Loading [MathJax]/extensions/MathZoom.js

0

0
0

文字

分享

0
0
0

數位時代讓分手變得更難受

cleo
・2013/05/15 ・1340字 ・閱讀時間約 2 分鐘 ・SR值 495 ・六年級

數位科技讓數位照片及電子郵件能夠輕易消失,然而電子資產的盛行讓過往的交往關係更難被消除

一項新研究調查了人們是如何在不同的電子設備、網路服務及平台上處理與前男友/女友的數位記錄。

「人們保有廣大的數位資料庫」,加州大學聖克魯茲分校,專長為人機互動(human-computer interaction)的心理學教授,Steve Whittaker表示。「當人們想要遺忘人生中的某些片段時,他們總是會經歷到數位資產帶來的負面影響。」

在一份新研究中,Whittaker及共同作者,蘭卡斯特大學的Corina Sas博士檢視了數位資產帶來的影響及分手後這些數位資產的處置方式。數位資產包括了儲存在不同裝置(如電腦、平板、手機、相機)上的相片、訊息、音樂及影片。這種數位資訊無所不在的現象「使得分手過程更為痛苦,人們沉浸於儲存相片及音樂的數位空間,不斷回憶起前段關係」,Whittaker說道。

-----廣告,請繼續往下閱讀-----

研究人員訪問了12位19到34歲的人士,發現分手後數位資產會令人想起過去及心神不寧,而受訪者也以不同的方式處理數位資產。十二位受訪者選擇刪除,八位選擇保留,剩下四位則是選擇性保留。

Whittaker及Sas發現有些心碎的人想忘記過往,但卻無法狠下心刪除,大部分的人則是選擇刪除。其他人則是刪除一切後感到後悔。

在今日,捨棄過去變得更困難,因為廣大的數位資產無所不在-它們存在於不同的裝置、應用程式、網站服務及平台中。「一段甜蜜的關係會促成美好、豐富的網路生活。但當關係變質,人們又必須仔細地從不同數位空間中剔除這些過往回憶。」臉書照片上的標籤可以移除,但照片若是別人張貼的則無法被刪除。研究團隊說:「這件事費心勞神又讓人傷感,因為人們總會再度沉溺於那些以數位方式存在的過往回憶,特別是照片」。

分手後會做的事有:改變交往狀態至「單身」,馬上刪除或封鎖前任,不讓他們瀏覽個人主頁。

-----廣告,請繼續往下閱讀-----

Whittaker和Sas表示,軟體或許能幫忙消除那些存在網路空間的痛苦回憶,像是基於臉部辨識、機器學習或實體擷取的自動刪除機制。

或者就只是等到情緒冷靜下來。

「沒有適當的處理工具意味著大部分的受訪人要不把所有的回憶留下,要不刪除」,研究團隊提到,「保留回憶的人花了較久的時間療傷,而刪除的人通常會對自己的衝動感到後悔。」

研究的作者提出了一個「潘朵拉盒」的概念,從交往關係而來的數位產物能自動被揀出,存放到一個空間中,等待進一步刪除或保留的動作。一個值得信任的好友也能扮演控管的角色。

-----廣告,請繼續往下閱讀-----

或是一個能夠從數位資料庫中做選擇,且建立「藏寶箱」的新工具,珍貴回憶能被珍藏其中,假以時日,雲淡風輕後再用來回味甜蜜的過往。

研究人員指出數位時代也給分手帶來了新的挑戰。以下是受訪者的意見:

  • 刪掉所有的東西象徵一個新的開始以及不再回首過去。
  • 我留下了所有東西,有她的照片、影片還有訊息。我不常回味這些東西;當我回味那段甜蜜時光時,我有時覺得很感傷,但有時又覺得開心。
  • 把照片留在手機跟電腦裡並不讓我感傷,但是分手後為了讓自己不再駐足,我毅然決然刪了所有的東西。所有與我們有關的東西。

「什麼會讓你留戀過去?」偶然看到那些先前不小心錯過或刪除的東西:電腦上那個不常用的Outlook信箱裡的郵件,或是在不常用的社群網站上發現的未讀訊息。

資料來源:加州大學聖克魯茲分校

-----廣告,請繼續往下閱讀-----

原文來源:”In Digital Age, Breaking Up May Be Even Harder to Do” – PSYCH CENTERAL [13 MAY 2013]

