Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

有趣、開心、好玩:東大生產研究所的科學同樂會

高 至輝
・2013/06/07 ・2670字 ・閱讀時間約 5 分鐘 ・SR值 502 ・六年級

作者:高至輝(東京大學大學院醫學系研究科博士生),許淑真(東京大學醫科學研究所博士班)

要怎麼將實驗室裡生硬的科學知識傳遞給一般民眾,這一直是科普教育的大哉問,日本科學推廣公司Leave a nest社長-丸幸宏就曾經感嘆:「每天都從大學,研究機關,或是企業等等地方產生豐富的科學知識,但是卻沒有方法將這些知識傳遞給一般大眾。」這雖然是日本科學推廣所面臨的問題,但反觀台灣的狀況也是一樣的嚴峻,甚至更加窘迫。

的確,隨著科學的蓬勃,先端的科學研究也朝向越來越專精的方向發展。為瞭解一項知識所隨之而來的龐大背景資料,很容易讓大眾對於科學產生艱深難懂的刻板印象。惡性循環的結果,科學研究自然容易被歸類為象牙塔裡的產物,只讓塔裡的專門學者孤芳自賞。這樣的結論雖然讓人沮喪,但是,換個思考方式,如果能夠降低進入的門檻,也許就能夠讓現狀獲得改善。針對這點,東京大學生產研究所每年都會舉辦OPEN CAMPUS的活動,期間會開放校園以及實驗室,並提供活動供民眾參與。這篇文章我們將介紹幾個有趣的科學展演,帶大家看看生產研究所怎麼把自己高深的研究介紹給一般大眾。(附註:這次OPEN CAMPUS把主要對象設定為國高中生,但是現場也有為數不少的家長帶小學或以下的兒童參加。)

親身體驗

-----廣告,請繼續往下閱讀-----

一般而言,展示有趣研究成品讓來訪的民眾能夠親身體驗是最直接的作法。在這次的會場上有一具和自動車相連的機器人就非常吸引大眾目光。這部遠距操作半人形自動車,操作員能利用3D眼罩式顯示器同步觀察到機器人即時的視野,配合改裝的kinect動作偵測器,即可從遠端遙控視野的方向和自動車行進。但對於民眾來說只要帶上眼罩,轉轉頭,立刻可以感受到即時3D遠距視覺所帶來的新鮮感;動動手,也可以發現到機器人會作出相對應的動作,現場不時的傳來「好厲害」或是「好有趣」等等的讚嘆聲。

另外一項展示則是結合各種視覺重現技術所實現的導覽巴士。坐上這台高科技小巴,戴上頭戴式3D立體顯示器,東大校園裡立即出現實際中不存在的日本飛鳥時代京城,即時影像配合上聲音解說,彷彿就是一場穿越時空之旅。像是這種成果有趣、看得見摸得著的應用性研究,即使完全不知道背後複雜的原理,大人小孩都可以用身體去「體驗」科技所帶來的樂趣,如果對於背後的原理有興趣的話,現場也一定會有海報展示或是解說員負責更深入的講解,可深可淺是這類展演的一大特徵。

圖一:遠距操作半人形自動車。操作員利用3D眼罩式顯示器同步觀察到機器人即時的視野,配合改裝的kinect動作偵測器,即可從遠端遙控自動車行進。
圖二A:導覽巴士外觀。
圖二B:頭戴式3D立體顯示器。

開放大型設施

此外,直接開放大型或是特別的研究設施供大眾體驗也是不錯的方法,像是環境風洞實驗室擁有的風洞設施。雖然在日本常常被被科學節目介紹,但是一般人很難有機會親身體驗。風洞在研究上的用途相當廣泛,不僅可以擺設建築模型,進行各種建築物的耐風,大氣擴散,或是熱對流的模擬測試,甚至也可以進行人體耐風性的實際測試。先不談艱澀的部分,這次的展示便是很直觀的讓來訪者實際置身風洞中,在風洞所製造最大每秒20公尺的強風下(相當於每小時72公里的八級陣風),體驗強風襲來的快感,對於體驗過的人還頒發一張「體驗證明書」,除了記念上面也連帶的介紹上述的相關實驗,頗具巧思。

-----廣告,請繼續往下閱讀-----
圖三(左右):在八級強風吹襲下,連大人都站立不穩。一個不平衡,立刻被吹跑。

若說起這個校區的另一個著名的研究設施,當屬隸屬於應用音響實驗室的無響室。顧名思義,無響室就是一間完全沒有回音的房間。房間的六面牆壁全部鋪滿平版海綿,中間用鐵網織成地面,僅留下中間和通路部分舖設鐵架供人站立,這些設計都是為了降低空間造成的回音干擾,以增加模擬時的正確性,配合六聲道喇叭(上下與四方)即可重現各種音場,搭配利用立體環繞收音麥克風所錄製的檔案,即可在無響室中模擬不同音場。

