Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

自信姿勢讓人更有能力面對挑戰!

蔡宇哲
・2013/08/06 ・969字 ・閱讀時間約 2 分鐘 ・SR值 550 ・八年級

超人老愛雙手叉腰站著、假面騎士總是要先擺弄一下姿勢再變身,這除了耍帥以外有別的用處嗎?有的,研究發現擺出自信的姿勢確實可以讓人更有能力去面對挑戰。

在這個不斷求新求變的社會中,幾乎每天都會面臨到新的挑戰。常常可以看到保險、汽車的業務們在上班前都需要在門口做做體操、精神喊話一番,來迎接一天繁忙工作的開始,這樣的精神喊話是有效的嗎?當人們在充滿自信時,身體會傾向表現出具力量、肯冒險的姿勢,此時體內的冒險賀爾蒙-睪固酮(testosterone)會提高,而壓力賀爾蒙可體松(cortisol)則會下降,這樣的行為與生理變化有利於讓我們去面對未知的挑戰。

有研究者認為自信、行為姿勢與生理變化這三者是相互影響的,不僅有自信會影響行為與生理,調整行為也同樣可以影響自信與生理。哥倫比亞大學和哈佛大學的幾位學者共同進行了一個研究,他們想知道單純擺出自信姿勢是否真能實質上增進自信與力量。他們找來42位參與者並隨機安排於[高自信姿勢]或[低自信姿勢]組別,這些人事前被告知是要做生理訊號測量的研究,因此並不知道研究目的與自信心有關。每組都有兩個姿勢,參與者需持續姿勢一分鐘後再換下一個。做完指定姿勢後會進行一項具冒險性的賭博遊戲,結束後讓參與者自我評估自信程度,同時採集唾液以測量體內的睪固酮與可體松濃度。

結果發現:人們在做完高自信姿勢後,睪固酮濃度會明顯提高而可體松濃度會降低,心理上自覺比較有自信,且也比較願意投入冒險;低自信姿勢的那些人則剛好相反,睪固酮濃度會明顯降低而可體松濃度會提高,自信心較低且比較不願意投入冒險。因此,只要單純改變姿勢幾分鐘就可以讓人的心理與生理產生相對應的變化,老一輩的人總是會說要抬頭挺胸別畏畏縮縮,是有他的道理存在。

-----廣告,請繼續往下閱讀-----

看來要提高自信與能力沒有想像中的難,只要來個帥氣有信心的姿勢就可以了。將來要做一件沒把握的事情之前,可以試著做些看起來覺得有自信的姿勢或手勢,這樣不僅能夠幫助你在心理和行為上面更有自信,也確實在生理上增強潛力,讓你更有力量去面對那些挑戰!

延伸閱讀:想瞭解何謂高自信與低自信姿勢的話,超人叉腰的姿勢就是典型的高自信姿勢,其他姿勢可參考該研究作者之一在TED上的這個演講,大約在十分鐘處提到這個研究。

http://www.youtube.com/watch?v=McE-AuemcFg

文:洪群甯、蔡宇哲

-----廣告,請繼續往下閱讀-----
 原始文獻:Power Posing: Brief Nonverbal Displays Affect Neuroendocrine Levels and Risk Tolerance. link.
-----廣告,請繼續往下閱讀-----
文章難易度
蔡宇哲
67 篇文章 ・ 5 位粉絲
中正大學心理學博士,台灣應用心理學會理事長、「哇賽!心理學」創辦者兼總編輯。泛科學、幼獅少年、國語日報科學版……等專欄作者,著有《神奇的心理學》、《哇賽!心理學》、《用心理學發現微幸福》。 喜歡分享心理學,希望人人都可以由心理學當中認識真實的自己,也因此能夠更溫柔的對待他人。

0

1
0

文字

分享

0
1
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

52
3

文字

分享

0
52
3
耳背腦就鈍?解密聽力受損與失智的關係
雅文兒童聽語文教基金會_96
・2024/02/17 ・4232字 ・閱讀時間約 8 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/雅文基金會聽語科學研究中心研究員 詹益智

