0

1
2

文字

分享

0
1
2

更多的選擇,更大的快樂?無法選擇時又會發生什麼事?——《選擇的弔詭》

一起來
・2023/12/29 ・3325字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

選擇的要義

兩個多世紀前,哲學家和經濟學家亞當.斯密觀察到,當每個人都擁有選擇自由,社會商品的生產和分配就會達到最有效率的狀態。在不受政府干預的競爭市場中,企業家將竭盡所能地迎合消費者的需求和渴望,生產者和供應商會更彈性應變、不受限制,確切地提供消費者所期望的商品和服務。 

「選擇」不但有工具價值,還反映了更重要的表達價值。我們透過選擇來告訴世界「我是誰、我在乎什麼」,即使是比較表面的層次,例如穿衣風格,也都是有意地表達自己的品味,傳達特定訊息,像是「我是個嚴肅的人」、「我是個理性的人」、「我很有錢」,甚或「我愛怎麼穿就怎麼穿,才不管別人的眼光」。要表達自我,就要有足夠多的選擇。

生活各方面的選擇都是如此,我們吃的食物、開的車、住的房子、聽的音樂、讀的書、喜歡的興趣、捐助的慈善機構、參加的示威活動……每一個選擇不論它們重要與否,都具有表達功能。而且有些選擇可能只有表達功能,以投票為例,許多選民都明白,一張選票從來就不具有實質意義,不太可能影響結果(除了 2000 年的美國大選),所以其實不值得大老遠跑去投票。但他們還是會去,為什麼?也許至少有部分是因為,投票可以表達自己的立場。這些選民認真看待自己的公民身分,盡責地履行自己的義務,而不認為政治自由是天上掉下來的、可以輕忽。

投票可以表達自己的立場。圖/envato

有個例子可以清楚看出投票的表達功能:兩位美國政治學家在選舉當天還在歐洲,他們明知彼此支持不同的候選人,所以兩張選票會互相抵銷,卻還是一起開了三小時的車去投遞郵寄選票。我們所做的每一個選擇,都證明了我們的自主性和自決意識。自柏拉圖以來,幾乎所有探討社會、道德、政治議題的西方哲學家或思想家,都高度重視這樣的自主性。每當選擇增加,就表示我們又有機會宣告自主權,展現自己的個性。

-----廣告,請繼續往下閱讀-----

不過,只有當我們能夠自由選擇,選擇才具有表達功能。舉例來說,想想婚姻誓詞,「不論順境或逆境,富貴或貧困……我將永遠愛你、珍惜你,直到死亡將我們分開」,但如果你沒有權力解除婚姻關係,那麼這段誓言反映的並非你的個人意願,而是社會約束和規範。就算離婚合法,但是卻受到社會和宗教強力譴責,導致離婚者受人唾棄,那麼你的婚姻誓詞主要也是反映社會而不是你這個人。只有當你所在的社會對離婚抱持開放、包容態度, 你對婚姻的承諾才是真正反映你個人的價值觀和品格。

自主權的價值已深植在我們的法律和道德體系中,它賦予我們權利,讓我們對自己和他人的行為負起道德(和法律)責任,它是我們得以讚揚個人成就和指責個人缺失的前提。如果不再尊重個人的自主性和自由意志,我們整個社會都將面臨價值觀和制度的混亂,變得面目全非。

學習無助

我們不僅在政治、道德和社會層面仰賴自主權的概念,現在還知道心理健康也深受自主權影響。1960 年代,心理學家塞利格曼(Martin Seligman)帶領的一項實驗,讓三組經歷過不同情境的動物學習跳躍柵欄,以避開輕微電擊。A 組動物先前沒有類似經驗,B 組動物已經在其他情境學會如何躲避電擊,C 組動物先前也經歷過類似情境,但無論做出任何反應都無法逃開電擊。結果正如塞利格曼等人所預期,B 組學得比 A 組更快,牠們把其他情境的學習效應轉移到目前的實驗情境。值得關注的是,C 組完全學不會,甚至根本就放棄嘗試,只是默默地接受電擊,直到研究人員不忍心而結束實驗。 

塞利格曼等人認為,C 組動物已經從「無法逃避電擊」的經驗中學到:不管怎麼做都無法改變現況,無力掌控自己的命運。牠們跟 B 組一樣,將先前的學習經驗應用在跳柵欄的實驗情境,只不過牠們學到的是無助,即「習得無助」(learned helplessness)。 

-----廣告,請繼續往下閱讀-----
習得無助會讓人失去嘗試動機,無法判斷自己是否能夠掌控新情境,此外還會降低免疫功能,導致生病機率增加,在特定情況下甚至會罹患嚴重憂鬱症。圖/envato

塞利格曼提出的「習得無助」在各個心理學領域激起漣漪,數百項研究皆證實了,我們會從經驗中學到自己無法控制局面。而一旦學到這點,後果將不堪設想。習得無助會讓人失去嘗試動機,無法判斷自己是否能夠掌控新情境,此外還會降低免疫功能,導致生病機率增加,在特定情況下甚至會罹患嚴重憂鬱症。因此可以說,有能力掌控所處環境,並且意識到自己擁有這樣的能力,是維持基本身心健康的大前提。

現在來想想「無助感」和「選擇」的關係。在某個情境下有所選擇,就表示能夠掌控整個局面,那麼就不會感到無助。只有在毫無選擇的情況下,才會產生無助感。因此,「選擇」除了能帶來工具效益(得到自己想要的東西)和表達效益(展現自我),還有重大的心理效益(讓人能夠積極、有效地投入生活)。

選擇是越多越好嗎?

