功的賭徒—還有任何一種成功的預測人員—都不是用穩賺不賠的賭注、完全可靠的理論和極為精確的測量這樣的方式來考量未來。這些是笨蛋的幻覺,是他們過度自信的警報。成功的賭徒認為未來是一點一點的機率,像股票行情一樣,每進來一點新的資訊就上下跳動。他們對這些機率的計跟提供的可能性之間到達足夠的差異,他們就可能下注。

伏加瑞斯如何看待他對湖人隊的下注:

結果 機率 淨利
湖人隊贏得冠軍 25% +$520,000
湖人隊未贏得冠軍 75% -$80,000
預期利潤 +$70,000

 

例如,伏加瑞斯下注湖人隊的時候,拉斯維加斯的盤口說他們贏得NBA總冠軍的機率是百分之十三。伏加瑞斯不認為湖人隊有百分之百的機率,甚至不到百分之五十—但是他有信心,他們會比百分之十三高上不少。他認為也許比較可能是百分之二十五。如果伏加瑞斯的估計正確,理論上下注就可能有七萬美元的利潤。

然而,如果未來對預測人員來說是以機率的灰階存在,那麼現在的到來就是非黑即白。鮑勃理論上的七萬美元淨利包含有百分之二十五的機會贏得五十二萬美元,加上百分之七十五的機會輸掉八萬美元。長期來看,輸贏最後會打平:對一個好的預測人員來說,過去和未來兩者之間會比較相似,跟現在比較不像,因為這兩者都可以用長期的機率來表示。但這是個獨一無二的賭注。伏加瑞斯必須要有相當大的優勢(他認為莊家低估湖人隊的六種不同理由),頭腦還得相當好,才能做得到。

-----廣告,請繼續往下閱讀-----

既然伏加瑞斯為自己賺進了大筆現金,就能承擔得起比較小的優勢了。一般NBA有比賽的晚上,他可以下注三、四場。雖然從任何普通的標準來看,這些賭注都很龐大,但是跟他的實際財產比起來都算小,小到他似乎可以漠不在乎。我去拜訪的那晚,在其中一部平面螢幕上,猶他爵士隊把兩百一十八公分、動作不靈活的烏克蘭球員基里洛‧費森科(Kyrylo Fesenko)放進球員名單,這是明確的徵兆,顯示他們要放棄這場比賽,伏加瑞斯會因而輸掉三萬美元的賭注,但他眼睛連眨都沒眨一下。

圖8-2伏加瑞斯的大祕密就是他沒有大祕密。但是他有一千個小祕密,他把大量的資訊放在一起,一次加上一點。例如,他有套程式,用來模擬每場比賽的結果。但是除非他有非常明顯的優勢,或是有其他補充的資訊,不然他不會只倚靠程式。幾乎每場NBA比賽他都看—有些看即時播出,有些看錄影帶—發展出他自己的看法,判斷哪一隊有發揮天分,哪隊沒有。他經營基本上屬於他自己的球探服務,雇用助理把每個球員對每個動作的守備位置化成圖表,讓他得到連許多NBA球隊都沒有的優勢。他追蹤數十位NBA球員的推文(Twitter feed),仔細檢查每段一百四十個字元的小段情報,尋找相關性:球員推文說當晚他晚點才要去球隊,晚上可能就不會上場。他很注意教練在記者會說的話,還有他們用的代碼:例如如果教練說,他希望他的隊伍「學會進攻」或「打好基本的籃球」,可能是表示他想要把比賽的步調慢下來。