阿明是位 65 歲的退休長者,總是積極參與各種社區活動,是熱心的志工。然而,近來他開始意識到自己在大型聚會中,必須使勁聆聽他人的話語,有時還是會錯過一些關鍵的內容,這使得他逐漸對大型活動感到焦慮,害怕因聽不清楚別人的對話而與人生分。隨著聽力問題逐漸浮現,他開始注意到自己的思緒也跟著變得混亂。比如說,他常常忘記事情發生的順序,甚至有時候不記得已經說過的話,這種記憶的衰退讓阿明感到十分困擾。最終,阿明去看了醫生並接受相關的測試,被診斷出患有中度聽損與早發性失智症。

在日常生活中,聽覺扮演了重要的角色,是我們與外界交流的管道之一。然而聽力受損不僅僅是一種單純的生理障礙,更可能與失智症之間存在著密切的關係。

關於失智症的二三事

失智症是一種大腦和日常功能逐漸衰退的疾病,主要涉及認知功能的喪失,包括思考、記憶、推理及語言能力等。有些失智症患者甚至無法控制情緒,個性也可能發生轉變。失智的症狀隨程度不同而有所改變,從最輕微的階段開始影響一個人的基本能力(如記憶),到最嚴重的階段,患者完全需要仰賴他人進行日常活動 [1]。失智症不僅對患者本身造成巨大的影響,也帶給家人和照顧者極大的負擔。

失智症是一種大腦和日常功能逐漸衰退的疾病,主要涉及認知功能的喪失,包括思考、記憶、推理及語言能力等。圖/Pixabay

2023 年世界衛生組織(WHO)的統計數據顯示,世界上目前約有 5,500 多萬的人口患有失智症,而每年全球正以 1,000 萬人的速度增加 [2],預計到 2050 年,全球失智症患者數量將達到 1.53 億人口 [3]。Livingston 等學者於 2020 年在國際著名的醫學期刊《刺胳針》(The Lancet)發表了一篇關於失智症的預防、介入與照護的研究 [4],列舉了 12 項風險因子,包括教育程度較低、聽力損失、創傷性腦傷、高血壓、酗酒、肥胖症、吸煙、憂鬱症、社交隔離、缺乏運動、空氣污染與糖尿病,將近 40% 的失智症都與這些因素有關(另 60% 為風險因子不明),其中,聽力損失佔最大宗,約有 8% 的比例。另一項研究更進一步指出,罹患失智症的風險會隨著聽損程度越重而增加,例如輕度、中度與重度聽損者罹患失智症的風險分別是聽常者的 1.27、3.00 與 4.94 倍 [5]。由此可見,聽損與失智症的關係不容小覷。

-----廣告,請繼續往下閱讀-----
失智症的風險因子,聽力損失約佔 8%。圖/引自HearingLife

聽力出包時,失智症有可能找上門!

聽損與失智症關聯的機轉究竟是什麼呢?綜合現有的研究文獻,大致可歸納出三大觀點:

一、聽損會耗費大腦的認知資源

聽損常使一個人在吵雜的環境下聽不清楚聲音,此時,大腦便會進行代償作用,將負責思維和記憶區塊所需的資源移轉用來處理這些模糊的音訊,而導致前述二項高階的認知功能受到影響,進而增加失智的風險 [6]。以上的論述主要來自 Mishra 等人的研究 [7],該研究比較輕度聽損年長者與聽常年輕人在「認知備用容量測驗(Cognitive Spare Capacity Test)」的表現:受試者聽完(無視覺提示)一串由男女穿插錄製之二位數的數字列表(如下表所示)後,要說出這串列表中由男生所錄製的奇位數數字(如 13 與 59,以圓圈標示)。要順利完成此項作業,受試者必須排除女生所錄製奇位數數字的干擾(如 77、89 與 61,以底線標示)。

數字5036774496895240612066
男/女
「認知備用容量測驗」實例(來源:Mishra 等人 [8]

結果顯示,在安靜的環境下,兩組受試者的表現無顯著差異,但在噪音環境下,聽損年長者的表現則顯著落後於聽常年輕人,研究者認為聽損年長者為了排除噪音的干擾以獲取正確的答案,其大腦會將高層次的認知資源挹注於彌補聽損所帶來的負面影響,而致使認知功能下降。長此以往,漸漸便埋下了失智症的導火線。