乍看之下,這似乎意味著選擇的機會越多越好,而既然美國社會已經做到這點,想必美國人應該很少產生無助感。然而,民意調查專家哈里斯(Louis Harris)在 1966 年和 1986 年各做了一項調查,詢問受訪者是否同意一系列陳述,像是「我覺得自己跟世界格格不入」或「我的想法已經不再重要」。在 1966 年,只有 9% 受訪者覺得自己跟世界格格不入,36% 的人認為自己的想法不重要,而到了 1986 年,這兩項數據分別增加到 37% 和 60%。 

看來選擇變多並沒有讓人感覺更好,這樣的矛盾現象有兩種可能解釋。第一:由於人在選擇和控制方面的體驗更加廣泛且深入,對選擇和控制的期待也會跟著提高。隨著自主權的枷鎖一個個被打破,剩下的障礙卻更加令人不安,就像賽道上的賽狗跑得再快,也追不上前面的機械兔,人不論實際上擁有多大的自主權,永遠也滿足不了對控制的渴望和期待。

-----廣告,請繼續往下閱讀-----

第二:更多選擇不代表擁有更多掌控權。選擇無止盡地變多,非但沒有給予人更多的掌控感,反而讓人無所適從。如果我們認為自己無法做出明智的選擇,那就算選擇再多也不是好事。如第2章提過的調查,詢問人們萬一罹癌,是否希望自主決定療法:大部分的人都回答「是」,但是真正得了癌症的患者卻回答「否」。真實情況時常不如我們所想像的有吸引力,而在攸關生死的事上,做選擇造成了沉重的壓力。

因此,選擇的確帶來不少好處,但科學家和一般民眾都錯誤地認為,既然擁有「一些」選擇是好事,想必選擇越多就越好。然而「選擇過多」效應告訴我們,更多選擇並沒有讓生活變得更幸福快樂。

更多選擇並沒有讓生活變得更幸福快樂。圖/giphy

是否存在一個剛剛好的選擇數量,使我們能夠在不付出代價的情況下獲得好處?出乎意料的是,這方面的研究並不多。曾有研究者做了一項實驗,在桌上擺了各種款式的筆,每支售價皆為一美元,兜售對象為學生。在研究者的操弄下,桌上有時只有幾種選擇,有時多達 20 種。最後發現,當人們面對 8 至 10 種選擇時,購買頻率最高。因為選擇太少就挑不到喜歡的筆,而選擇太多又會不知所措而無法抉擇。那麼,我們是否能據此結果推估,在任何需要做決定的事情上,選項的理想數量落在 10 左右?絕非如此。這視領域而定,有的選擇越多越好,而有的則不要太多。也有在同一個領域,有些人希望選擇多一點,也有些人希望選擇少一點。而且證據表明,當人們確切知道自己要的是什麼,選擇再多也不成問題,因為如果有大量選擇,就更容易找到自己想要的東西,但是如果選擇有限,通常就比較難滿足自己的需求。

要享有選擇的好處,又不被選擇淹沒,就必須學會取捨,把精力集中在真正重要的決定上,就算可能因此而錯過其他機會。決定何時該做選擇,何時該放棄選擇的機會,或許正是我們需要做的最重要的選擇。

-----廣告,請繼續往下閱讀-----

——本書摘自《選擇的弔詭》,2023 年 11 月,一起來出版,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

一起來
5 篇文章 ・ 2 位粉絲

0

1
0

文字

分享

0
1
0
數智驅動未來:從信任到執行,AI 為企業創新賦能
鳥苷三磷酸 (PanSci Promo)_96
・2025/01/13 ・4938字 ・閱讀時間約 10 分鐘

-----廣告,請繼續往下閱讀-----

本文由 鼎新數智 與 泛科學 共同規劃與製作

你有沒有想過,當 AI 根據病歷與 X 光片就能幫你診斷病症,或者決定是否批准貸款,甚至從無人機發射飛彈時,它的每一步「決策」是怎麼來的?如果我們不能知道 AI 的每一個想法步驟,對於那些 AI 輔助的診斷和判斷,要我們如何放心呢?

馬斯克與 OpenAI 的奧特曼鬧翻後,創立了新 AI 公司 xAI,並推出名為 Grok 的產品。他宣稱目標是以開源和可解釋性 AI 挑戰其他模型,而 xAI 另一個意思是 Explainable AI 也就是「可解釋性 AI」。

如今,AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?

