0

0
0

文字

分享

0
0
0

伯特蘭箱子悖論@《悖論:破解科學史上最複雜的9大謎團》

PanSci_96
・2013/04/08 ・2824字 ・閱讀時間約 5 分鐘 ・SR值 518 ・六年級

「似是而非的悖論」的第二個例子由十九世紀法國數學家約瑟夫‧伯蘭特(Joseph Bertrand)提出。(他最著名的悖論並不是這個,而且比這個更需要數學專業。)

有三個箱子,每個箱子裡各有兩枚硬幣,放置方式如下:每個箱子都隔成兩半;每一半各放一枚硬幣,而且蓋子可以單獨打開來查看裡頭的硬幣種類(但不允許查看另一枚)。第一個箱子裡放了兩枚金幣(代號GG),第二個箱子裡放了兩枚銀幣(代號SS),第三個箱子則有金幣和銀幣各一枚(代號GS)。請問你選到內有金幣跟銀幣的箱子機率有多少?答案的確很簡單:三分之一。這一點都不難。

接著,隨機挑選一個箱子。如果打開半邊的蓋子發現裡面是金幣,那麼這個箱子是GS箱的機率有多少?在發現一枚金幣的當下,你已經知道這個箱子不可能是SS箱,排除之後只剩兩種可能性:GG箱或GS箱。因此它是GS箱的機率就是二分之一,沒錯吧?

假如打開蓋子出現的是銀幣,我們就可以排除GG箱的選項,剩下的只有SS箱或GS箱兩種可能,所以選到GS箱的機會依然是二分之一。

由於打開選定的蓋子出現的不是金幣就是銀幣,而且每種硬幣各有三枚,若兩者出現的機率相同,那麼不論出現何種硬幣,你都有一半的機率選中GS箱。也就是說,往某個箱子的其中半邊裡瞧了一眼之後,選中GS箱的整體概率竟然從一開始的三分之一變成二分之一。可是,只不過才瞧了某個硬幣一眼,怎麼會使機率產生這麼大的變化?如果隨機選出一個箱子,打開其中一個蓋子之前,你知道選出的箱子有三分之一機率是GS箱;然而,僅僅憑著看到其中一枚硬幣,究竟是怎麼使得機率從三分之一突然變成二分之一的?畢竟這個動作並不會帶來新的資訊,因為你心裡明白,出現的不是金幣就是銀幣。究竟哪裡出問題了呢?

正確答案是,不論是否察看其中一枚硬幣,選到GS箱的機率一直都是三分之一,而非二分之一。首先考慮從箱子裡找到一枚金幣的情況:金幣共三枚,姑且稱他們為G1,G2和G3。假設GG箱裡放的是G1和G2,G3在GS箱裡。如果你打開其中一個箱蓋並且發現一枚金幣,那麼你有三分之二的機率打開的是GG箱,因為看到的金幣可能是G1或G2。這枚金幣是G3的機率只有三分之一,與你選中GS箱的機率一樣。

生日悖論

這是最著名的「似非而是的悖論」之一。不同於前兩個例子,這種悖論不耍花招,沒有邏輯推理上的謬誤,也不使用敘述上的障眼法。我必須強調,不論讀者是否相信其解答,它在數學與邏輯上都是完全正確的,並且具有一致性。這種面對問題的挫敗感在某種程度上提高了破解此悖論的樂趣。

以下是生日悖論的表述:

你認為房間裡至少要有多少人,才能讓其中任意兩人同一天生日的機率超過一半──也就是說,任意兩人生日相同的機率比不同來得高?

