0

0
0

文字

分享

0
0
0

數不盡的星星@《悖論:破解科學史上最複雜的9大謎團》

PanSci_96
・2013/04/23 ・6051字 ・閱讀時間約 12 分鐘 ・SR值 556 ・八年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

source:wikipedia
source:wikipedia

如果讀者知道天文學家在多久之前就已經察覺這個悖論的存在,便會明白以下事實多麼令人驚訝:直到一九五○年代,這個悖論才首度由來自德國不萊梅(Bremen)十九世紀的醫生兼業餘天文學家韓瑞契.威漢.奧伯斯(Heinrich Wilhelm Olbers)正式提出,並以他的名字命名。在此之前,對這個問題感興趣的天文學家可說是少之又少。

一九五二年, 著名的澳洲裔英國宇宙學家赫曼.邦迪(Hermann Bondi)出版了一本極具影響力的教科書,書中首度使用「奧伯斯悖論」一詞。不過我們稍後將明白,這本書其實有張冠李戴之嫌。奧伯斯既不是第一個提出此一問題的人,他的解答也不具特別的原創性或啟發性。早他一個世紀的艾德蒙.哈雷(Edmond Halley)已經敘述過,再早一個世紀的約翰尼斯.克卜勒(Johannes Kepler)也在一六一○年提過。甚至連克卜勒都不是第一個寫下這個問題的人。為了了解整件事的始末,我們得回到一五七六年;哥白尼(Copernicus)的鉅著《天體運行論》(De Revolutionibus)發表數十年後,第一個英語譯本在這年終於出現。

任何關於天文史的論述總是從相同的幾個關鍵人物開始。首先登場的是西元二世紀的希臘人托勒密(Ptolemy),雖然身為有史以來最重要的科學教科書之一《天文學大成》(Almagest)的作者,他卻誤以為太陽繞地球公轉。他發展出以地球為中心的宇宙模型,並且被全世界天文學家奉為圭臬達一千多年之久。接下來是十六世紀的波蘭天才哥白尼,他推翻托勒密的「地心」學說,並將太陽與地球的位置對換,被尊為現代天文學的鼻祖。我們也不能遺漏伽利略(Galileo),他是一六○九年史上第一位將望遠鏡指向天空的人,並且透過觀測證實哥白尼「日心」模型的正確性:地球的確繞著太陽公轉,與其他行星一樣。

但是哥白尼的模型並不完全正確。他將地球從宇宙中心這個至高無上的位置移開的做法無誤,卻錯在直接用太陽取而代之,並相信太陽系即是整個宇宙。《天體運行論》被認為是引發科學革命的重要著作之一,書中展示了一幅具有指標意義的太陽系示意圖。該圖正確地將地球置於太陽外圍僅次於水星和金星的第三顆行星位置上,而月亮是天空中唯一繞地球公轉的天體。往外接著是火星、木星和土星。到此為止都正確(土星以外的行星尚未被發現),可是接下來哥白尼做了一件很有趣的事,他將所有的恆星放在最外圍繞太陽公轉的同一個固定軌道上,使得太陽成為整個宇宙而非一個行星系統的中心。

我們現在當然知道,太陽並不在這個特殊的位置上。太陽事實上位於宇宙某個不起眼角落裡平凡星系中的某個旋臂外側。過去幾個世紀以來,愈來愈詳細精確的天文觀測資料不但協助我們建立現代宇宙論,也讓我們明白宇宙並沒有中心,而且很有可能往四面八方一直延伸出去。然而,在望遠鏡發明之前就已提出日心學說的哥白尼並沒有機會得到這些知識。

下一階段的突破得靠英國的天文學家湯瑪士.迪格斯(Thomas Digges), 他來自英國牛津附近一個沉悶的市集小鎮瓦陵福(Wallingford),算不上赫赫有名。他生於一五四六年,亦即哥白尼逝世後數年。他的父親倫納德.迪格斯(Leonard Digges)也是科學家,被推崇為經緯儀的發明人。經緯儀是現今主要由測量師使