-----廣告,請繼續往下閱讀-----
AI 已滲透生活各處,而我們對待它的方式卻像求神問卜,缺乏科學精神。如何讓 AI 具備可解釋性,成為當前關鍵問題?圖/pexels

黑盒子模型背後的隱藏秘密

無法解釋的 AI 究竟會帶來多少問題?試想,現在許多銀行和貸款機構已經使用 AI 評估借貸申請者的信用風險,但這些模型往往如同黑箱操作。有人貸款被拒,卻完全不知原因,感覺就像被分手卻不告訴理由。更嚴重的是,AI 可能擅自根據你的住所位置或社會經濟背景給出負面評價,這些與信用風險真的相關嗎?這種不透明性只會讓弱勢群體更難融入金融體系,加劇貧富差距。這種不透明性,會讓原本就已經很難融入金融體系的弱勢群體,更加難以取得貸款,讓貧富差距越來越大,雪上加霜。

AI 不僅影響貸款,還可能影響司法公正性。美國部分法院自 2016 年起使用「替代性制裁犯罪矯正管理剖析軟體」 COMPAS 這款 AI 工具來協助量刑,試圖預測嫌犯再犯風險。然而,這些工具被發現對有色人種特別不友好,往往給出偏高的再犯風險評估,導致更重的刑罰和更嚴苛的保釋條件。更令人擔憂的是,這些決策缺乏透明度,AI 做出的決策根本沒法解釋,這讓嫌犯和律師無法查明問題根源,結果司法公正性就這麼被悄悄削弱了。

此外,AI 在醫療、社交媒體、自駕車等領域的應用,也充滿類似挑戰。例如,AI 協助診斷疾病,但若原因報告無法被解釋,醫生和患者又怎能放心?同樣地,社群媒體或是 YouTube 已經大量使用 AI 自動審查,以及智慧家居或工廠中的黑盒子問題,都像是一場越來越複雜的魔術秀——我們只看到結果,卻無法理解過程。這樣的情況下,對 AI 的信任感就成為了一個巨大的挑戰。

為什麼人類設計的 AI 工具,自己卻無法理解?

原因有二。首先,深度學習模型結構複雜,擁有數百萬參數,人類要追蹤每個輸入特徵如何影響最終決策結果,難度極高。例如,ChatGPT 中的 Transformer 模型,利用注意力機制(Attention Mechanism)根據不同詞之間的重要性進行特徵加權計算,因為機制本身涉及大量的矩陣運算和加權計算,這些數學操作使得整個模型更加抽象、不好理解。

-----廣告,請繼續往下閱讀-----

其次,深度學習模型會會從資料中學習某些「特徵」,你可以當作 AI 是用畫重點的方式在學習,人類劃重點目的是幫助我們加速理解。AI 的特徵雖然也能幫助 AI 學習,但這些特徵往往對人類來說過於抽象。例如在影像辨識中,人類習慣用眼睛、嘴巴的相對位置,或是手指數量等特徵來解讀一張圖。深度學習模型卻可能會學習到一些抽象的形狀或紋理特徵,而這些特徵難以用人類語言描述。

深度學習模型通常採用分佈式表示(Distributed Representation)來編碼特徵,意思是將一個特徵表示為一個高維向量,每個維度代表特徵的不同方面。假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。對 AI 而言,這是理解世界的方式,但對人類來說,卻如同墨跡測驗般難以解讀。

假設你有一個特徵是「顏色」,在傳統的方式下,你可能用一個簡單的詞來表示這個特徵,例如「紅色」或「藍色」。但是在深度學習中,這個「顏色」特徵可能被表示為一個包含許多數字的高維向量,向量中的每個數字表示顏色的不同屬性,比如亮度、色調等多個數值。圖/unsplash

試想,AI 協助診斷疾病時,若理由是基於醫生都無法理解的邏輯,患者即使獲得正確診斷,也會感到不安。畢竟,人們更相信能被理解的東西。

打開黑盒子:可解釋 AI 如何運作?我們要如何教育 AI?

首先,可以利用熱圖(heatmap)或注意力圖這類可視化技術,讓 AI 的「思維」有跡可循。這就像行銷中分析消費者的視線停留在哪裡,來推測他們的興趣一樣。在卷積神經網絡和 Diffusion Models 中 ,當 AI 判斷這張照片裡是「貓」還是「狗」時,我需要它向我們展示在哪些地方「盯得最緊」,像是耳朵的形狀還是毛色的分布。

-----廣告,請繼續往下閱讀-----

其次是局部解釋,LIME 和 SHAP 是兩個用來發展可解釋 AI 的局部解釋技術。

SHAP 的概念來自博弈,它將每個特徵看作「玩家」,而模型的預測結果則像「收益」。SHAP 會計算每個玩家對「收益」的貢獻,讓我們可以了解各個特徵如何影響最終結果。並且,SHAP 不僅能透過「局部解釋」了解單一個結果是怎麼來的,還能透過「全局解釋」理解模型整體的運作中,哪些特徵最重要。