另一個較為直觀的證據則是透過腦造影技術觀察聽損者大腦活動的狀況。Glick 與 Sharma [9] 讓聽常與聽損老年人觀看電視螢幕的光影變化,並透過高密度的腦波圖(high-density electroencephalography;EEG)記錄其對視覺刺激反應的皮質視覺誘發電位(cortical visual evoked potentials;CVEPs),再透過電流密度源重建技術(current density source reconstruction)定位大腦皮質活動的區塊;此外,研究也評估了受試者的認知功能。結果顯示,相較於聽常者,聽損者觀看視覺刺激物時,腦部發生了視覺跨模重組(visual cross-modal reorganization)的現象:除了主司視覺的枕葉區被活化外,主司聽覺的顳葉與主司認知功能的前額葉也被活化用以輔助處理視覺訊息,這會為大腦帶來極大的負擔而增加認知負荷,並耗盡用以記憶的認知資源,最終可能引發失智症。

-----廣告,請繼續往下閱讀-----

二、聽損會使大腦組織萎縮

此外,聽損與否也可能會影響一個人大腦的結構與功能。美國約翰霍普金斯大學的研究人員 [10],利用「巴的摩爾老化長期研究(Baltimore Longitudinal Study of Aging)」的資料,針對聽損與腦容量的關係進行了一項有趣的研究,他們分析了一群受試者在逐漸老化時,其腦容量的變化。受試者在研究之初,做了聽力評估,接著接受為期長達十年、每年一次的核磁共振檢查。結果顯示,研究開始時就患有聽損的受試者,相較於聽常者,其大腦有較大幅度的萎縮,平均以每年一立方釐米以上的速度流失大腦組織,而這些大腦組織恰好與輕度認知功能退化和早期失智症所表現出的記憶衰退的行為有關 [11]

三、聽損會引發社交隔離

社交隔離(social isolation;意旨與他人很少有社交互動或是社交圈窄小的現象 [12])也可解釋為何聽損與失智症有關。一項由英國所進行的研究 [13] 追蹤了一群 50 歲以上成年人的聽損、社交隔離的程度與認知的狀況,並分析這三個因素間的關係,結果發現雖然聽損與認知功能下降有直接且顯著的關聯,但當加入了社交隔離程度的影響後,聽損與認知關聯的強度降低了近三分之一,此結果說明聽損可能會導致社交隔離,間接造成認知功能下降而引發失智症。這也顯示大腦須要透過適當的社交刺激,才能維持其活力,進而保持正常的認知功能。值得注意的是,當聽力閾值達到 25 分貝或以上(即輕度以上的聽損,亦為影響社交溝通的起始閾值)時,聽損所帶來的失智風險就會明顯地增加 [14]

如何預防聽損所帶來的失智風險

一般而言,聽力是與他人溝通互動不可或缺的元素之一;然而,聽力問題不僅僅是關乎聽覺本身,如前所述,它也可能與失智症存在直接或間接的關係,若能適時地做好聽力保健,或許就可避免老年時,讓失智找上你。那麼要如何維持良好的聽力呢?以下幾點可供參考:

  1. 定期聽力檢查是維護耳朵健康的重要關鍵。許多人並不瞭解即便是輕微的聽損也可能對認知功能造成負面的影響。在一般的情況下,聽力下降是漸進且微小的,而人類的大腦有極強的適應能力,這使得聽力衰退不易被察覺 [15]。透過定期的聽力檢查,有助於追蹤聽力狀況,即使是微小的變化也能及時掌握,並處理潛在的聽力問題,進而降低聽損所帶來的失智風險。
  2. 減少長期暴露在噪音環境中。噪音環境除了會加速聽損的惡化外,同時也會誘發海馬迴受損的記憶功能障礙,這也是失智典型的症狀 [16]。因此,避免長時間處在高分貝的環境下,或者適時地佩帶耳塞或耳罩,便是保護聽力健康進而降低失智風險的良方之一。

然而,就聽損人士而言,難道就只能坐視自身認知功能逐漸退化而毫無作為嗎?其實不然。還記得 Glick 與 Sharma 的研究 [9] 提到聽損者大腦的視覺跨模重組與其認知功能衰退息息相關嗎?但令人振奮的是,這些聽損者在穩定配戴助聽器六個月後,逆轉了視覺跨模重組的現象,其認知功能也隨之改善,這表示聽損者配戴助聽器後,失智風險也可能跟著降低。 

-----廣告,請繼續往下閱讀-----
聽損人士配戴助聽器後,失智風險可能會跟著降低。圖/iStock

雖然失智症並不全然與聽力問題相關,但就聽力而言,我們可做的就是聽力保健,如定期做聽力檢查、遠離噪音環境、適度保護耳朵,以及必要時配戴助聽輔具是維持良好聽力的重要關鍵,若能確實執行上述建議,或許就可降低那 8% 的失智風險。請記住,保護耳朵就是保護大腦,讓我們一起努力維護聽力,為未來的大腦健康奠定穩固的基礎吧!