對大多數人來說,伏加瑞斯觀察的這些東西似乎是枝微末節。在某種意義上確實如此:明顯的大優勢會讓別的賭徒注意到,會反映在盤口上。所以他必須再探究得深入一點。

例如,二○○二年球季最後,伏加瑞斯注意到有克里夫蘭騎士隊的比賽總分特別有可能「過頭」。(運動賽事有兩種主要的賭法,一種賭的是比分差距,另一種賭的是總分的上下—兩隊得分的總和會是多少。)仔細看了幾場比賽之後,他很快就查明了原因:瑞奇‧戴維斯(Ricky Davis),該隊的控球後衛,是個惡名昭彰的自私球員,那年底就會成為自由球員,他正在盡全力提高他的統計數字,好讓自己成為更好賣的商品。這表示騎士隊進攻的速度會變得飛快,努力想盡可能創造最多的機會,以累積得分和助攻。這樣算不算打好籃球就沒那麼重要了:騎士隊已經遠離季後賽了。騎士隊的對手多半也打不進季後賽,也樂得給個人情,兩者之間就有了默契,放鬆防守,交換進攻,努力提高彼此的統計數字。有騎士隊參賽的比賽,在球季的最後三週突然間從每場比賽一百九十二分拉高到兩百零七分。賭分數會超過不是十拿九穩—沒有必然的事—但這樣就有豐厚的利益可圖了。

-----廣告,請繼續往下閱讀-----

回想起來,這樣的模式有時候似乎很明顯:如果他們除了提高自己的進攻數據以外沒什麼可以玩的了,那騎士隊的比賽當然會得分很高。但是賭徒如果對統計數字認識有限,沒有考慮造成這些數字的情境的話,就會漏掉他們。如果球隊連續兩場比賽得分都很高,甚至三、四場都如此,通常不代表什麼。的確,因為NBA的球季很長—三十隊,每隊打八十二場比賽—常常會發生這樣的比賽連續出現幾場的狀況。這些狀況大都是傻瓜賭注(suckers’ bet):發生這種狀況的原因純粹是跟機率有關。事實上,由於莊家通常也會注意到這些趨勢,在設定盤口的時候可能會矯枉過正,所以有時候反過來下注才聰明。

所以伏加瑞斯不只是在找模式。在任何一種資料豐富的環境中,要找到模式很容易;普通的賭徒就這樣做。關鍵在於這些模式代表的是訊號還是雜訊。

伏加瑞斯會不會對某場特定的比賽下注,雖然沒有什麼特別的關鍵,但卻有種特殊的思考過程幫助他控制他的決定。這種過程稱之為貝氏推理(Bayesian reasoning)。

 

摘自《精準預測:如何從巨量雜訊中,看出重要的訊息?》,由三采文化出版。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度
PanSci_96
1266 篇文章 ・ 2632 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
0

文字

分享

0
1
0
停工即停薪:如何證明你的時間值多少?車禍背後的認知 x 情緒 x 金錢 x 法律大混戰
鳥苷三磷酸 (PanSci Promo)_96
・2026/01/09 ・3351字 ・閱讀時間約 6 分鐘

本文與 PAMO車禍線上律師 合作,泛科學企劃執行

走在台灣的街頭,你是否發現馬路變得越來越「急躁」?滿街穿梭的外送員、分秒必爭的多元計程車,為了拚單量與獎金,每個人都在跟時間賽跑 。與此同時,拜經濟發展所賜,路上的豪車也變多了 。

這場關於速度與金錢的博弈,讓車禍不再只是一場意外,更是一場複雜的經濟算計。PAMO 車禍線上律師施尚宏律師在接受《思想實驗室 video podcast》訪談時指出,我們正處於一個交通生態的轉折點,當「把車當生財工具」的職業駕駛,撞上了「將車視為珍貴資產」的豪車車主,傳統的理賠邏輯往往會失靈 。

在「停工即停薪」(有跑才有錢,沒跑就沒收入)的零工經濟時代,如果運氣不好遇上車禍,我們該如何證明自己的時間價值?又該如何在保險無法覆蓋的灰色地帶中全身而退?