現場他們產示了像煙火大會,或是交響樂團指揮位置等等錄音的重現,另外也透過即時的收音和模擬,還能讓讓無響室立時化身成兩個不同演奏廳,搭配長笛的現場演奏,讓觀眾實際體驗箇中音響效果的差異, 再加上簡單易懂的說明,讓參加的大人小孩都對於該實驗室的研究留下了深刻的印象。

圖五A:大家聚在無響室中央等待體驗開始,上方中央為即時收音用麥克風。
圖五B:現場的長笛演奏展現即時音場模擬的效果。

類比實驗

當然有些實驗室的成果難以直接展示,而設施也不容易讓參觀者親身體驗,這時將高深的實驗「類比」成一些可以動手做的小實驗也是不錯的方法。例如,竹內研究室著重於再生醫療,實驗室內的海報展示場裡,貼滿了介紹利用不同的技術建構細胞的3D立體培養的海報。而實驗室的走廊上,則是「複製手指」的體驗營。透過利用石膏複製出參訪者的手指這樣簡單的體驗,也能夠讓參訪者多少體會到「再生」的意義和動手做的樂趣。

-----廣告,請繼續往下閱讀-----

其他還有不少有趣的展示,例如自製的肌年齡測定器,或是經由組裝不同形狀的輪胎探討電車車輪設計的原理,甚至動感模擬駕車體驗等等族繁不及備載,整個校區就像一個科學主題遊樂園,在可深可淺的前提下,傳達出科學有趣、開心、好玩的一面,姑且不論這些設計對於科學原理是否有更深入的了解,但是透過親身體驗,對於加強大眾對科學的關心絕對有正向的幫助。

圖六A:模擬東京首都高速公路的動感駕車體驗。
圖六B:組裝不同的輪子,讓車子能夠順利轉彎。藉此探討電車的設計原理。

當然,實驗的題目先天上或許決定了向一般大眾展示時的難度,然而在這次經驗中我們認為最重要的是「同樂」的想法。參觀的過程中,有時會遇到講解的學生,甚至是老師,用一種很像小孩子把自己得意的玩具「現」給朋友看的那種閃閃發光的神情來介紹自己的成果(或是體驗活動),最後用熱情的眼光對參訪者說「謝謝你們來參觀」。我們則不禁想著,有時候做科學真的可以很單純。

這篇文章只是我們在這次的Open Campus所觀察到的幾個例子,不知道大家又會用什麼樣的方式,來把自己對於研究的熱情給傳播出去呢?

-----廣告,請繼續往下閱讀-----
文章難易度
高 至輝
9 篇文章 ・ 0 位粉絲
東京大學醫學系研究科特任研究員。大學主修化學,從碩士轉攻結蛋白質構生物學,其後飛往日本攻讀神經生理學,畢業後留在日本繼續探索有關神經迴路形成的機制。私底下屬有跡可循的雜食性,對於理解各種人文或科學概念的發展進程充滿興趣。

0

0
0

文字

分享

0
0
0
拆解邊緣AI熱潮:伺服器如何提供穩固的運算基石?
鳥苷三磷酸 (PanSci Promo)_96
・2025/05/21 ・5071字 ・閱讀時間約 10 分鐘

本文與 研華科技 合作,泛科學企劃執行。

每次 NVIDIA 執行長黃仁勳公開發言,總能牽動整個 AI 產業的神經。然而,我們不妨設想一個更深層的問題——如今的 AI 幾乎都倚賴網路連線,那如果哪天「網路斷了」,會發生什麼事?

想像你正在自駕車打個盹,系統突然警示:「網路連線中斷」,車輛開始偏離路線,而前方竟是萬丈深谷。又或者家庭機器人被駭,開始暴走跳舞,甚至舉起刀具向你走來。

這會是黃仁勳期待的未來嗎?當然不是!也因為如此,「邊緣 AI」成為業界關注重點。不靠雲端,AI 就能在現場即時反應,不只更安全、低延遲,還能讓數據當場變現,不再淪為沉沒成本。

什麼是邊緣 AI ?

邊緣 AI,乍聽之下,好像是「孤單站在角落的人工智慧」,但事實上,它正是我們身邊最可靠、最即時的親密數位夥伴呀。

當前,像是企業、醫院、學校內部的伺服器,個人電腦,甚至手機等裝置,都可以成為「邊緣節點」。當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。簡單來說,就是將原本集中在遠端資料中心的運算能力,「搬家」到更靠近數據源頭的地方。

-----廣告,請繼續往下閱讀-----

那麼,為什麼需要這樣做?資料放在雲端,集中管理不是更方便嗎?對,就是不好。

當數據在這些邊緣節點進行運算,稱為邊緣運算;而在邊緣節點上運行 AI ,就被稱為邊緣 AI。/ 圖片來源:MotionArray

第一個不好是物理限制:「延遲」。
即使光速已經非常快,數據從你家旁邊的路口傳到幾千公里外的雲端機房,再把分析結果傳回來,中間還要經過各種網路節點轉來轉去…這樣一來一回,就算只是幾十毫秒的延遲,對於需要「即刻反應」的 AI 應用,比如說工廠裡要精密控制的機械手臂、或者自駕車要判斷路況時,每一毫秒都攸關安全與精度,這點延遲都是無法接受的!這是物理距離與網路架構先天上的限制,無法繞過去。