先讓我們來運用一下直觀的常識(當然稍後會證明是錯的)。一年有365天,可以想像成大講堂裡有365個空座位。100位學生進入講堂,每個人隨機選了一個座位。有些人可能想跟朋友坐在一起;有些人喜歡最後一排的隱蔽性,讓他們可以在課堂中打瞌睡不被發現;較多學生則選擇離講台較近的位置。然而他們坐在哪裡並不重要,因為超過三分之二的座位仍然空著。當然,沒有學生會去坐已經有人的座位,而我們總覺得講堂裡有這麼多座位,兩位學生搶同一個位置的機會相當微小。

如果將這種常識性的思維方式應用到生日問題上,我們可能會認為,在可選的生日與座位一樣多的情況下,這100位學生當中任何人跟別人同一天生日的機會也一樣微小。當然,難免有少數一起過生日的死黨,但我們覺得發生的可能性比不發生來得低。

如果換成一群為數366人的學生(先不管閏年),很自然地,不須多作解釋就很清楚,我們可以確定至少有兩個人生日在同一天。然而,當學生人數逐漸減少,情況卻開始變得有趣起來。

以下所述也許會讓讀者感到不可思議──事實上,房間裡只需要57個人,就可以讓任意兩人同一天生日的機率超過99%。也就是說,只要57個人,就幾乎能確定其中有兩個人同一天生日!這個答案聽起真是令人難以置信。若只針對問題來回答,任意兩人生日相同的可能性比不同還高(也就是機率超過一半)所需的人數則遠低於57。事實上,只要23個人就足夠了!

多數人初次聽到這個答案莫不大吃一驚,甚至在確認過解答的正確性之後依舊感到渾身不自在──這在直覺上的確太令人難以接受了。所以,我們接著來詳細探討其中的數學,我會儘可能將它說清楚。

我們首先假定一些預設條件,儘量使問題簡化:排除閏年的狀況、一年中所有日期作為生日的機率都相同、而且房間裡沒有雙胞胎。

許多人所犯的錯誤在於,他們認為這個問題是兩個數字之間作比較:房間裡的人數與一年中的天數。由於共有365天可作為這23人的生日,因此避開彼此生日的機會似乎遠比撞在一起來的高。但是這種看待問題的方式卻造成誤導。試想,為了能讓兩個人的生日在同一天,我們需要的是成對的人,而非單獨的個體;因此應該考慮的是不同配對方式的總數。首先從最簡單的狀況出發:如果只有三個人,那麼總共有三種不同的配對:A—B,A—C,B—C。若是四個人,配對的可能性增加到六種:A—B,A—C,A—D,B—C,B—D,C—D。當總人數達到23人時,我們發現總共有253種不同的配對方式(註)。到這裡讀者是否發現,相較於原本的答案,要相信這253種雙人組合其中一組的生日剛好是365個日期之一,是否變得簡單多了呢?

計算這個機率的正確方法是:從一組配對開始,逐漸增加人數,並且觀察生日相同的機率如何變化。這個方法的訣竅在於,我們直接計算的並非新加入者與別人一同過生日的概率,而是避開所有其他人生日的機率。如此一來,第二個人避開第一個人生日的機率就是364÷365,因為他可以在一年中頭一個人生日以外的任何一天出生。第三人與前兩人生日錯開的機率是363÷365。然而別忘了前兩人仍得避開同一天生日(有364÷365的機會);在機率論裡,如果我們想知道兩個獨立事件同時發生的概率,就得將第一個事件出現的機率乘上第二個事件的機率。因此,第二人避開第一人生日,以及第三人同時避開前兩者生日的機率,就是:(364/365)×(363/365)= 0.9918。最後,如果以上結果是三個人生日完全錯開的概率,那麼其中任意兩人生日相同的機率就是1-0.9918=0.0082。因此在只有三個人的情況下,生日出現在同一天的機會非常微小,正如讀者所預期。

接著繼續進行相同的步驟——逐一增加人數,建立一串連乘的分數算出所有人錯開彼此生日的機率,直到總乘積低於0.5(也就是50%)為止。這時候就會得到任意兩人生日相同機率超過百分之五十所需的人數。我們發現,共需要22個分數連乘就可以讓總乘積小於0.5,也就是22個人:

(364/365)×(363/365)×(362/365)×(361/365)×(360/365)×……= 0.4927…

←    22個分數連續相乘    →

於是房間裡任意兩人生日在同一天的機率便為:

1-0.4297=0.5073=50.73%

 