-----廣告,請繼續往下閱讀-----
如果運氣不好遇上車禍,我們該如何證明自己的時間價值?/ 圖片來源: Nano Banana

薪資證明的難題:零工經濟者的「隱形損失」

過去處理車禍理賠,邏輯相對單純:拿出公司的薪資單或扣繳憑單,計算這幾個月的平均薪資,就能算出因傷停工的「薪資損失」。

但在零工經濟時代,這套邏輯卡關了!施尚宏律師指出,許多外送員、自由接案者或是工地打工者,他們的收入往往是領現金,或者分散在多個不同的 App 平台中 。更麻煩的是,零工經濟的特性是「高度變動」,上個月可能拚了 7 萬,這個月休息可能只有 0 元,導致「平均收入」難以定義 。

這時候,律師的角色就不只是法條的背誦者,更像是一名「翻譯」。

施律師解釋「PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言。」 這包括將不同平台(如 Uber、台灣大車隊)的流水帳整合,或是找出過往的接單紀錄來證明當事人的「勞動能力」。即使當下沒有收入(例如學生開學期間),只要能證明過往的接單能力與紀錄,在談判桌上就有籌碼要求合理的「勞動力減損賠償 」。

-----廣告,請繼續往下閱讀-----
PAMO車禍線上律師的工作是把外送員口中零散的『跑單損失』,轉譯成法官或保險公司聽得懂的法律語言 / 圖片來源: Nano Banana

300 萬張罰單背後的僥倖:你的直覺,正在害死你

根據警政署統計,台灣交通違規的第一名常年是「違規停車」,一年可以開出約 300 萬張罰單 。這龐大的數字背後,藏著兩個台灣駕駛人最容易誤判的「直覺陷阱」。

陷阱 A:我在紅線違停,人還在車上,沒撞到也要負責? 許多人認為:「我人就在車上,車子也沒動,甚至是熄火狀態。結果一台機車為了閃避我,自己操作不當摔倒了,這關我什麼事?」

施律師警告,這是一個致命的陷阱。「人在車上」或「車子沒動」在法律上並不是免死金牌 。法律看重的是「因果關係」。只要你的違停行為阻礙了視線或壓縮了車道,導致後方車輛必須閃避而發生事故,你就可能必須背負民事賠償責任,甚至揹上「過失傷害」的刑責 。 

數據會說話: 台灣每年約有 700 件車禍是直接因違規停車導致的 。這 300 萬張罰單背後的僥倖心態,其巨大的代價可能是人命。

-----廣告,請繼續往下閱讀-----

陷阱 B:變換車道沒擦撞,對方自己嚇到摔車也算我的? 另一個常年霸榜的肇事原因是「變換車道不當」 。如果你切換車道時,後方騎士因為嚇到而摔車,但你感覺車身「沒震動、沒碰撞」,能不能直接開走?

答案是:絕對不行。

施律師強調,車禍不以「碰撞」為前提 。只要你的駕駛行為與對方的事故有因果關係,你若直接離開現場,在法律上就構成了「肇事逃逸」。這是一條公訴罪,後果遠比你想像的嚴重。正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。

正確的做法永遠是:停下來報警,釐清責任,並保留行車記錄器自保 。/ 圖片來源: Nano Banana

保險不夠賠?豪車時代的「超額算計」

另一個現代駕駛的惡夢,是撞到豪車。這不僅是因為修車費貴,更因為衍生出的「代步費用」驚人。

-----廣告,請繼續往下閱讀-----

施律師舉例,過去撞到車,只要把車修好就沒事。但現在如果撞到一台 BMW 320,車主可能會主張修車的 8 天期間,他需要租一台同等級的 BMW 320 來代步 。以一天租金 4000 元計算,光是代步費就多了 3 萬多塊 。這時候,一般人會發現「全險」竟然不夠用。為什麼?