  1. National Institute on Aging (n.d.). What is dementia? Symptoms, types, and diagnosis. https://www.nia.nih.gov/health/alzheimers-and-dementia/what-dementia-symptoms-types-and-diagnosis
  2. Dementia (2023, March 15). Dementia. https://www.who.int/news-room/fact-sheets/detail/dementia
  3. The Institute for Health Metrics and Evaluation (2022, January 6). The Lancet Public Health: Global dementia cases set to triple by 2050 unless countries address risk factors. https://www.healthdata.org/news-events/newsroom/news-releases/lancet-public-health-global-dementia-cases-set-triple-2050
  4. Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., … & Mukadam, N. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet396(10248), 413-446.
  5. Lin, F. R., Metter, E. J., O’Brien, R. J., Resnick, S. M., Zonderman, A. B., & Ferrucci, L. (2011). Hearing loss and incident dementia. Archives of Neurology68(2), 214-220.
  6. Fulton, S. E., Lister, J. J., Bush, A. L. H., Edwards, J. D., & Andel, R. (2015, August). Mechanisms of the hearing–cognition relationship. In Seminars in Hearing (Vol. 36, No. 03, pp. 140-149). Thieme Medical Publishers.
  7. Mishra, S., Stenfelt, S., Lunner, T., Rönnberg, J., & Rudner, M. (2014). Cognitive spare capacity in older adults with hearing loss. Frontiers in Aging Neuroscience6, 96.
  8. Mishra, S., Lunner, T., Stenfelt, S., Rönnberg, J., & Rudnera, M. (2013). Visual Information Can Hinder Working Memory Processing of Speech. Journal of Speech, Language, and Hearing Research56, 1120-1132.
  9. Glick, H. A., & Sharma, A. (2020). Cortical neuroplasticity and cognitive function in early-stage, mild-moderate hearing loss: evidence of neurocognitive benefit from hearing aid use. Frontiers in Neuroscience, 93.
  10. Lin, F. R., Ferrucci, L., An, Y., Goh, J. O., Doshi, J., Metter, E. J., … & Resnick, S. M. (2014). Association of hearing impairment with brain volume changes in older adults. Neuroimage90, 84-92.
  11. Liu, J., Zhang, X., Yu, C., Duan, Y., Zhuo, J., Cui, Y., … & Liu, Y. (2016). Impaired parahippocampus connectivity in mild cognitive impairment and Alzheimer’s disease. Journal of Alzheimer’s Disease49(4), 1051-1064.
  12. Steptoe, A., Shankar, A., Demakakos, P., & Wardle, J. (2013). Social isolation, loneliness, and all-cause mortality in older men and women. Proceedings of the National Academy of Sciences110(15), 5797-5801.
  13. Maharani, A., Pendleton, N., & Leroi, I. (2019). Hearing impairment, loneliness, social isolation, and cognitive function: Longitudinal analysis using English longitudinal study on ageing. The American Journal of Geriatric Psychiatry27(12), 1348-1356.
  14. Lin, F. R., Metter, E. J., O’Brien, R. J., Resnick, S. M., Zonderman, A. B., & Ferrucci, L. (2011). Hearing loss and incident dementia. Archives of Neurology68(2), 214-220.
  15. Audiology Associations of DFW. (August 31, 2023). Regular hearing tests could decrease your risk of getting dementia. Hearing Test Info. https://www.audiologyassociates.com/hearing-test-info/hearing-test-reduce-risk-dementia/
  16. Paciello, F., Pisani, A., Rinaudo, M., Cocco, S., Paludetti, G., Fetoni, A. R., & Grassi, C. (2023). Noise-induced auditory damage affects hippocampus causing memory deficits in a model of early age-related hearing loss. Neurobiology of Disease178, 106024.
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

雅文兒童聽語文教基金會_96
61 篇文章 ・ 223 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

2
10

文字

分享

0
2
10
擁有「控制感」有助於維持心理健康?無助導致的憂鬱又是怎麼來的?——《選擇的弔詭》
一起來
・2023/12/31 ・3327字 ・閱讀時間約 6 分鐘