解開這個難題需要一些機率論的知識。相較之下,下一個悖論就某些方面來說較為淺顯易懂,而我認為這點更令它顯得不可思議。這是我最喜歡的真悖論,因為它的陳述是如此簡單,如此容易解釋,卻又難以透徹理解。

 

【註】:用來計算不同配對方式總數的數學方法稱為「二項式係數法」(binomial coefficient)。這個例子的算法如下:(23 × 22)÷ 2 = 253

 

節錄至 PanSci 2013 四月選書《悖論:破解科學史上最複雜的9大謎團》第一章:綜藝秀裡的悖論。由三采文化出版。

文章難易度
PanSci_96
1189 篇文章 ・ 1742 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

8
1

文字

分享

0
8
1
鑑識故事系列:Lucia de Berk 值班死幾人?荷蘭護理冤案
胡中行_96
・2023/02/27 ・2983字 ・閱讀時間約 6 分鐘

前言:本文為鑑識系列中,罕見提及統計學的故事。不過,繁複的計算過程全部省略,僅討論統計概念和辦案原理。請害怕數學的讀者放心。

護理人員 Lucia de Berk。圖/Carole Edrich on Wikimedia Commons(CC BY-SA 3.0)

荷蘭護理人員 Lucia de Berk,長年於海牙茱莉安娜兒童醫院(Juliana Kinderziekenhuis)的 1 個病房,與紅十字醫院(Rode Kruis Ziekenhuis)的 2 個病房工作。2001 年 12 月,她因謀殺罪嫌被捕。[1]

超幾何分佈

警方起先偵辦 2 名住院病患的死因,發現是中毒身亡;後來連帶調查 1997 至 2001 年間,幾家醫院可能的謀殺案件,於是找上了她。[2]在法庭上,司法心理學家 Henk Elffers 用機率的概念,證明 Lucia de Berk 有罪。簡單來說,就是計算嫌犯現身出事班次的機率。他採取的統計方法,叫做超幾何分佈(又稱「超幾何分配」;hypergeometric distribution)。[1]

超幾何分佈適合用在從一個母數中,隨機抽取樣本,不再放回的情形。例如:袋子裝有 N 顆球,其中 L 顆為紅球。一把抓出 n 顆球,不特別挑選的話,紅球碰巧被抓到的機率為 X。[3, 4]以此類推,在此案被調查的時間範圍內,病房總共有 N 個班次,其中 Lucia de Berk 值了 L 班,而有醫療事故的班次共 n 個。如果不刻意安排,則她正好出現在事故班次的機率為 X。[1]公式介紹。[4]

此處實際帶入數據後得到的答案,說明 Lucia de Berk 理論上應該只有 3 億 4 千 2 百萬分之一(X = 1 / 3.42 x 108)的機率,會剛好在醫療事故發生的班次值班。因此,法庭認定她的頻繁出現(> 1 / 3.42 x 108),絕非巧合。[1, 2, 5, 6]2003 年,Lucia de Berk因 7 起謀殺和 3 次殺人未遂,[2]被判終身監禁。[5]

茱利安納兒童醫院(Juliana Kinderziekenhuis)外觀。圖/Joris on Wikimedia Commons(CC BY-SA 3.0)
紅十字醫院(Rode Kruis Ziekenhuis)已於 2021 年關閉。圖/1Veertje on Wikimedia Commons(CC BY-SA 4.0)。

統計謬誤

當時有位醫師任職於 Lucia de Berk 待過的一家醫院。他的女性姻親 Metta de Noo-Derksen 醫師,以及 Metta 的兄弟 Ton Derksen 教授,都覺得事有蹊蹺。[7]Metta 和 Ton 檢視死者的病歷紀錄,並指出部份醫療事故的類型和事發時間,與判決所用的數據對不起來因為後者大半仰賴記憶,他們甚至發現有些遭指控的班次,Lucia de Berk 其實不在現場。然而,光是這些校正,還不足以推翻判決。[1, 7]