以實際的情景來說,SHAP 可以讓 AI 診斷出你有某種疾病風險時,指出年齡、體重等各個特徵的影響。

LIME 的運作方式則有些不同,會針對單一個案建立一個簡單的模型,來近似原始複雜模型的行為,目的是為了快速了解「局部」範圍內的操作。比如當 AI 拒絕你的貸款申請時,LIME 可以解釋是「收入不穩定」還是「信用紀錄有問題」導致拒絕。這種解釋在 Transformer 和 NLP 應用中廣泛使用,一大優勢是靈活且計算速度快,適合臨時分析不同情境下的 AI 判斷。比方說在醫療場景,LIME 可以幫助醫生理解 AI 為何推薦某種治療方案,並說明幾個主要原因,這樣醫生不僅能更快做出決策,也能增加患者的信任感。

-----廣告,請繼續往下閱讀-----

第三是反事實解釋:如果改變一點點,會怎麼樣?

如果 AI 告訴你:「這家銀行不會貸款給你」,這時你可能會想知道:是收入不夠,還是年齡因素?這時你就可以問 AI:「如果我年輕五歲,或者多一份工作,結果會怎樣?」反事實解釋會模擬這些變化對結果的影響,讓我們可以了解模型究竟是如何「權衡利弊」。

最後則是模型內部特徵的重要性排序。這種方法能顯示哪些輸入特徵對最終結果影響最大,就像揭示一道菜中,哪些調味料是味道的關鍵。例如在金融風險預測中,模型可能指出「收入」影響了 40%,「消費習慣」占了 30%,「年齡」占了 20%。不過如果要應用在像是 Transformer 模型等複雜結構時,還需要搭配前面提到的 SHAP 或 LIME 以及可視化技術,才能達到更完整的解釋效果。

講到這裡,你可能會問:我們距離能完全信任 AI 還有多遠?又或者,我們真的應該完全相信它嗎?

-----廣告,請繼續往下閱讀-----

我們終究是想解決人與 AI 的信任問題

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。因此,AI 既要「可解釋」,也要「能代理」。

當未來你和 AI 同事深度共事,你自然希望它的決策與行動能讓你認可,幫你省心省力。圖/unsplash

舉例來說,當一家公司要做一個看似「簡單」的決策時,背後的過程其實可能極為複雜。例如,快時尚品牌決定是否推出新一季服裝,不僅需要考慮過去的銷售數據,還得追蹤熱門設計趨勢、天氣預測,甚至觀察社群媒體上的流行話題。像是暖冬來臨,厚外套可能賣不動;或消費者是否因某位明星愛上一種顏色,這些細節都可能影響決策。

這些數據來自不同部門和來源,龐大的資料量與錯綜關聯使企業判斷變得困難。於是,企業常希望有個像經營大師的 AI 代理人,能吸收數據、快速分析,並在做決定時不僅給出答案,還能告訴你「為什麼要這麼做」。

傳統 AI 像個黑盒子,而可解釋 AI (XAI)則清楚解釋其判斷依據。例如,為什麼不建議推出厚外套?可能理由是:「根據天氣預測,今年暖冬概率 80%,過去三年數據顯示暖冬時厚外套銷量下降 20%。」這種透明解釋讓企業更信任 AI 的決策。

-----廣告,請繼續往下閱讀-----

但會解釋還不夠,AI 還需能真正執行。這時,就需要另一位「 AI 代理人」上場。想像這位 AI 代理人是一位「智慧產品經理」,大腦裝滿公司規則、條件與行動邏輯。當客戶要求變更產品設計時,這位產品經理不會手忙腳亂,而是按以下步驟行動:

  1. 檢查倉庫物料:庫存夠不夠?有沒有替代料可用?
  2. 評估交期影響:如果需要新物料,供應商多快能送到?
  3. 計算成本變化:用新料會不會超出成本預算?
  4. 做出最優判斷,並自動生成變更單、工單和採購單,通知各部門配合執行。

這位 AI 代理人不僅能自動處理每個環節,還會記錄每次決策結果,學習如何變得更高效。隨時間推移,這位「智慧產品經理」的判斷將更聰明、決策速度更快,幾乎不需人工干預。更重要的是,這些判斷是基於「以終為始」的原則,為企業成長目標(如 Q4 業績增長 10%)進行連續且動態地自我回饋,而非傳統系統僅月度檢核。

這兩位 AI 代理人的合作,讓企業決策流程不僅透明,還能自動執行。這正是數智驅動的核心,不僅依靠數據驅動決策,還要能解釋每一個選擇,並自動行動。這個過程可簡化為 SUPA,即「感知(Sensing)→ 理解(Understanding)→ 規劃(Planning)→ 行動(Acting)」的閉環流程,隨著數據的變化不斷進化。

偉勝乾燥工業為例,他們面臨高度客製化與訂單頻繁變更的挑戰。導入鼎新 METIS 平台後,偉勝成功將數智驅動融入業務與產品開發,專案準時率因此提升至 80%。他們更將烤箱技術與搬運機器人結合,開發出新形態智慧化設備,成功打入半導體產業,帶動業績大幅成長,創造下一個企業的增長曲線。