用的一種儀器,用來精確量測水平與垂直角度。湯瑪士在一五七六年出版了由其父所著、廣受歡迎的天文年鑑《永恆的預測》(A Prognostication Everlasting)的修訂版,以附錄的形式將新題材加入書中。這本書最重要的貢獻在於首度將哥白尼的鉅著譯成英文。從現在的觀點來看,一本內容資料並非來自哥白尼的天文書籍,竟然願意將這個理論放在附錄裡,實在相當神奇。雖然湯瑪士.迪格斯出版了這個當時飽受爭議的宇宙模型並加以提倡,但他所做的重要工作不只於此。我認為,他進一步改良這個理論為天文學發展所帶來的貢獻,與哥白尼不相上下,他卻遠不如哥白尼有名。

迪格斯修改了哥白尼著名的太陽系示意圖,將原圖中位於最外層的眾多恆星從固定的單一圓形軌道上解放出來,散布到太陽系外廣大無垠的太空中。他因此成為史上第一位提出無限大的宇宙包含無窮多星星的天文學家─不過古希臘哲學家德謨克利特(Democritus)曾經暗示過同一概念。

迪格斯的突破並非來自猜想。他受到一起發生於一五七二年的天文事件啟發,產生新的宇宙觀。正如當時全世界的其他天文學家一樣,對於天空中突然冒出的明亮新星他也目瞪口呆。現今的我們知道這種偶發事件是超新星爆發:當恆星來到生命終點,用盡所有核燃料之後,自身重力使星體急遽坍縮;這個過程引發衝擊波並向外傳遞,導致星體外層物質被猛烈炸向外太空,同時伴隨最後一次極為劇烈的能量釋放。事實上,爆發時所釋出的能量之高,其亮度甚至會短暫地超越整個星系。這些天體物理學的概念在十六世紀時尚未明朗。當時普遍認為,月亮軌道之外的宇宙結構是穩定而恆常不變的,如果夜空中突然短暫出現明亮星體,隨即再度變暗,它一定非常接近地球,而且必然在月球軌道以內。

迪格斯是當時少數算出一五七二年超新星勢必出現在距離地球極遠處的天文學家之一,其他還包括大名鼎鼎的第谷.布拉赫(Tycho Brahe)。由於超新星的位置相對於其他恆星並未逐日改變(也就是所謂的「視差」現象),天文學家被迫推論,它必定比月亮或其他行星更為遙遠。局勢變得十分令人費解─天空中突然出現一顆新天體,而我們卻搞不清楚它打從何處來。這個被稱為「新星」的出現令迪格斯得到一個結論:恆星與我們之間的距離不見得都相同;也許(雖然現今顯而易見)較亮的星離我們較近,較暗的星較遠。(譯按:因此超新星亮度的變化便可解釋為,該星體與我們之間的距離改變。)這在當時是一個革命性的想法。

當迪格斯看著無垠太空中數不盡的星星思索時,無可避免地想到以下的重大問題:為什麼夜晚的天空是暗的?對他來說,這算不上什麼悖論。他直接假設由於遙遠的星星過於昏暗,對於夜空的亮度並沒有任何貢獻。

迪格斯並沒有考慮到某個至關重要的數學計算,該計算足以揭露他對於黑暗夜空的錯誤推論,不過這一點的釐清已經是更後來的事了。克卜勒在一六一○年重新檢視這個問題,並認為夜晚之所以變暗,是因為宇宙的大小有限。星星之間的黑暗區域其實是包圍著宇宙的外圍幽暗空間。克卜勒之後一百年,另一位英國天文學家哈雷再度思索這個問題,他得到的結論支持迪格斯的解答:宇宙無窮大,但是遙遠的星體太暗,以至於我們看不到。