-----廣告,請繼續往下閱讀-----
文章難易度
cleo
49 篇文章 ・ 1 位粉絲
是個標準的文科生,最喜歡讀的卻是科學雜誌。一天可以問上十萬個為什麼。

0

0
0

文字

分享

0
0
0
從PD-L1到CD47:癌症免疫療法進入3.5代時代
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/25 ・4544字 ・閱讀時間約 9 分鐘

本文與 TRPMA 台灣研發型生技新藥發展協會合作,泛科學企劃執行

如果把癌細胞比喻成身體裡的頭號通緝犯,那誰來負責逮捕?

許多人第一時間想到的,可能是化療、放療這些外來的「賞金獵人」。但其實,我們體內早就駐紮著一支最強的警察部隊「免疫系統」。

既然「免疫系統」的警力這麼堅強,為什麼癌症還是屢屢得逞?關鍵就在於:癌細胞是偽裝高手。有的會偽造「良民證」,騙過免疫系統的菁英部隊;更厲害的,甚至能直接掛上「免查通行證」,讓負責巡邏的免疫細胞直接視而不見,大搖大擺地溜過。

-----廣告,請繼續往下閱讀-----

過去,免疫檢查點抑制劑的問世,為癌症治療帶來突破性的進展,成功撕下癌細胞的偽裝,也讓不少患者重燃希望。不過,目前在某些癌症中,反應率仍只有兩到三成,顯示這條路還有優化的空間。

今天,我們要來聊的,就是科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?

科學家如何另闢蹊徑,找出那些連「通緝令」都發不出去的癌細胞。這個全新的免疫策略,會是破解癌症偽裝的新關鍵嗎?/ 圖片來源:shutterstock

免疫療法登場:從殺敵一千到精準出擊

在回答問題之前,我們先從人類對抗癌症的「治療演變」說起。

最早的「傳統化療」,就像威力強大的「七傷拳」,殺傷力高,但不分敵我,往往是殺敵一千、自損八百,副作用極大。接著出現的「標靶藥物」,則像能精準出招的「一陽指」,能直接點中癌細胞的「穴位」,大幅減少對健康細胞的傷害,副作用也小多了。但麻煩的是,癌細胞很會突變,用藥一段時間就容易產生抗藥性,這套點穴功夫也就漸漸失靈。

直到這個世紀,人類才終於領悟到:最強的武功,是驅動體內的「原力」,也就是「重新喚醒免疫系統」來對付癌症。這場關鍵轉折,也開啟了「癌症免疫療法」的新時代。

-----廣告,請繼續往下閱讀-----

你可能不知道,就算在健康狀態下,平均每天還是會產生數千個癌細胞。而我們之所以安然無恙,全靠體內那套日夜巡邏的「免疫監測 (immunosurveillance)」機制,看到癌細胞就立刻清除。但,癌細胞之所以難纏,就在於它會發展出各種「免疫逃脫」策略。

免疫系統中,有一批受過嚴格訓練的菁英,叫做「T細胞」,他們是執行最終擊殺任務的霹靂小組。狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,這個偽裝的學名,「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, PD-L1) 」,縮寫PD-L1。

當T細胞來盤查時,T細胞身上帶有一個具備煞車功能的「讀卡機」,叫做「程序性細胞死亡蛋白受體-1 (programmed cell death protein 1, PD-1) 」,簡稱 PD-1。當癌細胞的 PD-L1 跟 T細胞的 PD-1 對上時,就等於是在說:「嘿,自己人啦!別查我」,也就是腫瘤癌細胞會表現很多可抑制免疫 T 細胞活性的分子,這些分子能通過免疫 T 細胞的檢查哨,等於是通知免疫系統無需攻擊的訊號,因此 T 細胞就真的會被唬住,轉身離開且放棄攻擊。

這種免疫系統控制的樞紐機制就稱為「免疫檢查點 (immune checkpoints)」。而我們熟知的「免疫檢查點抑制劑」,作用就像是把那張「偽良民證」直接撕掉的藥物。良民證一失效,T細胞就能識破騙局、發現這是大壞蛋,重新發動攻擊!