第二個挑戰,是資訊科學跟工程上的考量:「頻寬」與「成本」。
你可以想像網路頻寬就像水管的粗細。隨著高解析影像與感測器數據不斷來回傳送,湧入的資料數據量就像超級大的水流,一下子就把水管塞爆!要避免流量爆炸,你就要一直擴充水管,也就是擴增頻寬,然而這樣的基礎建設成本是很驚人的。如果能在邊緣就先處理,把重要資訊「濃縮」過後再傳回雲端,是不是就能減輕頻寬負擔,也能節省大量費用呢?

第三個挑戰:系統「可靠性」與「韌性」。
如果所有運算都仰賴遠端的雲端時,一旦網路不穩、甚至斷線,那怎麼辦?很多關鍵應用,像是公共安全監控或是重要設備的預警系統,可不能這樣「看天吃飯」啊!邊緣處理讓系統更獨立,就算暫時斷線,本地的 AI 還是能繼續運作與即時反應,這在工程上是非常重要的考量。

所以你看,邊緣運算不是科學家們沒事找事做,它是順應數據特性和實際應用需求,一個非常合理的科學與工程上的最佳化選擇,是我們想要抓住即時數據價值,非走不可的一條路!

邊緣 AI 的實戰魅力:從工廠到倉儲,再到你的工作桌

知道要把 AI 算力搬到邊緣了,接下來的問題就是─邊緣 AI 究竟強在哪裡呢?它強就強在能夠做到「深度感知(Deep Perception)」!

-----廣告,請繼續往下閱讀-----

所謂深度感知,並非僅僅是對數據進行簡單的加加減減,而是透過如深度神經網路這類複雜的 AI 模型,從原始數據裡面,去「理解」出更高層次、更具意義的資訊。

研華科技為例,旗下已有多項邊緣 AI 的實戰應用。以工業瑕疵檢測為例,利用物件偵測模型,快速將工業產品中的瑕疵挑出來,而且由於 AI 模型可以使用同一套參數去檢測,因此品管上能達到一致性,減少人為疏漏。尤其在高產能工廠中,檢測速度必須快、狠、準。研華這套 AI 系統每分鐘最高可處理 8,000 件產品,替工廠節省大量人力,同時確保品質穩定。這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。

這樣的效能來自於一台僅有膠囊咖啡機大小的邊緣設備—IPC-240。/ 圖片提供:研華科技

此外,在智慧倉儲場域,研華與威剛合作,研華與威剛聯手合作,在 MIC-732AO 伺服器上搭載輝達的 Nova Orin 開發平台,打造倉儲系統的 AMR(Autonomous Mobile Robot) 自走車。這跟過去在倉儲系統中使用的自動導引車 AGV 技術不一樣,AMR 不需要事先規劃好路線,靠著感測器偵測,就能輕鬆避開障礙物,識別路線,並且將貨物載到指定地點存放。

當然,還有語言模型的應用。例如結合檢索增強生成 ( RAG ) 跟上下文學習 ( in-context learning ),除了可以做備忘錄跟排程規劃以外,還能將實務上碰到的問題記錄下來,等到之後碰到類似的問題時,就能詢問 AI 並得到解答。

你或許會問,那為什麼不直接使用 ChatGPT 就好了?其實,對許多企業來說,內部資料往往具有高度機密性與商業價值,有些場域甚至連手機都禁止員工帶入,自然無法將資料上傳雲端。對於重視資安,又希望運用 AI 提升效率的企業與工廠而言,自行部署大型語言模型(self-hosted LLM)才是理想選擇。而這樣的應用,並不需要龐大的設備。研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。

但問題也接著浮現:要在這麼小的設備上跑大型 AI 模型,會不會太吃資源?這正是目前 AI 領域最前沿、最火熱的研究方向之一:如何幫 AI 模型進行「科學瘦身」,又不減智慧。接下來,我們就來看看科學家是怎麼幫 AI 減重的。

-----廣告,請繼續往下閱讀-----

語言模型瘦身術之一:量化(Quantization)—用更精簡的數位方式來表示知識

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。這其實跟圖片壓縮有點像:有些畫面細節我們肉眼根本看不出來,刪掉也不影響整體感覺,卻能大幅減少檔案大小。

模型量化的原理也是如此,只不過對象是模型裡面的參數。這些參數原先通常都是以「浮點數」表示,什麼是浮點數?其實就是你我都熟知的小數。舉例來說,圓周率是個無窮不循環小數,唸下去就會是3.141592653…但實際運算時,我們常常用 3.14 或甚至直接用 3,也能得到夠用的結果。降低模型參數中浮點數的精度就是這個意思! 