數年後, 一位名為尚.菲利浦.迪薛索(Jean-Philippe de Chéseaux)的瑞士天文學家指出,迪格斯和哈雷的論點對於解開這個悖論毫無幫助。他透過簡潔的幾何計算證明:若以地球為中心,將周遭的太空依不同半徑向外劃分為若干同心球殼,像一層層的洋蔥直到無窮遠處,並且假設宇宙各處的星星亮度[註]平均而言相去不遠(我們當然知道這與真實狀況不盡相符,不過為了簡化問題,這是個可接受的假設),那麼雖然位於最內層球殼的星星看起來最亮,但由於較外層球殼面積較大,含有較多星星,總視覺亮度其實與內側任何殼層相同。換句話說,為數較多但較遠較暗的星星所貢獻的亮度,與為數較少但較近較亮的星星一樣。看來我們又回到問題的原點,克卜勒的觀點似乎成為唯一的合理解釋:宇宙並非無窮大,否則夜晚的天空就不會是暗的

下一位登場的人物是奧伯斯。在他一八二三年發表的一篇論文裡,夜空為何黑暗的問題再度被提出。他知道根據迪薛索的計算,距離造成星光變暗並非正解。他另行提出假說指出,太空中可能充滿星際塵與氣體,擋住來自遙遠星體(如今已知是星系)的光芒。不過他沒考慮到,如果時間夠長,這些物質會不斷吸收來自遠處的星光,它們會慢慢被加熱,到最後也會開始發光,而且亮度會與它們所遮住的星體(或星系)相同。

不論如何,當時幾乎沒有其他天文學家注意到奧伯斯提出的問題及解答,直到十九世紀末為止。我們可以原諒奧伯斯所犯的錯誤。各位讀者想想,當時天文學家不但不清楚宇宙的範圍有多大,他們手上甚至沒有明確的證據顯示恆星聚集成星系,而我們的銀河系只是廣大宇宙中數十億個星系之一。這種情況將會在二十世紀的頭十年改變,因為有一位科學家對時間與空間的本質提出嶄新的科學觀點。

原註:當我們考慮的範圍大過某個距離之後,自然會超出銀河系。這時我們所討論的就是星系的亮度,而非恆星。

不斷擴張的宇宙

愛因斯坦在一九一五年發表他偉大的研究成果,但不是他著名的方程式E=mc2,也不是為他帶來諾貝爾獎榮耀、關於光的本質研究。這個理論被稱為「廣義相對論」(General Theory of Relativity),描述重力如何影響時間與空間。我們在中學時期學過牛頓的重力理論:重力是某種物體之間互相吸引卻不可見的力。這種敘述當然沒錯,我們的確生活在一個受地球重力主宰的世界裡,重力將我們拉向地球表面。牛頓的萬有引力定律也可以解釋月亮為什麼會繞著地球公轉,其引力如何影響地球的潮汐;它同時解釋地球如何繞太陽公轉,並且確認哥白尼以太陽為中心的太陽系模型。美國航空太空總署(NASA)的阿波羅計畫將太空人送上月球時,根據的就是牛頓萬有引力所做的預測。這個學說毫無疑問是正確的,但它並非完全精確。

愛因斯坦的廣義相對論用一種截然不同卻遠為精準的方式來描述重力。它指出,重力並不全然是一種普通的「力」,也就是說它不是一條將兩個物體拉近的隱形橡皮筋,而是一切帶有質量的物體周遭空間形狀的某種度量。寫到這裡,我相信除非讀者本身具有物理背景,否則這些解釋還是像天書一樣難以理解。不過別擔心,當愛因斯坦剛發表他的理論時,據說全世界只有另外兩位科學家能夠理解。時至今日,在經過各種實驗的嚴格測試之後,我們已經確認廣義相對論的正確性。