因為保險公司承擔的是「合理的賠償責任」,他們有內部的數據庫,只願意賠償一般行情的修車費或代步費 。但對方車主可能不這麼想,為了拿到這筆額外的錢,對方可能會採取「以刑逼民」的策略:提告過失傷害,利用刑事訴訟的壓力(背上前科的恐懼),迫使你自掏腰包補足保險公司不願賠償的差額 。

這就是為什麼在全險之外,駕駛人仍需要懂得談判策略,或考慮尋求律師協助,在保險公司與對方的漫天喊價之間,找到一個停損點 。

談判桌的最佳姿態:「溫柔而堅定」最有效?

除了有單據的財損,車禍中最難談判的往往是「精神慰撫金」。施律師直言,這在法律上沒有公式,甚至有點像「開獎」,高度依賴法官的自由心證 。

-----廣告,請繼續往下閱讀-----

雖然保險公司內部有一套簡單的算法(例如醫療費用的 2 到 5 倍),但到了法院,法官會考量雙方的社會地位、傷勢嚴重程度 。在缺乏標準公式的情況下,正確的「態度」能幫您起到加分效果。

施律師建議,在談判桌上最好的姿態是「溫柔而堅定」。有些人會試圖「扮窮」或「裝兇」,這通常會有反效果。特別是面對看過無數案件的保險理賠員,裝兇只會讓對方心裡想著:「進了法院我保證你一毛都拿不到,準備看你笑話」。

相反地,如果你能客氣地溝通,但手中握有完整的接單紀錄、醫療單據,清楚知道自己的底線與權益,這種「堅定」反而能讓談判對手買單,甚至在證明不足的情況下(如外送員的開學期間收入),更願意採信你的主張 。

車禍不只是一場意外,它是認知、情緒、金錢與法律邏輯的總和 。

在這個交通環境日益複雜的時代,無論你是為了生計奔波的職業駕駛,還是天天上路的通勤族,光靠保險或許已經不夠。大部分的車禍其實都是小案子,可能只是賠償 2000 元的輕微擦撞,或是責任不明的糾紛。為了這點錢,要花幾萬塊請律師打官司絕對「不划算」。但當事人往往會因為資訊落差,恐懼於「會不會被告肇逃?」、「會不會留案底?」、「賠償多少才合理?」而整夜睡不著覺 。

-----廣告,請繼續往下閱讀-----

PAMO看準了這個「焦慮商機」, 推出了一種顛覆傳統的解決方案——「年費 1200 元的訂閱制法律服務 」。

這就像是「法律界的 Netflix」或「汽車強制險」的概念。PAMO 的核心邏輯不是「代打」,而是「賦能」。不同於傳統律師收費高昂,PAMO 提倡的是「大腦武裝」,當車禍發生時,線上律師團提供策略,教你怎麼做筆錄、怎麼蒐證、怎麼判斷對方開價合不合理等。

施律師表示,他們的目標是讓客戶在面對不確定的風險時,背後有個軍師,能安心地睡個好覺 。平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。

平時保留好收入證明、發生事故時懂得不亂說話、與各方談判時掌握對應策略 。 / 圖片來源: Nano Banana

從違停的陷阱到訂閱制的解方,我們正處於交通與法律的轉型期。未來,挑戰將更加嚴峻。

-----廣告,請繼續往下閱讀-----

當 AI 與自駕車(Level 4/5)真正上路,一旦發生事故,責任主體將從「駕駛人」轉向「車廠」或「演算法系統」 。屆時,誰該負責?怎麼舉證?

但在那天來臨之前,面對馬路上的豪車、零工騎士與法律陷阱,你選擇相信運氣,還是相信策略? 先「武裝好自己的大腦」,或許才是現代駕駛人最明智的保險。

PAMO車禍線上律師官網:https://pse.is/8juv6k 

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
預測市場?預測股票?如何讓預測有更高的準確率?——《超越直覺》
一起來
・2024/05/04 ・1635字 ・閱讀時間約 3 分鐘