然而,量化並不是那麼容易的事情。而且實際上,降低精度多少還是會影響到模型表現的。因此在設計時,工程師會精密調整,確保效能在可接受範圍內,達成「瘦身不減智」的目標。

當硬體資源有限,大模型卻越來越龐大,「幫模型減肥」就成了邊緣 AI 的重要課題。/ 圖片來源:MotionArray

模型剪枝(Model Pruning)—基於重要性的結構精簡

建立一個 AI 模型,其實就是在搭建一整套類神經網路系統,並訓練類神經元中彼此關聯的參數。然而,在這麼多參數中,總會有一些參數明明佔了一個位置,卻對整體模型沒有貢獻。既然如此,不如果斷將這些「冗餘」移除。

這就像種植作物的時候,總會雜草叢生,但這些雜草並不是我們想要的作物,這時候我們就會動手清理雜草。在語言模型中也會有這樣的雜草存在,而動手去清理這些不需要的連結參數或神經元的技術,就稱為 AI 模型的模型剪枝(Model Pruning)。

-----廣告,請繼續往下閱讀-----

模型剪枝的效果,大概能把100變成70這樣的程度,說多也不是太多。雖然這樣的縮減對於提升效率已具幫助,但若我們要的是一個更小幾個數量級的模型,僅靠剪枝仍不足以應對。最後還是需要從源頭著手,採取更治本的方法:一開始就打造一個很小的模型,並讓它去學習大模型的知識。這項技術被稱為「知識蒸餾」,是目前 AI 模型壓縮領域中最具潛力的方法之一。

知識蒸餾(Knowledge Distillation)—讓小模型學習大師的「精髓」

想像一下,一位經驗豐富、見多識廣的老師傅,就是那個龐大而強悍的 AI 模型。現在,他要培養一位年輕學徒—小型 AI 模型。與其只是告訴小型模型正確答案,老師傅 (大模型) 會更直接傳授他做判斷時的「思考過程」跟「眉角」,例如「為什麼我會這樣想?」、「其他選項的可能性有多少?」。這樣一來,小小的學徒模型,用它有限的「腦容量」,也能學到老師傅的「智慧精髓」,表現就能大幅提升!這是一種很高級的訓練技巧,跟遷移學習有關。

舉個例子,當大型語言模型在收到「晚餐:鳳梨」這組輸入時,它下一個會接的詞語跟機率分別為「炒飯:50%,蝦球:30%,披薩:15%,汁:5%」。在知識蒸餾的過程中,它可以把這套機率表一起教給小語言模型,讓小語言模型不必透過自己訓練,也能輕鬆得到這個推理過程。如今,許多高效的小型語言模型正是透過這項技術訓練而成,讓我們得以在資源有限的邊緣設備上,也能部署愈來愈強大的小模型 AI。

但是!即使模型經過了這些科學方法的優化,變得比較「苗條」了,要真正在邊緣環境中處理如潮水般湧現的資料,並且高速、即時、穩定地運作,仍然需要一個夠強的「引擎」來驅動它們。也就是說,要把這些經過科學千錘百鍊、但依然需要大量計算的 AI 模型,真正放到邊緣的現場去發揮作用,就需要一個強大的「硬體平台」來承載。

-----廣告,請繼續往下閱讀-----

邊緣 AI 的強心臟:SKY-602E3 的三大關鍵

像研華的 SKY-602E3 塔式 GPU 伺服器,就是扮演「邊緣 AI 引擎」的關鍵角色!那麼,它到底厲害在哪?

一、核心算力
它最多可安裝 4 張雙寬度 GPU 顯示卡。為什麼 GPU 這麼重要?因為 GPU 的設計,天生就擅長做「平行計算」,這正好就是 AI 模型裡面那種海量數學運算最需要的!

你想想看,那麼多數據要同時處理,就像要請一大堆人同時算數學一樣,GPU 就是那個最有效率的工具人!而且,有多張 GPU,代表可以同時跑更多不同的 AI 任務,或者處理更大流量的數據。這是確保那些科學研究成果,在邊緣能真正「跑起來」、「跑得快」、而且「能同時做更多事」的物理基礎!

二、工程適應性——塔式設計。
邊緣環境通常不是那種恆溫恆濕的標準機房,有時是在工廠角落、辦公室一隅、或某個研究實驗室。這種塔式的機箱設計,體積相對緊湊,散熱空間也比較好(這對高功耗的 GPU 很重要!),部署起來比傳統機架式伺服器更有彈性。這就是把高性能計算,進行「工程化」,讓它能適應台灣多樣化的邊緣應用場景。

三、可靠性
SKY-602E3 用的是伺服器等級的主機板、ECC 糾錯記憶體、還有備援電源供應器等等。這些聽起來很硬的規格,背後代表的是嚴謹的工程可靠性設計。畢竟在邊緣現場,系統穩定壓倒一切!你總不希望 AI 分析跑到一半就掛掉吧?這些設計確保了部署在現場的 AI 系統,能夠長時間、穩定地運作,把實驗室裡的科學成果,可靠地轉化成實際的應用價值。