既然我們的宇宙是充滿物質的空間,而且所有物質基本上都受重力主宰,愛因斯坦及其他同僚馬上想到,也許廣義相對論可以用來描述整個宇宙的特性。然而,愛因斯坦隨即碰到一個棘手的難題。假設宇宙中所有星系在某個時刻相對於彼此是靜止的,而且如果宇宙的大小有限,引力將會使彼此逐漸靠近對方,最終導致整個宇宙的坍縮。當時普遍公認的宇宙觀認為,宇宙在星系的尺度以上是恆常不變的;一個隨著時間演變的動態宇宙,不但與主流想法脫節,也顯得多餘。因此當愛因斯坦發現廣義相對論的方程式得出宇宙必將收縮的結論時,他決定設法補救這個漏洞,而非構思出另一個石破天驚的解答。他假設,為了平衡向內拉的引力,宇宙中必須有另一個作用方向相反的反重力,稱為宇宙斥力。這個宇宙斥力恰好能夠與各種物質之間的萬有引力達成平衡,使得星系不會彼此撞在一起,並且使得宇宙維持在恆定狀態。愛因斯坦想出的上述辦法說穿了是一種數學技巧,讓他的廣義相對論能妥協於「已知」的穩態宇宙模型。

接著,令人意想不到的進展出現了。一九二二年,一位俄國宇宙學家亞力山卓.傅里德曼(Aleksandr Friedmann)想出不同的解答。有沒有可能愛因斯坦弄錯了,其實並沒有協助宇宙保持穩態平衡的反重力?他了解到,如果真的如此,宇宙並不見得會因重力作用而坍縮,其實也有可能在擴張。不過這怎麼可能呢?沒有宇宙斥力的話,宇宙不是應該要縮小而非擴張嗎?請看以下的說明。

設想某種原因(例如初始時期的爆發)讓宇宙一開始就處於擴張的狀態。物質之間互相吸引的重力會讓擴張減緩。因此,如果用來抵消引力的宇宙斥力不存在,宇宙又一開始就在擴張,現在的宇宙應該不是在擴張就是在收縮。唯一不可能出現的是穩態宇宙,也就是在擴張與收縮之間取得平衡;宇宙的狀態是不穩定的。

以下的範例足以說明為何如此。想想看光滑斜坡上的球是怎麼滾動的:如果將一顆球直接放到斜坡上,它必定會往下滾。然而,如果我們觀賞一段球在斜坡上滾動的影片,當球滾到斜坡中間時將影片暫停,然後請第三者預測影片恢復播放後球的滾動方向。如果他們經過仔細思考,就會回答球可能往斜坡上滾(對應於擴張中的宇宙),也可能往下滾(收縮中的宇宙),但不會停在斜坡上靜止不動。要讓球往上滾的唯一辦法,當然要有人在一開始時踢它一腳。在這種情況下,球向上滾的速度會逐漸減慢,最終會停下來並開始往下滾。

沒有人打算相信傅里德曼的理論,包括愛因斯坦本人─直到發現觀測上的證據。幾年後證據就出現了。艾德溫.哈伯(Edwin Hubble)是第一位證明銀河系外還有其他星系存在的天文學家。在此之前,一般認為望遠鏡中所見許多一小抹的微弱光暈是銀河系內的星際塵埃,稱為星雲。透過強力望遠鏡,哈伯發現這些星雲根本離地球太遠,不可能是銀河系的一部分,因此他們本身必然就是其他星系。更引人注目的是,他的觀測顯示遙遠的星系正在遠離地球,而且遠離速率與距離地球的遠近相關。不論望遠鏡朝向天空的哪個方向,都能觀測到此一現象。他的發現證明了傅里德曼關於宇宙正在擴張的想法是正確的。

哈伯更進一步準確地指出,既然宇宙在擴張,那麼過去的宇宙必然較現在為小。如果將時間回溯到夠久以前,我們將會回到某個所有星系彼此重疊的時刻,當時的宇宙擁擠不堪。繼續回溯到更早的時間,所有物質將會愈靠愈近,直到我們回到宇宙創生的那一刻,也就是現今稱為「大霹靂」的宇宙大爆發。(天體物理學家佛列德.霍伊爾於一九五○年代首度使用「大霹靂」一詞。)

在此必須特別說明,一般人常誤以為宇宙擴張是指所有其他星系都在遠離我們而去;這是錯誤觀念。真正擴張的其實是星系之間虛無的空間。另一件值得說明的有趣事實是,我們隔鄰的仙女座星系正朝著我們撞過來!根據目前所估計的宇宙擴張率,它應該以每秒五十公里的速率遠離我們。反之它卻以每秒三百公里的速率接近我們!之所以產生這種矛盾,是因為星系在宇宙中並非均勻分布,就像星星不是均勻分布在星系中一樣。在哈伯所觀測到的現象裡,離我們而去的是極為遙遠的星系,而非我們所在的本星系群的組成星系。