-----廣告,請繼續往下閱讀-----

值得一提的是,數智驅動不僅帶動業務增長,還讓員工擺脫繁瑣工作,讓工作更輕鬆高效。

數智驅動的成功不僅依賴技術,還要與企業的商業策略緊密結合。為了讓數智驅動真正發揮作用,企業首先要確保它服務於具體的業務需求,而不是為了技術而技術。

這種轉型需要有策略、文化和具體應用場景的支撐,才能讓數智驅動真正成為企業持續增長的動力。

還在猶豫數智驅動的威力?免費上手企業 AI 助理!👉 企業 AI 體驗
現在使用專屬邀請碼《 KP05 》註冊就享知:https://lihi.cc/EDUk4
訂閱泛科學獨家知識頻道,深入科技趨勢與議題內容。

👉立即免費加入

-----廣告,請繼續往下閱讀-----
文章難易度
鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
解密離岸風電政策環評:從審查標準到執行成效,一次看懂
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/21 ・3546字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

本文由 環境部 委託,泛科學企劃執行。 

政策環評是什麼,跟一般環評差在哪?

隨著公共建設的規模越來越大,傳統的環境影響評估(EIA),難以應對當今層層疊疊的環境議題。當我們評估一項重大政策時,只看「單一開發案」已經不夠,就像評估一棵樹,卻忽略了整片森林。因此,政策環境影響評估(SEA)應運而生,它看樹,也看森林,從政策的角度進行更全面的考量與評估。

與只專注於「單一開發案」的個案環評不同,政策環評更像是一場全面性的檢視,強調兩個核心重點:「整合評估」與「儘早評估」。簡單來說,這不再是逐案評估的模式,而是要求政府在制定政策時,就先全面分析可能帶來的影響,從單一行為的侷限中跳脫,轉而聚焦在整體影響的視角。無論是環境的整體變化,還是多項行為累計起來的長期影響,政策環評的目的就是讓這些潛在問題能儘早浮現、儘早解決。

除此之外,政策環評還像是一個大型的協商平台,以永續發展為最高指導原則,公開整合來自不同利益團體、民眾與各機關的意見。這裡,決策單位不再只是單純的「評分者」,而是轉為「協調者」或「仲裁者」,協調各方的意見看法在這裡得到整合,讓過程更具包容性。

-----廣告,請繼續往下閱讀-----

政策環評並沒有所謂的「否決權」,而是側重意見的蒐集與整合,讓行政機關在政策推動時,能更全面地掌握各方意見。政策環評旨在建立系統化、彈性的決策評估程序(包含量化、特徵化等評估方式),也廣納社會面或民眾滿意度等影響因子,把正式與非正式的作法一併考量進去。再來,決策程序中能層層檢討、隨時修正,也建立了追蹤機制和成效評估標準(如環境殘餘效應、累積效應等),透過學習來強化決策品質與嚴謹度。就像一場球賽,隨時根據變化、調整策略。

這樣的制度設計,就非常適合離岸風電這類規模大、跨區域、影響層面廣泛的能源政策評估,讓我們可以在政策推動初期就想到整個工程對環境、產業發展與社會的諸多影響,也為後續政策執行奠定更穩固的基礎。

政策環評並沒有否決權,而是重在整合各方意見、量化影響以及建立追蹤與修正機制,這樣的制度設計便適用於離岸風電等大型政策評估。圖/envato

離岸風電為何需要的是政策環評?

離岸風電是能源轉型的重要策略之一,但這不是只在某塊空地上架幾個風車,而是要在廣闊的大海中進行大規模建設,牽涉的不僅是發電,還涉及海洋保育、航空交通、水下文化資產等議題,更與當地漁民的權益息息相關。

這樣的大型離岸風電工程,因海洋環境的風險和不確定性極高,很容易讓人擔心生態影響。如何在海洋生態保護和綠能發展之間找到平衡點?這就需要政策環評的把關,從多方檢視這些複雜的挑戰,確保政策推行既能穩妥,又能達成發電目標。

-----廣告,請繼續往下閱讀-----

2016 年 3 月,經濟部自願提出「離岸風電區塊開發政策評估說明書」,是臺灣首次針對再生能源政策所進行的政策環評。根據這份評估說明書,政府將採分期公告、逐年檢討的方式,每三年開放 0.5~1 百萬瓩(GW)的電量額度鼓勵業者投入開發。當時環保署(現為環境部)歷經九個月召開 2 次意見徵詢會議,蒐集環評委員、專家學者、相關機關、民眾等意見,最終於同年 12 月的環評委員會作出徵詢意見。這些協商和檢討的過程,讓政策「名正言順」,得以充分顧及各方利益與生態平衡。

共通性環境議題與因應對策

在「離岸風電區塊開發政策評估說明書」中,環評會議盤點了開發過程中共通的環境議題。

首先,對於海洋生態保育的重點,特別是對中華白海豚的保護。環評會要求風機基座必須距離白海豚棲地1公里以上,以減少對其生態的干擾。實際上,這項規範在後續的實務執行中更為嚴格,例如,福海二期示範風場已退縮到 2.5 公里外,臺電二期風場甚至退到 4.2 公里外,顯示政策環評確實發揮了實質作用。此外,針對施工期間的聲音干擾,要求施工需有 30 分鐘以上的打樁緩啟動時間,並限制聲量不得超過 180 分貝等。