我們發現在足球賽中,只要知道一個簡單的訊息(主隊過去的獲勝機率超過一半),預測力就會明顯好過隨便亂猜。如果再加上第二個簡單的訊息(勝負紀錄較佳的隊伍會略占優勢),可以再進一步提升預測力。除此之外,你可能還想收集其他訊息,像是四分衛最近的表現、球隊有沒有傷兵、明星跑衛的花邊新聞,但這些資訊對預測的幫助不大。換句話說,預測複雜系統這件事依循著「收益遞減定律」:第一個訊息很有幫助,但很快就找不到有幫助的其他訊息。

對於某些事件,我們當然會非常計較預測的準確性,像是投放線上廣告或投資高頻交易(HFT),可能一天內就要預測數百萬、數十億次,而且金額相當龐大。投入極大心力與費用、運用最精細的運算模型來開發複雜的預測方式,在那種情況下或許值得。但在其他商業領域,例如製作電影、出版書籍到發展新技術,只需要一年預測數十次、頂多數百次,而且這不過是整個決策過程中的一部分。這時,我們只要借助相對簡單的方式,就可以讓預測臻至完善。

預測時,不該只根據一人的意見就做決定——尤其是你自己的意見。雖然人們善於察覺與特定問題相關的因素,卻往往不會評估因素之間的相對重要性。譬如,預測電影的首映週末票房時,你可能會認為一些變項都是高度相關,例如製作費、宣傳費、上映廳數、試映會評價。沒錯。但我們要如何權衡「評價不優」與「額外行銷預算:一千萬美元」之間的比重?這沒有一定答案。同樣,在決定分配行銷預算的方法時,要如何判斷多少人會受到網路或雜誌廣告影響,又有多少人會從親朋好友那邊聽到產品訊息?我們也不清楚。唯一知道的是,這些因素都可能相關。

圖/envato

你可能會以為,精準判斷應該是專家的強項。但正如泰特洛克的試驗結果,專家在量化預測上的表現,其實跟普通人一樣糟糕,甚至可能更糟。然而,我們依賴專家之所以會成效不彰,不是因為專家的預測力跟一般人沒兩樣。問題在於,我們通常一次只會諮詢一位專家(否則何必找專家)。但我們應該要綜合多人的意見(無論是專家或非專家)再取平均值。至於要如何達成?這其實沒那麼重要。

-----廣告,請繼續往下閱讀-----

儘管預測市場有各種花俏的噱頭與技術,表現也比民調這類簡單方式好一點,但這種微小差異,還不如採用某種方式簡單綜合許多觀點再取平均。或者,我們也可以直接根據歷史數據,評估各項因素的相對重要性——這實際上就是統計模型在做的事。我必須再強調一次,雖然複雜模型可能會比簡單模型好一點,但兩者的差異小到幾乎沒有差別。到頭來,模型跟群眾所能達到的預測目的都一樣。第一,這兩種預測方式都要靠人為判斷,確認哪些因素與預測相關。第二,兩者皆需要估計、權衡那些因素的相對重要性。正如心理學家羅賓.道斯所言:「訣竅在於,找到要注意的變項,然後知道如何加入它們。」

只要一直使用這個訣竅,一段時間後,就會知道哪一些預測的失誤率較小,哪一些較大。舉例來說,當你要預測一個事件的結果,假如其他條件都相同,那越早做預測的失誤率就越大。不管你用什麼方法預測電影票房,在「剛開拍」時會比「上映前幾週」時要難得多。同樣,如果你想預測尚未上市的新產品銷量,那準確度可能不會高過預測已上市的產品。

你無法解決這個問題,唯一能做的只有:使用其中一種方式,或甚至結合幾種方式,就像我們研究預測市場時的方法,然後隨時觀察、記錄預測的表現。我在第 6 章開頭也提過,一般人通常不習慣追蹤自己的預測。我們做了大量預測,卻很少回頭檢視自己對了幾次。然而,留意並記錄預測成效或許才是最重要的事,唯有如此,你才能知道準確度是多少,進而知道自己預測的可信度。

——本文摘自《超越直覺》,2024 年 01 月,一起來出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