-----廣告,請繼續往下閱讀-----
研華的 SKY-602E3 塔式 GPU 伺服器,體積僅如後背包大小,卻能輕鬆支援語言模型的運作,實現高效又安全的 AI 解決方案。/ 圖片提供:研華科技

台灣製造 × 在地智慧:打造專屬的邊緣 AI 解決方案

研華科技攜手八維智能,能幫助企業或機構提供客製化的AI解決方案。他們的技術能力涵蓋了自然語言處理、電腦視覺、預測性大數據分析、全端軟體開發與部署,及AI軟硬體整合。

無論是大小型語言模型的微調、工業瑕疵檢測的模型訓練、大數據分析,還是其他 AI 相關的服務,都能交給研華與八維智能來協助完成。他們甚至提供 GPU 與伺服器的租借服務,讓企業在啟動 AI 專案前,大幅降低前期投入門檻,靈活又實用。

台灣有著獨特的產業結構,從精密製造、城市交通管理,到因應高齡化社會的智慧醫療與公共安全,都是邊緣 AI 的理想應用場域。更重要的是,這些情境中許多關鍵資訊都具有高度的「時效性」。像是產線上的一處異常、道路上的突發狀況、醫療設備的即刻警示,這些都需要分秒必爭的即時回應。

如果我們還需要將數據送上雲端分析、再等待回傳結果,往往已經錯失最佳反應時機。這也是為什麼邊緣 AI,不只是一項技術創新,更是一條把尖端 AI 科學落地、真正發揮產業生產力與社會價值的關鍵路徑。讓數據在生成的那一刻、在事件發生的現場,就能被有效的「理解」與「利用」,是將數據垃圾變成數據黃金的賢者之石!

👉 更多研華Edge AI解決方案
👉 立即申請Server租借

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
激盪全民對科普的想像!Open Call 成果展 5 月 26 日盛大登場
PanSci_96
・2023/05/10 ・1712字 ・閱讀時間約 3 分鐘

國科會首度向全國高中職及大專院校廣下英雄帖,舉辦「Open Call 科普 創意松」,得獎名單已揭曉,並將於今(112)年 5 月 26 日在臺北松山文創園區一號倉庫進行頒獎及展示得獎作品,當日將結合國科會科普活動計畫及科普產品製播計畫成果一同展出,讓各界能藉此機會相互激盪對科普的想像!

兼顧科普傳播與社會需求,將學生科普創意轉換為未來社會影響力

聚焦校園年輕世代所舉辦的「Open Call 科普創意松」徵件活動,分「科普創意提案」及「科普短片徵件」兩類,鼓勵高職中職及大專院校學生,透過多元科普傳播模式和影音創作發揮社會影響力。

自去(111)年 8 月底啟動徵件,有將近 90 所學校、400 多隊報名、超過 1200 人次的師生參與。在學子創意孵化的過程中,國科會也邀請業界各領域執牛耳的輔導業師,透過業師陪伴及前後世代的交流互動,優化學子的提案創意並強化其作品未來之可行性。

「科普創意提案」獲獎案例展現出青年學子對於科學教育、環境永續、生 態保育、偏鄉孩童心理輔導等議題的關注與熱情,並嘗試透過創新的科普傳播手法為在地社會議題尋求新解方。

-----廣告,請繼續往下閱讀-----

大專組金獎由來自臺北醫學大學及中國醫藥大學合組團隊「醫線教育」獲得,該團隊跨區域、跨校號召志同道合夥伴,針對疾病診斷邏輯,設計互動式教具與課程,幫助國內外大學生模擬情境以銜 接基礎知識在臨床的應用,獲評審們一致認同是難能可貴的社會實踐行動。

高中職組金獎,由彰化二林工商的「哇哈哈科學服務團」團隊獲獎,該團隊以在地高中職學生為出發點,率先成立科學服務社團,學習科技教育知識,再教導鄰近國中小學童,達到自助人助,進一步儲備種子志願團,由受助者變成助人者,形成良善循環機制,不僅將科學教育資源帶入偏鄉,培養在地科學人才, 且結合科學教育與地方文化,對地方經濟和社會發展有正面且積極的影響。

科普短片類大專組金獎作品為清華大學「清大天文社」之〈進擊的黑洞:類星體〉,該創作短片從熱門的科學新聞切入,呼應天文迷對於黑洞的好奇心, 片中穿插許多令人會心一笑的譬喻與橋段,風趣又不失其意涵。

高中職組金獎作品,是由虎尾高中「動感光波」團隊所創作之短片〈光通訊〉,主要講述以 發射器(燈泡)產生之光訊號,經由接收、轉換成電訊號,進而發出特定音階, 透過生動活潑的表演和拍攝手法,故事情節可愛清新,搭配簡易動畫和資訊圖卡,讓影片具知識性及趣味性。

-----廣告,請繼續往下閱讀-----

當日除了展示 21 個來自校園學子的獲獎科普創意,下午在舞台區會放映獲獎的 11 支科普短片及科普產品製播計畫影片,內容生動更兼具知識性與教育性,讓民眾沉浸於深入淺出的科學知識寶庫與科普視聽饗宴。