-----廣告,請繼續往下閱讀-----
狡猾的癌細胞為了躲過追殺,會在自己身上掛出一張「偽良民證」,也就是「程序性細胞死亡蛋白配體-1 (programmed death-ligand 1, 縮寫PD-L1) 」/ 圖片來源:shutterstock

目前免疫療法已成為晚期癌症患者心目中最後一根救命稻草,理由是他們的體能可能無法負荷化療帶來的副作用;標靶藥物雖然有效,不過在用藥一段期間後,終究會出現抗藥性;而「免疫檢查點抑制劑」卻有機會讓癌症獲得長期的控制。

由於免疫檢查點抑制劑是借著免疫系統的刀來殺死腫瘤,所以有著毒性較低並且治療耐受性較佳的優勢。對免疫檢查點抑制劑有治療反應的患者,也能獲得比起化療更長的存活期,以及較好的生活品質。

不過,儘管免疫檢查點抑制劑改寫了治癌戰局,這些年下來,卻仍有些問題。

CD47來救?揭開癌細胞的「免死金牌」機制

「免疫檢查點抑制劑」雖然帶來治療突破,但還是有不少挑戰。

-----廣告,請繼續往下閱讀-----

首先,是藥費昂貴。 雖然在台灣,健保於 2019 年後已有條件給付,但對多數人仍是沉重負擔。 第二,也是最關鍵的,單獨使用時,它的治療反應率並不高。在許多情況下,大約只有 2成到3成的患者有效。

換句話說,仍有七到八成的患者可能看不到預期的效果,而且治療反應又比較慢,必須等 2 至 3 個月才能看出端倪。對患者來說,這種「沒把握、又得等」的療程,心理壓力自然不小。

為什麼會這樣?很簡單,因為這個方法的前提是,癌細胞得用「偽良民證」這一招才有效。但如果癌細胞根本不屑玩這一套呢?

想像一下,整套免疫系統抓壞人的流程,其實是這樣運作的:當癌細胞自然死亡,或被初步攻擊後,會留下些許「屍塊渣渣」——也就是抗原。這時,體內負責巡邏兼清理的「巨噬細胞」就會出動,把這些渣渣撿起來、分析特徵。比方說,它發現犯人都戴著一頂「大草帽」。

-----廣告,請繼續往下閱讀-----

接著,巨噬細胞會把這個特徵,發布成「通緝令」,交給其他免疫細胞,並進一步訓練剛剛提到的菁英霹靂小組─T細胞。T細胞學會辨認「大草帽」,就能出發去精準獵殺所有戴著草帽的癌細胞。

當癌細胞死亡後,會留下「抗原」。體內的「巨噬細胞」會採集並分析這些特徵,並發布「通緝令」給其它免疫細胞,T細胞一旦學會辨識特徵,就能精準出擊,獵殺所有癌細胞。/ 圖片來源:shutterstock

而PD-1/PD-L1 的偽裝術,是發生在最後一步:T 細胞正準備動手時,癌細胞突然高喊:「我是好人啊!」,來騙過 T 細胞。

但問題若出在第一步呢?如果第一關,巡邏的警察「巨噬細胞」就完全沒有察覺這些屍塊有問題,根本沒發通緝令呢?

這正是更高竿的癌細胞採用的策略:它們在細胞表面大量表現一種叫做「 CD47 」的蛋白質。這個 CD47 分子,就像一張寫著「自己人,別吃我!」的免死金牌,它會跟巨噬細胞上的接收器─訊號調節蛋白α (Signal regulatory protein α,SIRPα) 結合。當巨噬細胞一看到這訊號,大腦就會自動判斷:「喔,這是正常細胞,跳過。」

結果會怎樣?巨噬細胞從頭到尾毫無動作,癌細胞就大搖大擺地走過警察面前,連罪犯「戴草帽」的通緝令都沒被發布,T 細胞自然也就毫無頭緒要出動!

這就是為什麼只阻斷 PD-L1 的藥物反應率有限。因為在許多案例中,癌細胞連進到「被追殺」的階段都沒有!

為了解決這個問題,科學家把目標轉向了這面「免死金牌」,開始開發能阻斷 CD47 的生物藥。但開發 CD47 藥物的這條路,可說是一波三折。

-----廣告,請繼續往下閱讀-----

不只精準殺敵,更不能誤傷友軍

研發抗癌新藥,就像打造一把神兵利器,太強、太弱都不行!