習得無助、控制感,以及憂鬱

提過塞利格曼等人發現的「習得無助」現象,他們進行了一系列動物基本學習歷程的實驗,訓練動物跳過柵欄以避開腳下的電擊。動物通常很快就能學會怎麼做,但有一組動物,因為先前經歷過一連串無法躲避的電擊,所以始終都學不會,牠們甚至放棄嘗試,只是待在原地乖乖接受電擊,而從不試著跳過柵欄。研究者的解釋是,當動物遭受自己無法控制的電擊,就會學到不管怎麼做都無濟於事,這樣的習得無助感會轉移到新情境,即使牠們能夠控制這個新情境,還是會放棄嘗試。

塞利格曼深入研究習得無助現象之後,驚訝地發現,這些無助的動物跟憂鬱症患者有許多共同點,尤其是兩者的消極心態,憂鬱症患者有時連「今天要穿什麼衣服」這樣的小事都力不從心。塞利格曼推論,至少有部分憂鬱症患者是因為經歷過一次強烈的失控感,於是開始相信自己對任何事都無能為力,並認為這種無助感會一直持續出現在各種情境。根據塞利格曼的假設,擁有控制感對於心理健康至關重要。

五十多年前,一項研究以三個月大的嬰兒為受試者,凸顯了控制感的重要性。研究者將嬰兒分成兩組,A 組是有控制權的嬰兒,他們躺在嬰兒床上,頭靠著枕頭,床的上方倒掛著一把半透明的傘,裡面用彈簧黏著幾隻動物玩偶,如果嬰兒轉一下頭,傘裡的燈就會亮起,嬰兒就可以看到那些玩偶在「跳舞」,但一會兒燈就熄滅了。當 A 組嬰兒碰巧轉頭,讓傘裡的燈亮起並看到玩偶,他們就會表現出好奇、開心和興奮的樣子,而且很快就學會利用轉頭來控制玩偶的出現,然後一次又一次重複這個動作,看起來一直都很開心。B 組嬰兒則沒有控制權,只有在 A 組轉頭時,他們床上的燈也跟著亮起,才可以「順便」看到玩偶, 所以 B 組看到玩偶的次數和時間都跟 A 組一樣多,但他們只有在一開始表現得跟 A 組一樣開心,然後很快就因為適應而失去興趣。

研究使用玩偶測試後發現嬰兒的快樂似乎源自於「控制感」。圖/envato

研究者從兩組嬰兒的反應差異,得到下列結論:讓嬰兒一直很開心的原因,並不是會跳舞的動物玩偶,而是控制感。A 組嬰兒之所以對著玩偶咯咯笑個不停,是因為他們似乎知道是自己讓這一切發生,「是我幹的好事,很棒吧,而且只要我想要,隨時都可以再來一次」。B 組嬰兒雖然什麼都不用做就可以看到玩偶,但是卻沒有體驗到這種令人興奮的控制感。

-----廣告,請繼續往下閱讀-----

小嬰兒幾乎無法控制任何事物,既不能任意靠近自己想要的東西,也無法離討厭的東西遠遠地。他們無法靈活控制自己的手,所以抓取或操作物品都很吃力。他們還會無預警地被被東戳戳、西捏捏,或是被抱起又放下。小嬰兒的世界就是只能被動讓事情發生在自己身上,任由別人擺佈。或許正是基於這個原因,當他們偶然發現自己可以控制那麼一點小事, 就異常在意和興奮。

另一項研究以生命的另一端——老年人為受試者,也戲劇化地證明了「控制感」對於幸福快樂的重要性。研究者告訴 A 組養老院的住民必須為自己負責、照顧好自己;B 組住民則被告知他們的一切生活起居都由工作人員打理。此外,A 組每天都要決定一些簡單的事,並照顧一盆植物;B 組則沒有任何決定權,他們的植物也由工作人員照顧。結果,A 組老人(對自己的生活有一定的控制權)比 B 組(沒有控制權)更有活力、更靈敏,主觀幸福感也更高。最引人注目的是,A 組的平均壽命比 B 組多好幾年。可見,從出生到死亡,人都需要擁有對生活的掌控權。 