精選年度科普活動計畫作品及科普產品製播影片成果同步展出

國科會為持續推動全民科普,使科學教育不僅走入校園、更深入大眾生活,今年首度集結科普相關計畫 45 個團隊共同展出成果,國內長期推動科普、第一線面對學子的科普推手,為本次展覽設計豐富多元的科學演示,將深奧的科研成果轉化為各年齡層易懂的手作互動實驗等,包括循環材料與物件微展覽、 原住民文化數學數位教材、科普桌遊、AI 自駕車模擬行駛、植物染手作體驗、 蝴蝶科普解謎遊戲等有趣又豐富的科普體驗;此外,「數感盃中英文數學詩創作競賽」的創作成果,也將在展場中幻化為 24 公尺長的「數學詩牆」,當縝密精準的數學與柔軟詩意的文學交會,迸發出跨域創作的科普新火花!歡迎大小朋友帶著好奇心一同共襄盛舉!

活動官網

Open Call 頒獎典禮暨科普成果展」活動資訊

  • 時間:2023 年 5 月 26 日(星期五)上午 10:00 ~ 下午 5:00
  • 地點:臺北松山文創園區一號倉庫(信義區光復南路 133 號)
  • 展覽活動詳情請上活動官網:www.opencall-nstc.org.tw
-----廣告,請繼續往下閱讀-----
PanSci_96
1262 篇文章 ・ 2411 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
0

文字

分享

0
2
0
本地工作者暢談科學時代的人文發展:哲學、專才培訓與大眾教育
臺灣邏輯、方法論、科學與科技哲學學會_96
・2023/02/01 ・5061字 ・閱讀時間約 10 分鐘

  • 撰文/詹遠至|臺灣邏輯、方法論、科學與科技哲學學會助理、臺灣大學哲學系碩士生
  • 校對/陳樂知|臺灣大學哲學系副教授、臺大傳統與科學形上學研究中心執行長、臺灣邏輯、方法論、科學與科技哲學學會秘書長

我們所處的二十一世紀已是科學的時代,科學理論被視為宇宙的終極答案。在這個「科學至上」的時代,人文探求還如何可能?人文如何可以與科學攜手並進?以「人文」與「科學」之間的對話為主軸,臺灣邏輯、方法論、科學與科技哲學學會(LMPST Taiwan)於 2022 年 11 月 19 日在臺灣大學主辦了一場以《科學內外的人文可能》為題的論壇,邀請了國內哲學學者以及科學普及界的資深工作者擔任講者。

本活動主持人由鄭會穎教授(政治大學哲學系助理教授、政大現象學研究中心主任)擔任,受邀講者則包括陳竹亭教授(臺灣大學化學系名譽教授)、陳樂知教授(臺灣大學哲學系副教授、臺大傳統與科學形上學研究中心執行長、LMPST Taiwan 秘書長)、鄭國威先生(PanSci 泛科學知識長)與嚴如玉教授(陽明交通大學心智哲學研究所副教授兼所長)。

本論壇屬於 LMPST Taiwan 長期舉辦的《種種意識論壇》系列。除 LMPST Taiwan 以外,這一系列的論壇由政治大學現象學研究中心、清華大學實作哲學中心、臺灣大學哲學系、臺灣跨校意識社群、PHEDO 台灣高中哲學教育推廣學會、沃草公民學院共同合辦;贊助單位則為順奕有限公司。

《科學內外的人文可能》邀請了國內哲學學者,以及科學普及界的資深工作者擔任講者。圖/臺灣邏輯、方法論、科學與科技哲學學會 – LMPST Taiwan

科學為人文帶來危機?先論科學主義與自然主義

主持人鄭會穎教授點出了本論壇的核心議題後,陳樂知教授(臺灣大學哲學系副教授、臺大傳統與科學形上學研究中心執行長、LMPST Taiwan 秘書長)發表了他的觀點。

-----廣告,請繼續往下閱讀-----

陳教授想要討論的是「就其理論本質而言,科學是否威脅人文」這個問題。陳教授首先談到一些人持有「科學主義(scientism)」的世界觀。科學主義認為,科學是唯一可以讓我們獲得知識的可靠方法。陳教授認為科學主義是一種自相矛盾的世界觀;原因在於科學主義本身並不是科學,並未被科學方法證明,它只是一個哲學理論。因此,科學主義身為一個哲學理論,它本身就是自己會排斥的對象。

回到核心問題,科學是否帶來了人文危機?陳教授的答案是否定的。他認為科學所帶來的其實不是科學主義,而是「自然主義(naturalism)」。自然主義認為,這個世界最根本、基礎的組成,就是自然科學理論認為存在的那些事物,例如粒子、力場、化學反應等。

陳教授認為科學所帶來的自然主義是現代世界觀的基礎;即使一些特定人士因為宗教背景等理由而不同意自然主義,其實也應該要同意例外情況相當有限。如果我們接受「自然主義」,而非「科學主義」,那麼科學本身根本就不會帶來人文危機。這是因為,自然主義只認為世界最根本的組成是科學所談論的事物,但是它並不認為我們只能透過科學方法來認識這些事物。