銀河系與仙女座星系彼此接近的速率相當於兩分鐘內繞地球一圈,或是在一週內從地球航行到太陽的距離。事實上,這兩個星系正在進行碰撞的程序,按照目前的進行速度估計,兩個星系需要耗時數十億年才會完全疊在一起。

關於宇宙擴張要說明的最後一點是,宇宙擴張速率正在逐漸增加。似乎有某種比重力還強的作用力將星系彼此推開,使擴張逐漸加速,與預期中重力會使擴張減慢的結果大不相同。這似乎是來自某種神祕的反重力作用,由於尚未找到更恰當的名稱,我們暫且稱它為「暗能量」。愛因斯坦關於宇宙斥力的想法看來終究不算太瘋狂,只是它似乎正在將宇宙撕裂,而不是維持恆定。

現今的宇宙學家相信,儘管宇宙從一百四十億年前誕生到現在一直在擴張,但是由於它所包含物質的重力作用,前七十億年間擴張速率是逐漸減慢的。後七十億年之中,由於星系分布過於稀疏,使得引力的效應轉弱。此時暗能量開始取得優勢,導致空間擴張愈來愈快。這意謂宇宙永遠不會再度坍縮,也就是宇宙不會毀於「大崩墜」(直到一九九八年發現宇宙加速擴張之前,大崩墜被認為是宇宙可能的最終命運之一);相反地,所有物質因為遠離彼此而永遠被孤立,導致宇宙終將死於「熱寂」(heat death)。這個想法令人意志消沉;不過,我們的壽命不會長到需要去煩惱這些問題。

 

節錄至 PanSci 2013 四月選書《悖論:破解科學史上最複雜的9大謎團》(由三采文化出版)

文章難易度
PanSci_96
1011 篇文章 ・ 1142 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

1

133
3

文字

分享

1
133
3
AI 是理科「主場」? AI 也可以成為文科人的助力!
研之有物│中央研究院_96
・2022/08/13 ・5646字 ・閱讀時間約 11 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文/田偲妤
  • 美術設計/蔡宛潔

AI 的誕生,文理缺一不可

人工智慧(Artificial Intelligence,簡稱 AI)在 21 世紀的今日已大量運用在生活當中,近期掀起熱議的聊天機器人 LaMDA、特斯拉自駕系統、AI 算圖生成藝術品等,都是 AI 技術的應用。多數 AI 的研發秉持改善人類生活的人文思維,除了仰賴工程師的先進技術,更需要人文社會領域人才的加入。

中央研究院「研之有物」專訪院內人文社會科學研究中心蔡宗翰研究員,帶大家釐清什麼是 AI?文科人與工程師合作時,需具備什麼基本 AI 知識?AI 如何應用在人文社會領域的工作當中?

中央研究院人文社會科學研究中心蔡宗翰研究員。圖/研之有物

詩詞大對決:人與 AI 誰獲勝?

一場緊張刺激的詩詞對決在線上展開!人類代表是有「AI 界李白」稱號的蔡宗翰研究員,AI 代表則是能秒速成詩的北京清華九歌寫詩機器人,兩位以「人工智慧」、「類神經」為命題創作七言絕句,猜猜看以下兩首詩各是誰的創作?你比較喜歡哪一首詩呢?

猜猜哪首詩是 AI 做的?哪首詩是人類做的?圖/研之有物

答案揭曉!A 詩是蔡宗翰研究員的創作,B 詩是寫詩機器人的創作。細細賞讀可發覺,A 詩的內容充滿巧思,為了符合格律,將「類神經」改成「類審經」;詩中的「福落天赦」是「天赦福落」的倒裝,多念幾次會發現,原來是 Google 開發的機器學習開源軟體庫「Tensor Flow」的音譯;而「拍拓曲」則是 Facebook 開發的機器學習庫「Pytorch」的音譯,整首詩創意十足,充滿令人會心一笑的魅力!