第一代 CD47 藥物,就是威力太強的例子。第一代藥物是強效的「單株抗體」,你可以想像是超強力膠帶,直接把癌細胞表面的「免死金牌」CD47 封死。同時,這個膠帶尾端還有一段蛋白質IgG-Fc,這段蛋白質可以和免疫細胞上的Fc受體結合。就像插上一面「快來吃我」的小旗子,吸引巨噬細胞前來吞噬。

問題來了!CD47 不只存在於癌細胞,全身上下的正常細胞,尤其是紅血球,也有 CD47 作為自我保護的訊號。結果,第一代藥物這種「見 CD47 就封」的策略,完全不分敵我,導致巨噬細胞連紅血球也一起攻擊,造成嚴重的貧血問題。

這問題影響可不小,導致一些備受矚目的藥物,例如美國製藥公司吉立亞醫藥(Gilead)的明星藥物 magrolimab,在2024年2月宣布停止開發。它原本是預期用來治療急性骨髓性白血病(AML)的單株抗體藥物。

太猛不行,那第二代藥物就改弱一點。科學家不再用強效抗體,而是改用「融合蛋白」,也就是巨噬細胞身上接收器 SIRPα 的一部分。它一樣會去佔住 CD47 的位置,但結合力比較弱,特別是跟紅血球的 CD47 結合力,只有 1% 左右,安全性明顯提升。

像是輝瑞在 2021 年就砸下 22.6 億美元,收購生技公司 Trillium Therapeutics 來開發這類藥物。Trillium 使用的是名為 TTI-621 和 TTI-622 的兩種融合蛋白,可以阻斷 CD47 的反應位置。但在輝瑞2025年4月29號公布最新的研發進度報告上,TTI-621 已經悄悄消失。已經進到二期研究的TTI-622,則是在6月29號,研究狀態被改為「已終止」。原因是「無法招募到計畫數量的受試者」。

-----廣告,請繼續往下閱讀-----

但第二代也有個弱點:為了安全,它對癌細胞 CD47 的結合力,也跟著變弱了,導致藥效不如預期。

於是,第三代藥物的目標誕生了:能不能打造一個只對癌細胞有超強結合力,但對紅血球幾乎沒反應的「完美武器」?

為了找出這種神兵利器,科學家們搬出了超炫的篩選工具:噬菌體(Phage),一種專門感染細菌的病毒。別緊張,不是要把病毒打進體內!而是把它當成一個龐大的「鑰匙資料庫」。

科學家可以透過基因改造,再加上AI的協助,就可以快速製造出數億、數十億種表面蛋白質結構都略有不同的噬菌體模型。然後,就開始配對流程:

  1. 先把這些長像各異的「鑰匙」全部拿去試開「紅血球」這把鎖,能打開的通通淘汰!
  2. 剩下的再去試開「癌細胞」的鎖,從中挑出結合最強、最精準的那一把「神鑰」!

接著,就是把這把「神鑰」的結構複製下來,大量生產。可能會從噬菌體上切下來,或是定序入選噬菌體的基因,找出最佳序列。再將這段序列,放入其他表達載體中,例如細菌或是哺乳動物細胞中來生產蛋白質。最後再接上一段能號召免疫系統來攻擊的「標籤蛋白 IgG-Fc」,就大功告成了!

目前這領域的領頭羊之一,是美國的 ALX Oncology,他們的產品 Evorpacept 已完成二期臨床試驗。但他們的標籤蛋白使用的是 IgG1,對巨噬細胞的吸引力較弱,需要搭配其他藥物聯合使用。

而另一個值得關注的,是總部在台北的漢康生技。他們利用噬菌體平台,從上億個可能性中,篩選出了理想的融合蛋白 HCB101。同時,他們選擇的標籤蛋白 IgG4,是巨噬細胞比較「感興趣」的類型,理論上能更有效地觸發吞噬作用。在臨床一期試驗中,就展現了單獨用藥也能讓腫瘤顯著縮小的效果以及高劑量對腫瘤產生腫瘤顯著部分縮小效果。因為它結合了前幾代藥物的優點,有人稱之為「第 3.5 代」藥物。