「就其理論本質而言,科學是否威脅人文?」。圖/臺灣邏輯、方法論、科學與科技哲學學會 – LMPST Taiwan

事實上,從科學世界觀的角度來說,人類也是自然的一員。人類作為一種自然生命體,出於其演化而來的結構,與生俱來就有各種世界互動、認識世界的方式,不限於科學方法。就此而言,人類會發展出的人文也是一種自然現象。因此,雖然人類後來發展出了「科學方法」這種較為優化的認識途徑,我們依然不能否定「人文方法」也是一種認識世界的可靠方法。

-----廣告,請繼續往下閱讀-----

接著,陳教授提及羅素(Bertrand Russell)對「熟知知識(knowledge by acquaintance)」以及「描述知識(knowledge by description)」的區分。熟知知識指的是我們透過直接的感受、互動與掌握所獲得的知識,描述知識則是理論性的知識。

陳教授認為熟知知識與描述知識不可被截然二分,兩者之間是程度上的差別。而人文學門的一些觀念就較為接近熟知知識,因為它們重視同理及感受。雖然如此,這一切都符合腦神經科學的描述,人文仍然是自然現象。另一方面,人文因此仍然是科學可以研究的對象,也需要科學的補充。人文學門自己也必須要了解,自己所研究的熟知知識其實也是自然現象,有其組成基礎與運作原理。

因此,科學可以幫助人文把熟知知識轉換為更精確的描述知識,並且為人文提供更精密的研究方法,以及協助其排除錯誤,比如排除人類先天認知系統的偏誤、漏洞等等。總結來說,科學與人文其實研究的是同一個自然界;科學非但不應帶來人文危機,還可以幫助人文研究走得更加長遠。

跨科際合作的需求,兼論「人類世」中的人文與科學走向

不同於陳樂知教授從哲學觀點出發,陳竹亭教授(臺灣大學化學系名譽教授)帶來的是他在教育方面的經驗。首先,陳教授介紹了他為台灣教育部主持的「科學人文跨科際人才培育計畫」,簡稱「SHS(Society-Humanities-Science)計畫」。

-----廣告,請繼續往下閱讀-----

由於現代社會中的問題包含人文以及科學的面向,因此 SHS 計畫的主軸在於推動「跨科際教育(trans-disciplinary education)」。以往的教育先是學科主義,然後衍生出「多領域(multi-disciplinary)」或是「跨領域(inter-disciplinary)」,也就是由各學科各自探究共同問題,或是由兩個學科進行合作。

跨科際教育則有所不同,它以「真實世界的共同問題」為核心,直接打破學科之間的界線。只要是對解決真實世界的問題有幫助的知識,參與的學科,甚至政府、產業、民間的 NPO 或利害關係人都擔責分工合作進行知識生產、解決問題。

SHS 計畫的主軸在於推動「跨科際教育」。圖/臺灣邏輯、方法論、科學與科技哲學學會 – LMPST Taiwan

由於現代社會中的問題愈趨複雜、多元,且多樣,社會對科學界的要求也跟以往有所不同。科學家開始被要求具備社會意識及社會參與的能力,還有溝通與對話的能力;這些能力都是傳統的科學界非常缺乏的。有鑑於此,陳教授所主持的 SHS 計畫積極推動「問題導向的學習」、「系統思考」、以及「實用方法論上的創新」。他也提到,SHS 計畫的推動非常有賴於大學對本身社會角色的自覺與復興。

陳教授參與的另一個國科會計畫是「以社會需求為核心的跨領域研究計畫」。與 SHS 計畫相同,這個計畫也非常重視跨科際教育,並且認知到單靠科學知識無法解決真實世界的複雜問題。

-----廣告,請繼續往下閱讀-----

那麼,人文究竟該扮演什麼樣的角色呢?陳教授討論到他撰寫的新書《丈量人類世》中的「人類世(anthropocene)」這個概念。「人類世」指的是一個新的地質紀元。在工業革命之後,人類文明成為影響地球環境與生態變遷的關鍵角色。因此,部分學者認為地球已經進入「人類世」這個地質紀元。

在人類世中,全球有非常多的變遷趨勢,其中一個就是:科學發展帶動理性價值的昂揚,其他的人性價值卻被輕忽。陳教授說,我們培養出了許多「職業科學家」。可是,在科技急速發展的同時,人類的科技文明卻缺乏方向感:我們正面臨物質文明與精神文明之間極大的不均衡。總而言之,他認為「人類的智能尚未學會如何掌舵文明巨輪的方向」。

最後,針對人文與科學應該要如何在人類世中發展,陳教授提出了他本人的看法。首先,科學研究的同儕審核程序需要人文專業學者的投入,也就是科學家不能閉門造車。再來,婦女應該要積極加入科學與科技事業的陣容,因為科學發展不能只由男性思維主導。