1
0

文字

分享

0
1
0
賭博與愛情公式:用數學擬定你的擇偶策略——《數盲、詐騙與偽科學》
大牌出版.出版大牌_96
・2024/01/06 ・2486字 ・閱讀時間約 5 分鐘

理解期望值,有助於分析賭場裡的大部分賭局,以及美國中西部和英國的嘉年華會中,常有人玩、但一般人比較不熟悉的賭法:骰子擲好運(chuck-a-luck)。

招攬人來玩「骰子擲好運」的說詞極具說服力:你從 1 到 6 挑一個號碼,莊家一次擲三顆骰子,如果三個骰子都擲出你挑的號碼,莊家付你 3 美元。要是三個骰子裡出現兩個你挑的號碼,莊家付你 2 美元。

假如三個骰子裡只出現一個你挑的號碼,莊家付你 1 美元。如果你挑的號碼一個也沒有出現,那你要付莊家 1 美元。賽局用三個不同的骰子,你有三次機會贏,而且,有時候你還不只贏 1 美元,最多也不過輸 1 美元。

我們可以套用名主持人瓊安.李維絲(Joan Rivers)的名言(按:她的名言是:「我們能聊一聊嗎?」),問一句:「我們能算一算嗎?」(如果你寧願不算,可以跳過這一節。)不管你選哪個號碼,贏的機率顯然都一樣。不過,為了讓計算更明確易懂,假設你永遠都選 4。骰子是獨立的,三個骰子都出現 4 點的機率是 1/6×1/6×1/6=1/216,你約有 1/216 的機率會贏得 3 美元。

-----廣告,請繼續往下閱讀-----

僅有兩個骰子出現 4 點的機率,會難算一點。但你可以使用第 1 章提到的二項機率分布,我會在這裡再導一遍。三個骰子中出現兩個 4,有三種彼此互斥的情況:X44、4X4 或 44X,其中 X 代表任何非 4 的點數。而第一種的機率是 5/6×1/6×1/6=5/216,第二種和第三種的結果也是這樣。三者相加,可得出三個骰子裡出現兩個 4 點的機率為 15/216,你有這樣的機率會贏得 2 美元。

圖/envato

同樣的,要算出三個骰子裡只出現一個 4 點的機率,也是要將事件分解成三種互斥的情況。得出 4XX 的機率為 1/6×5/6×5/6=25/216,得到 X4X 和 XX4 的機率亦同,三者相加,得出 75/216。這是三個骰子裡僅出現一個 4 點的機率,因此也是你贏得 1 美元的機率。

要計算擲三個骰子都沒有出現 4 點的機率,我們只要算出剩下的機率是多少即可。算法是用 1(或是100%)減去(1/216 +15/216 + 75/216),得出的答案是 125/216。所以,平均而言,你每玩 216 次骰子擲好運,就有 125 次要輸 1 美元。

這樣一來,就可以算出你贏的期望值($3×1/216)+($2×15/216)+($1×75/216)+(–$1×125/216)=$(–17/216)=–$0.08。平均來說,你每玩一次這個看起來很有吸引力的賭局,大概就要輸掉 8 美分。

-----廣告,請繼續往下閱讀-----

尋找愛情,有公式?

面對愛情,有人從感性出發,有人以理性去愛。兩種單獨運作時顯然效果都不太好,但加起來⋯⋯也不是很妙。不過,如果善用兩者,成功的機率可能還是大一些。回想舊愛,憑感性去愛的人很可能悲嘆錯失的良緣,並認為自己以後再也不會這麼愛一個人了。而用比較冷靜的態度去愛的人,很可能會對以下的機率結果感興趣。