所幸出生於英國的荷蘭萊頓大學(Universiteit Leiden)統計學榮譽教授 Richard Gill,也伸出援手。[2]在協助此案的多年後,他的團隊發表了一篇論文,解釋不該使用超幾何分佈的理由,例如:[1]

  1. 護理人員不可互換:所有受訪醫師都說,護理人員可以相互替換;但是護理人員覺得,他們無法取代彼此。由於各別的個性與行事風格迥異,他們對病患的影響也不同。[1]
  2. 醫療事故通報機率:既然每個護理人員都有自己的個性,他們判定某事件為醫療事故,並且通報醫師的機率也不一樣。[1]畢竟醫院的通報規定是一回事;符合標準與否,都由護理人員判斷。比方說,有個病患每次緊張,血壓就破表。那就讓他坐著冷靜會兒,再登記第二次測量的正常結果即可。不過,難免會有菜鳥護士量一次就嚇到通報,分明給病房添亂。
  3. 班次與季節事故率:夜間與週末只剩護理人員和少數待命的醫師;季節性的特定病例增減;以及病患的生理時鐘等,都會影響出事的機率。[1]
  4. 護理排班並不平均:護理人員的班次安排,理想上會有帶狀的規律。可能連續幾天都是白班,接著是幾個小夜班之類的,[1]比較方便調整作息。此外,護理人員的資歷和個性,通常也會被納入考量。[1]以免某個班次全是資深人員;但另個班次緊急事故發生時,卻只剩不會臨機應變的新手。在這樣的排班原則下,如果單看某個時期的班表,每個人所輪到的各類班次總數,應該不會完全相同。
  5. 出院政策曾經改變:茱莉安娜兒童醫院在案發期間,曾經針對確定救不活的小病患,是否該在家中或病房離世,做過政策上的調整。帳面上來說,算在病房裡的事故量絕對會有變化。[1]

總之,太多因素會影響護理排班,或是干擾醫療事故的通報率,因此不能過度簡化成抽取紅球那樣的隨機概念。更嚴重的是,Henk Elffers 在計算過程中,分開處理 3 個病房的機率,然後再相乘。Richard Gill 的團隊強調,這樣會造成在多處上班的護理人員,比只為一處服務者,看起來有較高的嫌疑。[1]

帕松分佈

因應這種情境,Richard Gill 教授建議採用帕松分佈(又譯「布阿松分配」;Poisson distribution),[1]一種描述特定時間內,事件發生率的統計模型。[8]有別於先前的計算方法,在這裡事故傾向(accident proneness),以及整體排班狀況等變因,都納入了考量。前者採計護理人員通報醫療事故的意願強度;後者則為輪班的總次數。這個模型通常是拿來推估非尖峰時段的來電、大城市的火災等,也適用於 Lucia de Berk 的案子。[1](深入瞭解公式計算(p. 4 – 6)。[1, 8]

雖然此模型的細節複雜,統計學家得大費周章解釋給法官聽,但是考慮的條件比較趨近真實。倘若套用原始判決的數據,這個計算最後的答案是 0.0206161,意即醫療事故本來就有 49 分之 1 的機率,會與 Lucia de Berk 的班次重疊。如果帶入 Mettade Noo-Derksen 和 Ton Derksen 校正過的數據,機率更高達 9 分之 1。[1, 9]換句話說,她單純是倒楣出現在那裡,就被當作連續殺人犯。[6]

其他證據與翻案

大相逕庭的計算結果,顯示出選擇正確統計模型的重要性。然而,最不合理的,是以機率作為判決的主要根據。就謀殺案件來說,怎能不忠於病歷或驗屍報告?Richard Gill 教授接受美國犯罪學講師 Jon Robins 的訪問時,表示後來由醫師和毒物學家組成的獨立團隊,被允許瀏覽當初沒送上法庭的關鍵資料。[2]他們發現原本被視為受害者的病患,根本都喪命於自然死因。[2, 6]