除此之外,還有漢康生技的FBDB平台技術,這項技術可以將多個融合蛋白「串」在一起。例如,把能攻擊 CD47、PD-L1、甚至能調整腫瘤微環境、活化巨噬細胞與T細胞的融合蛋白接在一起。讓這些武器達成 1+1+1 遠大於 3 的超倍攻擊效果,多管齊下攻擊腫瘤細胞。

結語

從撕掉「偽良民證」的 PD-L1 抑制劑,到破解「免死金牌」的 CD47 藥物,再到利用 AI 和噬菌體平台,設計出越來越精準的千里追魂香。 

對我們來說,最棒的好消息,莫過於這些免疫療法,從沒有停下改進的腳步。科學家們正一步步克服反應率不足、副作用等等的缺點。這些努力,都為癌症的「長期控制」甚至「治癒」,帶來了更多的希望。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

1
0

文字

分享

0
1
0
給你多少錢,才會願意放棄使用 FB ?社群軟體的體驗該如何被「金錢」衡量?──《資訊超載的幸福與詛咒》
天下文化_96
・2022/08/27 ・2405字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

使用社群媒體後,你變得更快樂還是更憂鬱?

想知道更多資訊的時候,你可能會上網搜尋。有時候是為了資訊的工具價值,比如透過 Google 地圖確認 A 地到 B地 的路線;腳踝扭傷時,也可以從網路上搜尋到應變的實用資訊;又或是並非真的出於任何用途,只覺得知道某些事很有趣,像是忽然想了解流行音樂歷史。你當然完全可以這樣做。

我們身邊有許多資訊都是一些抽象的概念,其中部分資訊卻可能和你切身相關。比如依據某些基本事實可以推斷你的預期壽命;某些資訊可以了解你的健康風險、未來「錢」景,甚至是個性。比起 10 年前,我們現在能得到的資訊更為詳盡正確,再過 10 年,肯定能夠知道得更多。

這章要談的內容很多,不妨開頭就先提示最大的重點:

研究顯示,整體而言,臉書會讓人變得比較不開心,而且可能感到憂鬱、更為焦慮,也對生活變得更不滿意。

你每天花多少時間使用 FB?使用社群軟體對你的心情造成了什麼影響?圖/Pixabay

我並不打算危言聳聽,事實上這些影響並不大。然而,它們的確存在。

-----廣告,請繼續往下閱讀-----

而與此同時,有些人明明已經停用臉書、也感受到幸福感明顯增加,卻又非常想要重新打開臉書。實際上他們要求要得到一大筆錢才願意放棄臉書。這是為什麼?我們雖然無法確定,但一項合理的解釋是,使用臉書的體驗,包括帶來的資訊,並不會讓人變得更快樂,但還是有它的價值。

無知並不是幸福,而很多人都感受到這一點。人們需要知道自己在意的資訊,這是因為喜歡、甚至珍視一種和重要的人之間產生連結的感覺。

若須付費才能使用社群媒體,會怎樣?

重要的是,我們必須強調,社群媒體的功能不僅僅是提供資訊,至少不是我在這裡反覆強調的揭露資訊的意義。你會使用臉書,可能是為了和家人或朋友聯繫,也可能是為了改善荷包或健康。但無論如何,社群媒體的一大重點在於資訊傳遞,雖然這個概念要比我目前所談的更為廣泛。

而這裡的核心問題是:社群媒體究竟多值錢?

-----廣告,請繼續往下閱讀-----

在社群媒體上,大部分的資訊是免費的,至少表面上你無須付費;或許可以說你仍需要付出注意力或個資等等。臉書和推特這些企業是從廣告獲得收益,但有鑑於相關爭議不斷,也有人認真討論起將這些平台及其服務的商業模式改成付費使用。

除此之外也有些偏理論的探討,主要關注在如何評估這些平台的經濟價值。要是民眾必須付費才能使用臉書,情況會變得如何?而民眾又願意花多少錢成為用戶?