針對鳥類保育,政策環評也訂立了具體規範。其中,包括風機之間必須留設 500 公尺以上的鳥類穿行廊道,並在施工期間避開每年 11 月至隔年 3 月的候鳥過境期。同時,為確保這些措施確實生效,工程方也被要求設置「鳥類活動監測系統」,持續追蹤、評估風場對鳥類的影響。

-----廣告,請繼續往下閱讀-----

此外,環評會也確立了「先遠後近」的開發原則,要求優先開發較單純的航道外側區塊,待累積足夠經驗及相關資料後,再進行近岸區域的開發。這項原則考量了近海生態系的複雜性,也顧到養殖漁業的漁民權益,展現出政策環評在平衡發展需求與環境保護上的價值。

新一代的審查機制:達成能源轉型及環境保護雙贏

為提升環評效率並確保審查品質,環境部參考過去離岸風電審查經驗,制定「風力發電離岸系統開發行為環境影響評估初審作業要點」,建立了全新的二階段審查機制。

環境部推動二階段審查機制,提升離岸風電環評效率與審查品質。圖/envato

這套新機制分為兩個階段。第一階段,就像「初步檢查」,由環境部依照檢核表進行初審,並由環評審查委員會執行秘書邀集 2-5 位環評委員進行初審,通過第一階段初審之業者,可取得經濟部遴選資格,其初審結果有效期為兩年,必要時可申請展延一年。接著進入「第二階段」,開發單位檢附目的事業主管機關核配的容量證明文件等資料,提供更詳細的環境影響說明書以進行實質審查。

檢核表明確規範了 15 大項審查事項、112 項檢核項目,涵蓋開發案的全生命週期。

-----廣告,請繼續往下閱讀-----

工程面,包含風機及海上變電站基礎設置、海域電纜路線規劃、陸域設施工程等硬體設施的規範。其中,風機基礎設置必須避開海岸保護區、河口、潮間帶等環境敏感區域,且須進行地震危害度分析。海域電纜部分,除特殊情形外,埋設深度至少須達 1.5 公尺,且不得跨越中華電信海底電纜 1 公里的範圍。

環境保護上,檢核表則對施工噪音管制訂立了明確標準。舉例來說,打樁期間警戒區 750 公尺範圍內的水下噪音不得超過 160 分貝,且必須全程採用最佳噪音防制工法。同時,每個開發案或聯席審查的風場,同一時間內只能進行一支基樁施作,而日落前一小時到日出前也不得啟動新的打樁作業。

環境監測計畫更是檢核表中的重點,分為「施工前、施工期間、營運期間」三階段,每個階段都規定了詳細的監測要求(包括海域底質監測、水下噪音監測、鯨豚目視監測等)。以鯨豚監測為例,每年需執行20趟次,四季中每季至少執行 2 趟次。此外,所有監測數據都必須上傳至環境部「環保專案成果倉儲系統」(https://epaw.moenv.gov.tw/)供各界查閱。

這套標準化的審查機制不僅解決了「同一風場可能有多家廠商重複調查或審查」的資源浪費,也透過明確的檢核項目,讓開發單位在規劃階段就能掌握更具體的環境保護要求。不僅如此,該機制亦確保了環境保護標準前後一致,避免不同案件之間標準不一。

-----廣告,請繼續往下閱讀-----

結語

透過新的審查機制,環境部正積極推動再生能源開發案的環評審查作業,在提升行政效率之餘,也確保環境影響評估的品質,支持臺灣的離岸風電開發及國家能源轉型政策,也做好把關。藉由標準化檢核表和二階段審查制度,期待能在推動能源轉型的同時落實環境保護。

為確保制度能持續精進,環境部每半年至一年會進行制度檢討,並持續公開所有環評書件於「環評書件查詢系統」(https://eiadoc.moenv.gov.tw/eiaweb/)。此外,環評會議召開前一週,也必須在指定網站公布開會訊息,讓民眾能申請列席旁聽或發表意見。透明化措施一方面展現了政府推動永續發展的決心,另一方面也確保全民能共同參與監督離岸風電的發展過程。未來,這套制度將在各界的檢視與建議中持續完善,為臺灣的永續發展貢獻心力,發揮環評作業的最大效益。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
222 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

30
1

文字

分享

0
30
1
民眾黨是未來台灣政治的樞紐?
林澤民_96
・2024/01/30 ・3382字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

一、前言

選後的立法院三黨不過半,但民眾黨有八席不分區立委,足以與民進黨或國民黨結成多數聯盟,勢將在國會居於樞紐地位。無獨有偶的是:民眾黨主席柯文哲在總統大選得到 26.5% 的選票,屈居第三,但因其獲得部分藍、綠選民的支持,在選民偏好順序組態的基礎上,它卻也同樣地居於樞紐地位。這個地位,將足以讓柯文哲及民眾黨在選後的台灣政壇持續激盪。

二、柯文哲是「孔多塞贏家」?