在各方人士的協助下,Lucia de Berk 還是歷經兩次上訴失敗。[6]她曾於 2008 年,被允許在家等候重審結果。[1]但直到 2010 年 4 月,司法才還她清白。[7]Ton Derksen 認為,在荷蘭像這樣誤判的案件,約佔總判決數的 4 至 11%,也就是每年 1,000 人左右。不過,2006 到 2016 年間被判刑的 2 萬 3 千人裡,只有 5 個上訴到最高法院,而且僅 Lucia de Berk 的案子得以平反。[10]

Lucia de Berk 冤案改編電影的海報。圖/電影《Lucia de B.》(2014) on IMDB

  

參考資料

  1. Gill RD, Groeneboom P, de Jong P. (2018) ‘Elementary Statistics on Trial—The Case of Lucia de Berk’. Chance 31, 4, pp. 9-15.
  2. Robins J. (10 APR 2020) ‘Ben Geen: Statisticians back former nurse’s in last chance to clear name’. The Justice Gap.
  3. 超幾何分佈」國立高雄大學統計學研究所(Accessed on 03 FEB 2023)
  4. 李柏堅(06 FEB 2015)「超幾何分配CUSTCourses on YouTube.
  5. Sims J. (24 FEB 2022) ‘Are We in the Midst of a Data Illiteracy Epidemic?’. Inside Hook.
  6. Schneps L, Colmez C. (26 MAR 2013) ‘Justice Flunks Math’. The New York Times.
  7. Alexander R. (28 APR 2013) ‘Amanda Knox and bad maths in court’. BBC News.
  8. 李伯堅(04 FEB 2015)「布阿松分配」CUSTCourses on YouTube.
  9. Wilson D. (13 DEC 2022) ‘Red flag to be wary of when hunting a killer nurse’. The Herald, Scotland.
  10. One in nine criminals may have been wrongly convicted – research’. (21 NOV 2016) Dutch News.
胡中行_96
151 篇文章 ・ 54 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

4
2

文字

分享

0
4
2
你能想像棒球穿牆嗎?突破物理世界的常識:量子穿隧——《阿宅聯盟:量子危機》
未來親子學習平台
・2023/01/20 ・1226字 ・閱讀時間約 2 分鐘

想像一個全壘打王,面對前方的來球,大棒一揮,球越過了全壘打牆,到了牆的另外一邊。

Home~~~Run!圖/GIPHY

但假如,那個全壘打牆變成了兩層樓高呢?也許,他更大力地擊球(給球更多的能量),那顆球還是能夠飛越過全壘打牆,到牆的另外一邊。但如果,那全壘打牆變成了三十層樓高呢?我想會認為,除非靠機器,否則再厲害的全壘打王,不管用了多少力氣,他應該都無法讓球飛過三十層樓那麼高。

上述的例子,正顯示了我們日常生活中的物理原則:只要物體(球)的能量不足以跨越障礙物(牆),那麼它永遠不可能到達障礙物的另一側——但是,在量子的世界,卻不是這樣。

粒子是怎麼跨越各種障礙的?

量子力學裡,一個粒子具備的能量即使不足以跨越障礙,它仍然有小機率會出現在障礙的另一邊;而且,若粒子的能量跟跨越障礙所需要的能量愈接近、或是說只少一點,那麼這個粒子出現在障礙另一邊的機率就愈大。

這樣神奇的現象,彷彿就像是粒子挖了隧道穿過障礙一般(儘管並沒有真的隧道),所以稱為「量子穿隧」效應。

不過,在丟球的例子裡,我們可以想像,若是牆愈高或愈厚,那麼球就愈難飛過牆壁。同樣地,在量子力學的情形下,雖然粒子有可能在能量不足的狀況下穿過障礙,但要是障礙無限高或無限厚的話,那麼粒子就還是過不去的

儘管在量子力學的情況下,障礙無限高或無限厚,粒子還是過不去的。圖/Envato Elements

事實上,量子穿隧效應跟我們先前提到的「物質具有波的特性」非常有關係。想像水池中間有一顆大石頭,池中的水波在遇到石頭這個障礙物時,會從旁邊繞道而過;但如果是一般物質,一旦遇到障礙物就直接被擋住了,沒辦法繞道而行。