要是社群媒體要付費的話,你們願意花多少錢呢?圖/LightFieldStudios

這些答案會透露出一些重要的資訊,讓我們知道社群媒體與一般資訊所擁有的價值。而回答這些問題,也有助於了解一些更基本的問題:如何計算經濟上的價值;知道某些消費決定可能只是表面工夫;了解傳統經濟指標與實際民眾福利有何差距(請見第二章)。此外,這些答案也會進一步影響政策與法規。

要你放棄使用 FB ,可能比要你付費使用來得更難?

行為經濟學特別感興趣的一個問題,就是「支付意願」和「願意接受金額」間可能出現的巨大落差。

-----廣告,請繼續往下閱讀-----

以臉書為例,如果我們想知道它能為我們帶來多少福利,究竟該問民眾願意為此付出多少錢,抑或該問要給他們多少錢才會願意放棄使用臉書?許多研究都探討過稟賦效應(endowment effect)的現象,也就是被要求放棄某樣商品時所要求的價格,會遠高於他們當初獲得這些商品時支付的費用

稟賦效應目前還有爭議,至少在適用的領域、來源與程度上仍未有定論。我們可能會想知道,使用社群媒體願意付出的費用,是否大於不使用社群媒體所得到的費用?如果是的話,傳統論點又能否提出說明?

IKEA 所設置的家具體驗區,常常被拿來當作「稟賦效應」的案例。圖/Pixabay

另一個同樣常見、甚至是更基本的問題,則是涉及支付意願或願意接受金額的衡量與民眾福利。我在前面也提過,在經濟學中,要是談到民眾擁有某樣商品時的福利效果,往往是以民眾願意付出多少錢來使用那件商品作為衡量。

當然,「願意付出多少錢」也是現實市場的衡量標準。但請回想一下,要提出這項金額,事實上也就是做出預測:預測該商品會對自己的福利造成什麼樣的影響。

-----廣告,請繼續往下閱讀-----

這個問題乍看不難,尤其當談到自己熟悉的商品(鞋子、襯衫、肥皂);但換做是從未使用過的商品,回答起來也就沒那麼簡單。對於一項從未擁有過的商品,哪知道能帶給自己多大的福利效果,以及可以換算成多少錢?

對許多人而言,臉書、推特、Instagram 等平台都是再熟悉不過的社群媒體,而且有著豐富的使用體驗。但出於某些我們馬上會討論到的原因,社群媒體用戶就是很難估算這些平台可以換算的金錢價值。

只要看看民眾提出使用社群媒體願意付出的金額,就會了解在尋求資訊上,「願意付出的金額」和民眾得到的福利效果似乎並不對等;同時值得進一步研究其中的福利效果究竟是什麼。

在這種時候,「願意付出的金額」只反映出部分的福利效果,還可能只反映一小部分。我們必須找出反映效果不佳的實際原因,並且嘗試找出更能呈現福利效果的方式。而我在這裡的目標,就是希望推進這項任務的進展。

-----廣告,請繼續往下閱讀-----


——本文摘自《資訊超載的幸福與詛咒》,2022 年 8 月,天下文化 ,未經同意請勿轉載。

-----廣告,請繼續往下閱讀-----
天下文化_96
142 篇文章 ・ 624 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

1

6
4

文字

分享

1
6
4
Deepfake 不一定是問題,不知道才是大問題!關於 Deepfake,你需要知道的是⋯⋯?
TingWei
・2022/01/24 ・3489字 ・閱讀時間約 7 分鐘

編按:你的理智知道「眼見不為憑」,但你的眼睛還是會背叛你的理智,不自覺得被眼前的影像所吸引,儘管你真的、真的知道他是假的。Youtuber 小玉於2021年底涉嫌利用 Deepfake 技術,偽造多位名人的色情影音內容並販售的事件,既不是第一起、也不是唯一、更不會是最後一個利用「深偽技術」進行科技犯罪的事件。

當科技在走,社會和法律該如何跟上甚至超前部署呢?本次 Deepfake 專題,由泛科學和法律白話文合作,從Deepfake 技術與辨偽技術、到法律如何因應,讓我們一起全方位解析Deepfake!

第一篇,讓我們就 Deepfake 技術做一基礎的介紹,那我們就開始囉!

什麼是 Deepfake?