這次總統大選,誰能脫穎而出並不是一個特別令人殷盼的問題,更值得關心的問題是藍白綠「三跤㧣」在選民偏好順序組態中的消長。台灣總統大選採多數決選制,多數決選制英文叫 first-past-the-post(FPTP),簡單來講就是票多的贏,票少的輸。在 10 月中藍白合破局之後,賴蕭配會贏已經沒有懸念,但這只是選制定規之下的結果,換了另一個選制,同樣的選情可能就會險象環生。

從另一個角度想:選制是人為的,而選情反映的是社會現實。政治學者都知道天下沒有十全十美的選制;既定的選制推出了一位總統,並不代表選情的張力就會成為過眼雲煙。當三股社會勢力在制度的帷幕後繼續激盪,台灣政治將無法因新總統的誕生而趨於穩定。

圖/作者自製

如果在「三跤㧣」選舉之下,選情的激盪從候選人的得票多少看不出來,那要從哪裡看?政治學提供的一個方法是把候選人配對 PK,看是否有一位候選人能在所有的 PK 中取勝。這樣的候選人並不一定存在,如果不存在,那代表有 A 與 B 配對 A 勝,B 與 C 配對 B 勝,C 與 A 配對 C 勝的 A>B>C>A 的情形。這種情形,一般叫做「循環多數」(cyclical majorities),是 18 世紀法國學者孔多塞(Nicolas de Condorcet)首先提出。循環多數的存在意涵選舉結果隱藏了政治動盪。

-----廣告,請繼續往下閱讀-----

另一方面,如果有一位候選人能在配對 PK 時擊敗所有的其他候選人,這樣的候選人稱作「孔多塞贏家」(Condorcet winner),而在配對 PK 時均被擊敗的候選人則稱作「孔多塞輸家」(Condorcet loser)。三角嘟的選舉若無循環多數,則一定會有孔多塞贏家和孔多塞輸家,然而孔多塞贏家不一定即是多數決選制中贏得選舉的候選人,而多數決選制中贏得選舉的候選人卻可能是孔多塞輸家。

如果多數決選制中贏得選舉的候選人不是孔多塞贏家,那與循環多數一樣,意涵選後政治將不會穩定。

那麼,台灣這次總統大選,有沒有孔多塞贏家?如果有,是多數決選制之下當選的賴清德嗎?我根據戴立安先生調查規劃的《美麗島電子報》追蹤民調第 109 波(1 月 11 日至 12 日),也是選前最後民調的估計,得到的結果令人驚訝:得票墊後的柯文哲很可能是孔多塞贏家,而得票最多的賴清德很可能是孔多塞輸家。果然如此,那白色力量將會持續地激盪台灣政治!

我之前根據美麗島封關前第 101 波估計,侯友宜可能是孔多塞贏家,而賴清德是孔多塞輸家。現在得到不同的結果,顯示了封關期間的三股政治力量的消長。本來藍營期望的棄保不但沒有發生,而且柯文哲選前之夜在凱道浩大的造勢活動,還震驚了藍綠陣營。民調樣本估計出的孔多塞贏家本來就不準確,但短期內的改變,很可能反映了選情的激盪,甚至可能反映了循環多數的存在。

-----廣告,請繼續往下閱讀-----

三、如何從民調樣本估計孔多塞贏家

根據這波民調,總樣本 N=1001 位受訪者中,如果當時投票,會支持賴清德的受訪者共 355 人,佔 35.4%;支持侯友宜的受訪者共 247 人,佔 24.7%。支持柯文哲的受訪者共 200 人,佔 19.9%。

美麗島民調續問「最不希望誰當總統,也絕對不會投給他的候選人」,在會投票給三組候選人的 802 位支持者中,一共有 572 位對這個問題給予了明確的回答。《美麗島電子報》在其網站提供了交叉表如圖:

根據這個交叉表,我們可以估計每一位明確回答了續問的受訪者對三組候選人的偏好順序,然後再依這 572 人的偏好順序組態來判定在兩兩 PK 的情形下,候選人之間的輸贏如何。我得到的結果是:

  • 柯文哲 PK 賴清德:311 > 261(54.4% v. 45.6%)
  • 柯文哲 PK 侯友宜:287 > 285(50.2% v. 49.8%)
  • 侯友宜 PK 賴清德:293 > 279(51.2% v. 48.8%)

所以柯文哲是孔多塞贏家,賴清德是孔多塞輸家。當然我們如果考慮抽樣誤差(4.1%),除了柯文哲勝出賴清德具有統計顯著性之外,其他兩組配對可說難分難解。但在這 N=572 的小樣本中,三位候選人的得票率分別是:賴清德 40%,侯友宜 33%,柯文哲 27%,與選舉實際結果幾乎一模一樣。至少在這個反映了選舉結果的樣本中,柯文哲是孔多塞贏家。依多數決選制,孔多塞輸家賴清德當選。