在我們的模型中,假設女主角——就叫她香桃吧(按:在希臘神話中,香桃木﹝Myrtle﹞是愛神阿芙蘿黛蒂﹝Aphrodite﹞的代表植物,象徵愛與美)有理由相信,在她的「約會生涯」中,會遇到 N 個可能成為配偶的人。對某些女性來說,N 可能等於 2;對另一些人來說,N 也許是 200。香桃思考的問題是:到了什麼時候我就應該接受X先生,不管在他之後可能有某些追求者比他「更好」?我們也假設她是一次遇見一個人,有能力判斷她遇到的人是否適合她,以及,一旦她拒絕了某個人之後,此人就永遠出局。

為了便於說明,假設香桃到目前為止已經見過 6 位男士,她對這些人的排序如下:3—5—1—6—2—4。這是指,在她約過會的這 6 人中,她對見到的第一人的喜歡程度排第 3 名,對第二人的喜歡程度排第 5 名,最喜歡第三個人,以此類推。如果她見了第七個人,她對此人的喜歡程度超過其他人,但第三人仍穩居寶座,那她的更新排序就會變成 4—6—1—7—3—5—2。每見過一個人,她就更新追求者的相對排序。她在想,到底要用什麼樣的規則擇偶,才能讓她最有機會從預估的 N 位追求者中,選出最好的。

圖/envato

要得出最好的策略,要善用條件機率(我們會在下一章介紹條件機率)和一點微積分,但策略本身講起來很簡單。如果有某個人比過去的對象都好,且讓我們把此人稱為真命天子。如果香桃打算和 N 個人碰面,她大概需要拒絕前面的 37%,之後真命天子出現時(如果有的話),就接受。

-----廣告,請繼續往下閱讀-----

舉例來說,假設香桃不是太有魅力,她很可能只會遇見 4 個合格的追求者。我們進一步假設,這 4 個人與她相見的順序,是 24 種可能性中的任何一種(24=4×3×2×1)。

由於 N=4,37% 策略在這個例子中不夠清楚(無法對應到整數),而 37% 介於 25% 與 50% 之間,因此有兩套對應的最佳策略如下:

(A)拒絕第一個對象(4×25%=1),接受後來最佳的對象。

(B)拒絕前兩名追求者(4×50%=2),接受後來最好的求愛者。

如果採取A策略,香桃會在 24 種可能性中的 11 種,選到最好的追求者。採取 B 策略的話,會在 24 種可能性中的 10 種裡擇偶成功。

以下列出所有序列,如同前述,1 代表香桃最偏好的追求者,2 代表她的次佳選擇,以此類推。因此,3—2—1—4 代表她先遇見第三選擇,再來遇見第二選擇,第三次遇到最佳選擇,最後則遇到下下之選。序列後面標示的 A 或 B,代表在這些情況下,採取 A 策略或 B 策略能讓她選到真命天子。

-----廣告,請繼續往下閱讀-----

1234;1243;1324;1342;1423;1432;2134(A);2143(A);2314(A, B);2341(A, B);2413(A, B);2431(A, B);3124(A);3142(A);3214(B);3241(B);3412(A, B);3421;4123(A);4132(A);4213(B);4231(B);4312(B);4321

如果香桃很有魅力,預期可以遇見 25 位追求者,那她的策略是要拒絕前 9 位追求者(25 的 37% 約為 9),接受之後出現的最好對象。我們也可以用類似的表來驗證,但是這個表會變得很龐雜,因此,最好的策略就是接受通用證明。(不用多說,如果要找伴的人是男士而非女士,同樣的分析也成立。)如果 N 的數值很大,那麼,香桃遵循這套 37% 法則擇偶的成功率也約略是 37%。接下來的部分就比較難了:要如何和真命天子相伴相守。話說回來,這個 37% 法則數學模型也衍生出許多版本,其中加上了更合理的戀愛限制條件。

——本書摘自《數盲、詐騙與偽科學》,2023 年 11 月,大牌出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

大牌出版.出版大牌_96
3 篇文章 ・ 0 位粉絲
閱讀的大牌不侷限於單一領域, 視野寬廣,知識豐富,思考獨立。