深偽技術 Deepfake 於 2017 年陸續開始進入大眾的目光中。原文 Deepfake 源自於英文「deep learning」(深度學習)和「fake」(偽造)組合,主要意指應用人工智慧深度學習的技術,合成某個(不一定存在的)人的圖像或影片、甚至聲音。最常見的應用,就是將影片中的人臉替換為另一張臉(常是名人),讓指定的臉在影片中做出自己從未說過或做過的事情。

利用深度學習技術合成或是置換人臉的技術,都是屬於Deepfake。圖 / stephenwolfram

現今談到 Deepfake,大多數人想到的可能是偽造的成人影片,就如前述 Youtuber 小玉的事件,Deepfake 一開始受到關注,主要與名人或明星的臉部影像被合成到成人影片有關,然而,Deepfake 的功能遠不僅於此,相關的技術使用還包括了替換表情、合成一整張臉、合成語音等等。

除了像是讓過去或現在的名人在影片中「栩栩如生」做出使用者想要的表情與動作,之前在社群媒體上曾有好幾款 APP一度風靡,包括上傳一張照片就可以看看「變老」「變性」自己的 FaceApp,甚至於讓自己的臉在經典電影中講上一段台詞的「去演」APP,這類的功能也是應用前述 Deepfake 的技術。

雖然有些線索顯示這類 APP 常有潛在的資安疑慮[註],但好歹技術的成果多屬搏君一燦自娛娛人,尚可視為無傷大雅。

-----廣告,請繼續往下閱讀-----
「栩栩如生」的愛因斯坦

而過往電影的影音產業要仿造人臉需要應用許多複雜、耗時、昂貴的電腦模擬,有了 Deepfake 相關的技術,也使得許多只能抱憾放棄的事情出現了彌補的空間。最有名的應用應是好萊塢電影《玩命關頭7》與《星際大戰》系列。《玩命關頭7》拍攝期間主角保羅・沃克(Paul William Walker IV)意外身亡,剩下的戲份後來由弟弟擔綱演出,劇組再以 Deepfake 的技術讓哥哥弟弟連戲,整部電影才得以殺青上映。

Weta Digital 說明如何讓保羅・沃克的弟弟 Brian O’Conner 能透過 Deefake 的技術,繼續協助 保羅・沃克演完《玩命關頭7》

Deepfake 讓「變臉」變得太容易了?

想想過去的電影如《魔戒》中的咕嚕、或是 2008 年布萊德・彼特主演的《班傑明的奇幻旅程》,將影片或照片中人物「換臉」「變老」的修圖或 CG 技術,在 Deepfake 出世之前就已經存在了。Deepfake 受到關注的核心關鍵在於,應用 AI 的深度學習的演算法,加上越來越強大的電腦與手機運算能力,讓「影片換臉」這件事情變得越來越隨手可得、並且天衣無縫。

利用CG技術把布萊德・彼特「變老」。 圖 / © 2008 – Paramount Pictures

過往電影中採用的 CG 技術要花好幾個月由專業人士進行後製,才能取得難辨真偽的影像效果,而應用了 AI 演算法,只需要一台桌上型電腦甚或是手機,上網就可以取得軟體、有機會獲得差強人意的結果了。

進一步,傳統軟體演算法主要依靠工程師的持續修改調整,而如 Deepfake 這類技術,內部的演算法會經過訓練持續進化。有許多技術被應用於提高 Deepfake 的偽造效果,其中最常見的一個作法被稱為「生成對抗網路(Generative Adversarial Network, GAN)」,這裡面包含了兩組神經網路「生成器(Generator)」和「辨識器(Discriminator)」。

-----廣告,請繼續往下閱讀-----

在投入訓練資料之後,這兩組神經網路會相互學習訓練,有點像是坐在主人頭上的小天使與小惡魔會互相吐槽、口才越來越好、想出更好的點子;在練習的過程中,「生成器」會持續生成偽造的影像,而「辨識器」則負責評分,反覆訓練下來,偽造生成的技術進步,辨識偽造的技術也得以進步。

舉例來說,This Person Does Not Exist 這個網站就充滿了使用 GAN 架構建構的人臉,這個網站中的人臉看上去非常真實,實際上都是 AI 製造出來的「假臉」。