-----廣告,請繼續往下閱讀-----

不過以上的分析有一個問題:各陣營的支持者中,有不少人無法明確回答「最不希望看到誰當總統,也絕對不會投給他做總統」的候選人。最嚴重的是賴清德的支持者,其「無反應率」(nonresponse rate)高達 34.5%。相對而言,侯友宜、柯文哲的支持者則分別只有 24.1%、23.8% 無法明確回答。為什麼賴的支持者有較多人無法指認最討厭的候選人?一個假設是因為藍、白性質相近,對許多綠營選民而言,其候選人的討厭程度可能難分軒輊。反過來說,藍、白陣營的選民大多數會最討厭綠營候選人,因此指認較無困難。無論如何,把無法明確回答偏好順序的受訪者歸為「遺失值」(missing value)而棄置不用總不是很恰當的做法,在這裡尤其可能會造成賴清德支持者數目的低估。

補救的辦法之一是在「無法明確回答等於無法區別」的假設下,把「遺失值」平分給投票對象之外的其他兩位候選人,也就是假設他們各有 1/2 的機會是無反應受訪者最討厭的候選人。這樣處理的結果,得到

  • 柯文哲 PK 賴清德:389 > 413(48.5% v. 51.5%)
  • 柯文哲 PK 侯友宜:396 > 406(49.4% v. 50.6%)
  • 侯友宜 PK 賴清德:376 > 426(46.9% v. 53.1%)

此時賴清德是孔多塞贏家,而柯文哲是孔多塞輸家。在這 N=802 的樣本中,三位候選人的得票率分別是:賴清德 44%,侯友宜 31%,柯文哲 25%。雖然依多數決選制,孔多塞贏家賴清德當選,但賴的得票率超過實際選舉結果(40%)。用無實證的假設來填補遺失值,反而造成賴清德支持者數目的高估。

如果擔心「無法明確回答等於無法區別」的假設太勉強,補救的辦法之二是把「遺失值」依有反應受訪者選擇最討厭對象的同樣比例,分給投票對象之外的其他兩位候選人。這樣處理的結果,得到

-----廣告,請繼續往下閱讀-----
  • 柯文哲 PK 賴清德:409 > 393(51.0% v. 49.0%)
  • 柯文哲 PK 侯友宜:407 > 395(50.8% v. 49.2%)
  • 侯友宜 PK 賴清德:417 > 385(52.0% v. 48.0%)

此時柯文哲又是孔多塞贏家,而賴清德又是孔多塞輸家了。這個樣本也是 N=802,三位候選人的得票率分別是:賴清德 44%,侯友宜 31%,柯文哲 25%,與上面的結果一樣。

以上三種無反應處理方法都不盡完美。第一種把無反應直接當遺失值丟棄,看似最不可取。然而縮小的樣本裡,三位候選人的支持度與實際選舉結果幾乎完全一致。後兩種以不同的假設補足了遺失值,但卻過度膨脹了賴清德的支持度。如果以樣本中候選人支持度與實際結果的比較來判斷遺失值處理方法的效度,我們不能排斥第一種方法及其結果。

無論如何,在缺乏完全資訊的情況下,我們發現的確有可能多數決輸家柯文哲是孔多塞贏家,而多數決贏家賴清德是孔多塞輸家。因為配對 PK 結果缺乏統計顯著性,我們甚至不能排除循環多數的存在。此後四年,多數決選制產生的總統能否在三角嘟力量的激盪下有效維持政治穩定,值得我們持續觀察。

四、結語

柯文哲之所以可以是孔多塞贏家,是因為藍綠選民傾向於最不希望對方的候選人當總統。而白營的中間偏藍位置,讓柯文哲與賴清德 PK 時,能夠得到大多數藍營選民的奧援而勝出。同樣的,當他與侯友宜 PK 時,他也能夠得到一部份綠營選民的奧援。只要他的支持者足夠,他也能夠勝出。反過來看,當賴清德與侯友宜 PK 時,除非他的基本盤夠大,否則從白營得到的奧援不一定足夠讓他勝出。民調 N=572 的樣本中,賴清德得 40%,侯友宜得 33%,柯文哲得 27%。由於柯的支持者討厭賴清德(52.5%)遠遠超過討厭侯友宜(23.7%),賴雖然基本盤較大,能夠從白營得到的奧援卻不多。而侯雖基本盤較小,卻有足夠的奧援。柯文哲之所以成為孔多塞贏家,賴清德之所以成為孔多塞輸家,都是這些因素的數學結果。

-----廣告,請繼續往下閱讀-----

資料來源

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

林澤民_96
37 篇文章 ・ 245 位粉絲
台大電機系畢業,美國明尼蘇達大學政治學博士, 現任教於美國德州大學奧斯汀校區政府系。 林教授每年均參與中央研究院政治學研究所及政大選研中心 「政治學計量方法研習營」(Institute for Political Methodology)的教學工作, 並每兩年5-6月在台大政治系開授「理性行為分析專論」密集課程。 林教授的中文部落格多為文學、藝術、政治、社會、及文化評論。