相較之下,B 詩雖然有將「人工」兩字穿插引用在詩中,但整體內容並沒有呼應命題,只是在詩的既有框架內排列字句。這場人機詩詞對決明顯由人類獲勝!

由此可見,當前的 AI 缺乏創作所需的感受力與想像力,無法做出超越預先設定的創意行為。然而,在不久的將來,AI 是否會逐漸產生情感,演變成電影《A.I. 人工智慧》中渴望人類關愛的機器人?

AI 其實沒有想像中聰明?

近期有一則新聞「AI 有情感像 8 歲孩童?Google 工程師爆驚人對話遭停職」,讓 AI 是否已發展出「自我意識」再度成為眾人議論的焦點。蔡宗翰研究員表示:「當前的 AI 還是要看過資料、或是看過怎麼判讀資料,經過對應問題與答案的訓練才能夠運作。換而言之,AI 無法超越程式,做它沒看過的事情,更無法替人類主宰一切!

會產生 AI 可能發展出情感、甚至主宰人類命運的傳言,多半是因為我們對 AI 的訓練流程認識不足,也缺乏實際使用 AI 工具的經驗,因而對其懷抱戒慎恐懼的心態。這種狀況特別容易發生在文科人身上,更延伸到文科人與理科人的合作溝通上,因不了解彼此領域而產生誤會與衝突。如果文科人可以對 AI 的研發與應用有基本認識,不僅能讓跨領域的合作更加順利,還能在工作中應用 AI 解決許多棘手問題。

「職場上常遇到的狀況是,由於文科人不了解 AI 的訓練流程,因此對 AI 產生錯誤的期待,認為辛苦標注的上千筆資料,應該下個月就能看到成果,結果還是錯誤百出,準確率卡在 60、70% 而已。如果工程師又不肯解釋清楚,兩方就會陷入僵局,導致合作無疾而終。」蔡宗翰研究員分享多年的觀察與建議:

如果文科人了解基本的 AI 訓練流程,並在每個訓練階段協助分析:錯誤偏向哪些面向?AI 是否看過這方面資料?文科人就可以補充缺少的資料,讓 AI 再進行更完善的訓練。

史上最認真的學生:AI

認識 AI 的第一步,我們先從分辨什麼是 AI 做起。現在的數位工具五花八門,究竟什麼才是 AI 的應用?真正的 AI 有什麼樣的特徵?

基本上,有「預測」功能的才是 AI,你無法得知每次 AI 會做出什麼判斷。如果只是整合資料後視覺化呈現,而且人類手工操作就辦得到,那就不是 AI。

數位化到 AI 自動化作業的進程與舉例。圖/研之有物

蔡宗翰研究員以今日常見的語音辨識系統為例,大家可以試著對 Siri、Line 或 Google 上的語音辨識系統講一句話,你會發現自己無法事先知曉將產生什麼文字或回應,結果可能正是你想要的、也可能牛頭不對馬嘴。此現象點出 AI 與一般數位工具最明顯的不同:AI 無法百分之百正確!

因此,AI 的運作需建立在不斷訓練、測試與調整的基礎上,盡量維持 80、90% 的準確率。在整個製程中最重要的就是訓練階段,工程師彷彿化身老師,必須設計一套學習方法,提供有助學習的豐富教材。而 AI 則是史上最認真的學生,可以穩定、一字不漏、日以繼夜地學習所有課程。

AI 的學習方法主要分為「非監督式學習」、「監督式學習」。非監督式學習是將大批資料提供給 AI,讓其根據工程師所定義的資料相似度算法,逐漸學會將相似資料分在同一堆,再由人類檢視並標注每堆資料對應的類別,進而產生監督式學習所需的訓練資料。而監督式學習則是將大批「資料」和「答案」提供給 AI,讓其逐漸學會將任意資料對應到正確答案。