This Person Does Not Exist 裡的「假臉」。

Deepfake 影片不一定是問題,不知道是 Deepfake 才是問題

現今的 Deepfake 技術得以持續進步、騙過人眼是許多人努力的成果,也不見得都是壞事。像是《星際大戰:俠盜一號》片尾,年輕的萊婭公主出面驚鴻一瞥,就帶給許多老粉絲驚喜。這項技術應用癥結在於,相關演算法輕易就能取得,除了讓有心人可以藉以產製色情影片(這類影片佔了Deepfake濫用的半數以上),Deepfake 製造的影片在人們不知情的情況下,很有可能成為虛假訊息的載體、心理戰的武器,甚至於影響選戰與輿情。

因此,Deepfake 弄假似真不是問題,閱聽者因此「不辨真假」才將是最大的問題所在。

-----廣告,請繼續往下閱讀-----
歐巴馬的 Deepfake 影片

相關的研究人員歸納了幾個這類「變臉」影片常見的特徵,可以用來初步辨識眼前的影片是不是偽造的。

首先,由於 AI 尚無法非常細緻的處理一些動作細節,因此其眨眼、視線變化或臉部抽蓄的動作會較不自然。其次,通常在邊緣處,如髮絲、臉的邊緣線、耳環等區域會出現不連貫的狀況。最後,在一些結構細節會出現不合理的陰影瑕疵,像是嘴角的角度位置等。

由於現階段的 Deepfake 通常需要大量的訓練資料(影像或影片)才能達到理想的偽造成果,因此會遭到「換臉」的受害者,主要集中在影像資源豐富的名人,如電影明星、Youtuber、政治人物等。需要注意的是,如果有人意圖使用 Deepfake 技術製造假消息,其所製造的影片不見得需要非常完美,有可能反而降低解析度、非常粗糙,一般人如用手機瀏覽往往難辨真假。

人眼已經難辨真假,那麼以子之矛攻彼之盾,以 AI 技術辨識找出 Deepfake 的成品,有沒有機會呢?隨著 Deepfake 逐漸成為熱門的議題,有許多團隊也開始試圖藉由深度學習技術,辨識偽造影像。2020 年臉書與微軟開始舉辦的「換臉偵測大賽」(Deepfake Detection Challenge)就提供高額獎金,徵求能夠辨識造假影片的技術。然而成果只能說是差強人意,面對從未接觸過的影片,第一名辨識的準確率僅為 65.18%。

-----廣告,請繼續往下閱讀-----
「換臉偵測大賽」(Deepfake Detection Challenge)的辨識素材。圖/MetaAi

對於 Deepfake 可能遭到的濫用,某部分我們可以寄望技術的發展未來終將「道高一尺」,讓社群平台上的影像不致於毫無遮攔、照單全收;然而技術持續「魔高一丈」讓防範的科技追著跑,也是顯而易見的。

社群網路 FB 在 2020 年宣布全面禁止 Deepfake 產生的影片,一旦有確認者立即刪除,twitter 則強制註記影片為造假影片。Deepfake 僅僅是未來面對 AI 浪潮,科技社會所需要應對的其中一項議題,法律、社會規範如何跟上?如何解決箇中的著作權與倫理問題?這些都將是需要經過層層討論與驗證的重要課題。

至少大家應該心知肚明,過往的網路流行語:「有圖有真相」已經過去,接下來即將面臨的,是一個「有影片也難有真相」的網路世界了。

  • 註解:推出 FaceApp 與「去演」的兩家公司其軟體皆要求註冊,且對於上傳資料之後續處理交代不清,被認為有侵犯使用者隱私權之疑慮。

參考資料

-----廣告,請繼續往下閱讀-----
  1. Deepfakes and the New AI-Generated Fake Media Creation-Detection Arms Race – Scientific American
  2. What To Do About Deepfakes | March 2021 | Communications of the ACM
  3. Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A., & Ortega-Garcia, J. (2020). Deepfakes and beyond: A survey of face manipulation and fake detection. Information Fusion, 64, 131-148.
  4. Deepfake 深偽技術的技術濫用與道德困境,大眾正要開始面對 | TechNews 科技新報
  5. 台灣團隊研究辨識Deep Fake影片 深偽技術的正邪之戰開打 | 台灣事實查核中心 (tfc-taiwan.org.tw)

-----廣告,請繼續往下閱讀-----
所有討論 1