就是因為在量子世界,物質也具有波的特性,我們才會看到粒子的穿隧效應。儘管量子效應感覺很奇特,但它在很多方面都有實際的影響。

例如,我們知道太陽核心是依賴核融合反應來產生能量;在過程中,會將兩個氫原子核,融合成更重的原子核。但因為氫原子核都帶正電,要抵抗正電荷間的排斥力,將它們融合在一起,其實非常困難。也幸虧有量子穿隧效應,太陽內部的氫原子核才能克服電荷排斥力的阻礙,順利融合在一起,並製造能量。

所以,在地球的我們,能夠享受到太陽的光和熱,說起來也要感謝量子穿隧效應呢!

——本文摘自《阿宅聯盟:量子危機》,2022 年 11 月,未來出版,未經同意請勿轉載

未來親子學習平台
3 篇文章 ・ 3 位粉絲

1

2
2

文字

分享

1
2
2
「量子狀態」聽起來好難?其實就是機率與疊加——《阿宅聯盟:量子危機》
未來親子學習平台
・2023/01/19 ・1256字 ・閱讀時間約 2 分鐘

想像我們往水池內丟兩顆石頭,以石頭的落點為中心,會個別產生漣漪,在水面上擴散開來。

而當兩個漣漪互相接觸時,交會之處的水面其實同時反應了兩個漣漪的影響;可以說,兩個漣漪疊加在一起了。漣漪是靠水傳遞的一種波,稱為水波;而「疊加」的現象,就是屬於波的一種特性

當兩個漣漪相互接觸時,會疊加在一起。圖/Envato Elements

物質的波,也就是物質波,同樣存在疊加的特性。只不過,物質波跟水波不同的地方在於,它不需要依賴「水」這種實際的東西來傳遞,而是一種「機率波」。機率波的數學形式長得像波,而它代表的,是量子系統處於不同狀態的機率分布

量子系統的狀態:機率波

當我們在描述量子系統的狀態時,就會用到「機率波」的概念。舉例來說,在電玩遊戲中要是打怪成功,死掉的怪物會留下寶物。怪物可能有 50% 的機率掉落寶物 A,也有 50% 的機率掉落寶物 B,但我們不會在事前就知道怪物會留下哪種寶物。

所以,怪物可以說是同時擁有「掉落寶物 A」和「掉落寶物 B」這兩種狀況,直到我們成功打完怪,才能確定牠究竟帶哪一種寶物。類似地,機率波告訴我們的,就是量子系統「有多少機率處於狀態 A、又有多少機率處於狀態 B」的資訊;如同兩個水波在水面上疊加,A 和 B 這兩個狀態同時存在這個量子系統上。所以,我們把量子系統「同時處於不同狀態疊加」的狀況,稱為「疊加態」

直到我們打怪成功,才能確定究竟掉哪一種寶物。圖/GIPHY

另一方面,也跟打完怪物才知道掉什麼寶物類似,在我們實際觀測量子系統前,並無法知道會看到狀態 A 還是狀態 B,要觀測完才會知道。因為量子疊加的特殊性質,科學家想到,或許可以拿來做一些實際的運用。

例如,在現代的電腦運算中,「位元」是資訊的最小單位,可以用 0 或 1 這兩個數值來表示。那麼,我們也許能夠把「同時存在兩種不同狀態的量子系統」當作位元使用,讓它的兩種狀態分別代表 0 跟 1 來儲存資訊,而這就被稱為量子位元

由於物理性質的不同,量子位元在某些狀況下,可以運算得比傳統位元更有效率;利用量子位元建構的電腦,就稱為量子電腦。雖然目前已經有少數量子電腦問世,能以最多一百多個量子位元進行運算,但要能大規模運用在日常生活中,除了要再想辦法增加量子位元之外,還有許多難題要克服,所以,現在就先讓漫畫的想像來代替很可能成真的未來吧。

——本文摘自《阿宅聯盟:量子危機》,2022 年 11 月,未來出版,未經同意請勿轉載

所有討論 1
未來親子學習平台
3 篇文章 ・ 3 位粉絲