最後,未來教育的趨勢必須往跨科際的方向邁進,也就是人文與科學必須並重。如此一來,陳教授強調:「人文的啟發價值和社會重大需求必須挺身而出,為人類文明的永續承擔文明指南針的角色,與科學共同尋求世紀困境的解方。」

-----廣告,請繼續往下閱讀-----

「科學實作哲學」帶來人文與科學的合作新可能

繼陳竹亭教授分享了跨科際教育發展的大方向後,嚴如玉教授(陽明交通大學心智哲學研究所副教授兼所長)則分享了她在科學人文互動的個案經驗。嚴教授身為一個哲學學者,卻在因緣際會下,走上了不同於普通學者每天關在辦公室做研究的路。她為了提升生醫背景的學生對哲學的興趣,也為了把哲學帶到課堂之外,推動了青銀共學。

嚴教授推動青銀共學,提升學生對哲學的興趣,也將哲學帶到課堂之外。圖/臺灣邏輯、方法論、科學與科技哲學學會 – LMPST Taiwan

嚴教授把社區中的長輩們請到大學的哲學課堂上,與大學生一起進行小組報告。這些生醫背景的學生們未來大多會從醫;因此,對未來將要在醫療院所工作的他們來說,與長輩互動是很好的練習。

嚴教授也針對與學生們未來在醫療場域會遇到的一些價值性思考,與哲學作出連結,讓學生們學習哲學能夠學以致用,對醫療過程有所幫助。舉例來說,她會帶領學生討論如何面對死亡、以及照護倫理等哲學議題。她認為,在學生未來的臨床工作上,這些哲學議題將派得上用場。

除了青銀共學外,嚴教授還以非常不同於傳統學者的方式,進行她個人的哲學研究。傳統哲學學者往往是埋首於書堆中,發展自己的理論;她則是親自到醫療院所中進行田野調查,去訪問醫生、護理師等第一線的人員。藉由直接了解醫療工作者在實作上遇到的困難,她試圖讓哲學能夠真正被實用。

-----廣告,請繼續往下閱讀-----

嚴教授說,這樣的研究方法被稱為「科學實作哲學」。科學實作哲學作為一種研究方法,其實不單單適用於人文學門,也同樣適用於科學。非常理論性、艱深的基礎科學如果能夠走出象牙塔,了解社會的真實需求,便有機會與人文接軌。因此,不論是科學或人文學門,若研究者可以調整研究方法,從研究對象在實作上的細節出發,再轉而調整自己的理論,那麼科學與人文的互動、合作並非不可能。

科學素養對現代社會的重要性

最後進行分享的是科普媒體《PanSci 泛科學》的知識長鄭國威先生。鄭知識長首先釐清了「人文」的定義:他認為,「人文主義」認為人類可以靠自身的能力認識這個世界,而「人文學科」正是培養這種能力的學科。從這個定義來看,人文與科學根本就不是分開的;畢竟科學也是人類靠自身能力認識世界的方式之一。

鄭知識長提到,台灣的學生在國際學生能力評量計畫(PISA)中表現非常優異,世界排名名列前茅。然而,台灣的學生卻普遍缺乏自信,在失敗時容易產生自我質疑。

鄭知識長指出,台灣學生普遍缺乏自信,在失敗時容易產生自我質疑。圖/臺灣邏輯、方法論、科學與科技哲學學會 – LMPST Taiwan

在學習的過程中,我們大致可以把人分為兩種:具有「定型心態」與具有「成長心態」的人。前者只重視結果、學習態度較消極,且容易受挫折打擊;後者則重視過程、學習態度較積極,且勇於面對挑戰。鄭知識長指出,具有定型心態的台灣學生似乎占多數。

-----廣告,請繼續往下閱讀-----

鄭知識長在高中時也面臨相同的困境,他那時非常厭惡數學和理化,完全沒有學習他們的熱忱。他後來發現不止他是如此,有許多人也在學生階段就放棄了對科學的學習;這對台灣社會是個嚴重的現象。舉例來說,公投的題目許多都牽涉科學知識,放棄學習科學的公民要如何在這種公投中作出正確的判斷?這樣的考量促使他後來創辦 PanSci 泛科學。

鄭知識長認為,獲得成長心態最簡單的方式就是學會科學原則與方法,也就是用科學方法來面對日常生活中遇到的問題。而培養科學素養則需要承認自己對許多事的無知,且需要身處一個好的素養集體之中。最後,鄭知識長勉勵大家一起培養出「科學思辨力」,為本次的論壇畫下一個強而有力的句點。

-----廣告,請繼續往下閱讀-----
臺灣邏輯、方法論、科學與科技哲學學會_96
3 篇文章 ・ 12 位粉絲
臺灣邏輯、方法論、科學與科技哲學學會(The Taiwan Association for Logic, Methodology and Philosophy of Science and Technology, LMPST Taiwan)為國內非營利法人團體,主要幹部均為國內教授或研究員。本會以促進科學型的哲學研究為宗旨,工作包括國內專業學術工作、跨領域學科交流及哲學普及推廣。