從出生到死亡,人都需要擁有對生活的掌控權。 圖/envato

無助感、憂鬱和歸因風格

塞利格曼的「無助-憂鬱理論」仍然受到質疑,最大的問題是,並非每個失去掌控感的人都會陷入憂鬱。因此,塞利格曼和同事在 1978 年修正了這一理論,並指出在無助感和憂鬱之間,還存在另一個重要的心理歷程。根據修正後的新理論,人在失敗和失去掌控感之後,會問自己為什麼,像是「為什麼他要跟我分手?」「為什麼我被刷下來?」「為什麼我沒有談成那筆生意?」「為什麼我的成績這麼爛?」。換句話說,人會尋找失敗的原因。

塞利格曼等人認為,人對事情的解釋——即歸因風格(attributional style)大致有兩種,每種風格都傾向接受特定類型的原因,而這些原因不一定跟實際情形有關。根據歸因風格的特性,造成失敗的原因可以分成三個向度:全面或特定、長期或短暫、內在或外在。

-----廣告,請繼續往下閱讀-----

假設你去應徵一份行銷業務的職缺,卻沒被錄取,你在分析自己為什麼會失敗時,下面是一些可能的原因: 

全面:我的自傳和履歷都寫得不好,面試時又很緊張,看來不管找什麼工作都不會被錄取了。

特定:我對那家公司的產品類型不太了解,我得多做一些功課,面試時才能脫穎而出。

長期:我的個性不是很主動積極,也無法擔負責任,這份工作根本不適合我。

短暫:我最近感冒,好幾天沒睡好,面試時狀態不佳。

內在:原本應該可以順利得到這份工作,是我自己搞砸了。

-----廣告,請繼續往下閱讀-----

外在:他們應該早就內定好了,找人去面試只是做做樣子,大家都是去陪榜的。

如果你用特定、短暫、外在因素去解釋自己為何沒被錄取,那麼你對下次找工作的預期會是什麼?你也許會想:如果去應徵自己熟悉的領域,並且保持睡眠充足,自己也更主動機靈一點,而且面試沒有黑箱作業,一切就會很順利。換句話說,這次的失敗經驗不太會影響下次找工作的表現。

反之,假設你用全面、長期、內在角度看待自己的失敗,認為自己的履歷毫不起眼, 面試時老是緊張得說不出話,而且個性太被動,別人都比自己更適合這份工作,那麼你預期的未來就會黯淡無光,你不但沒得到這份工作,接下來要找任何工作都會很困難。

修正後的「無助-憂鬱理論」認為,如果用全面、長期、內在因素去解釋失敗,那麼由失敗或失去掌控所引發的無助感才會導致憂鬱,因為在這種情況下,人有充分理由預期自己將不斷遭遇失敗。既然註定會失敗,那麼每天起床、換好衣服,繼續應徵下一份工作又有什麼意義? 

如果用全面、長期、內在因素去解釋失敗,人有充分理由預期自己將不斷遭遇失敗,那麼由失敗或失去掌控所引發的無助感會導致憂鬱。圖/envato

對上述理論的檢驗已得到令人矚目的結果。人確實會表現出不同的歸因風格,「樂觀者」會將自己的成功解釋為全面、長期、內在因素所致,而認為失敗是由特定、短暫、外在因素造成。「悲觀者」則恰好相反。如果兩個人得到同樣的分數,樂觀者會說「我得了 A」 或「她給我成績打 C」,悲觀者卻說「她給我打 A」或「我得了 C」,因此悲觀者更可能陷入憂鬱。此外,從一個人的歸因風格也可以預測他未來遭受失敗時是否會憂鬱。如果認為失敗的原因是全面性的,就會預期自己在其他生活領域也會遭遇失敗,而如果歸因於特定因素則不會這麼想;如果認為失敗的原因是長期性的,就會預期失敗將一直發生,而如果歸因於短暫因素就不會這麼想;如果認為失敗是跟個人內在因素有關,自尊就會遭受嚴重打擊,而如果歸因於外在因素則不會如此。

-----廣告,請繼續往下閱讀-----

這並不表示,把功勞都歸於自己,把失敗都歸咎於外在環境,就是擁有成功、幸福人生的祕訣。最好的方法是面對現實、做出正確歸因,雖然這樣做可能會造成情緒負荷,但準確分析成敗原因,並找出問題所在,才可能在下一次獲得更好的結果。不過平心而論,在大多數情況下,過度自責確實會造成不良心理後果。正如接下來所要探討的,在擁有無限選擇的世界,人們更容易因為結果不如意而自責。

——本書摘自《選擇的弔詭》,2023 年 11 月,一起來出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

一起來
5 篇文章 ・ 2 位粉絲