圖/研之有物

學習到一定階段後,工程師會出試題,測試 AI 的學習狀況,如果成績只有 60、70 分,AI 會針對答錯的地方調整自己的觀念,而工程師也應該與專門領域專家一起討論,想想是否需補充什麼教材,讓 AI 的準確率可以再往上提升。

就算 AI 最後通過測試、可以正式上場工作,也可能因為時事與技術的推陳出新,導致準確率下降。這時,AI 就要定時進修,針對使用者回報的錯誤進行修正,不斷補充新的學習內容,讓自己可以跟得上最新趨勢。

在了解 AI 的基本特徵與訓練流程後,蔡宗翰研究員建議:文科人可以看一些視覺化的操作影片,加深對訓練過程的認識,並實際參與檢視與標注資料的過程。現在網路上也有很多 playground,可以讓初學者練習怎麼訓練 AI,有了上述基本概念與實務經驗,就可以跟工程師溝通無礙了。

AI 能騙過人類,全靠「自然語言處理」

AI 的應用領域相當廣泛,而蔡宗翰研究員專精的是「自然語言處理」。問起當初想投入該領域的原因,他充滿自信地回答:因為自然語言處理是「AI 皇冠上的明珠」!這顆明珠開創 AI 發展的諸多可能性,可以快速讀過並分類所有資料,整理出能快速檢索的結構化內容,也可以如同真人般與人類溝通。

著名的「圖靈測試」(Turing Test)便證明了自然語言處理如何在 AI 智力提升上扮演關鍵角色。1950 年代,傳奇電腦科學家艾倫・圖靈(Alan Turing)設計了一個實驗,用來測試 AI 能否表現出與人類相當的智力水準。首先實驗者將 AI 架設好,並派一個人操作終端機,再找一個第三者來進行對話,判斷從終端機傳入的訊息是來自 AI 或真人,如果第三者無法判斷,代表 AI 通過測試。

圖靈測試:AI(A)與真人(B)同時傳訊息給第三者(C),如果 C 分不出訊息來自 A 或 B,代表 AI 通過實驗。圖/研之有物

換而言之,AI 必須擁有一定的智力,才可能成功騙過人類,讓人類不覺得自己在跟機器對話,而這有賴自然語言處理技術的精進。目前蔡宗翰的研究團隊有將自然語言處理應用在:人文研究文本分析、新聞真偽查核,更嘗試以合成語料訓練臺灣人專用的 AI 語言模型。

讓 AI 替你查資料,追溯文本的起源

目前幾乎所有正史、許多地方志都已經數位化,而大量數位化的經典更被主動分享到「Chinese Text Project」平台,讓 AI 自然語言處理有豐富的文本資料可以分析,包含一字不漏地快速閱讀大量文本,進一步畫出重點、分門別類、比較相似之處等功能,既節省整理文本的時間,更能橫跨大範圍的文本、時間、空間,擴展研究的多元可能性。

例如我們想了解經典傳說《白蛇傳》是怎麼形成的?就可以應用 AI 進行文本溯源。白蛇傳的故事起源於北宋,由鎮江、杭州一帶的說書人所創作,著有話本《西湖三塔記》流傳後世。直至明代馮夢龍的《警世通言》二十八卷〈白娘子永鎮雷峰塔〉,才讓流傳 600 年的故事大體成型。

我們可以透過「命名實體辨識技術」標記文本中的人名、地名、時間、職業、動植物等關鍵故事元素,接著用這批標記好的語料來訓練 BERT 等序列標注模型,以便將「文本向量化」,進而找出給定段落與其他文本的相似之處。

經過多種文本的比較之後發現,白蛇傳的原型可追溯自印度教的那伽蛇族故事,傳說那伽龍王的三女兒轉化成佛、輔佐觀世音,或許與白蛇誤食舍利成精的概念有所關連,推測印度神話應該是跟著海上絲路傳進鎮江與杭州等通商口岸。此外,故事的雛型可能早從唐代便開始醞釀,晚唐傳奇《博異志》便記載了白蛇化身美女誘惑男子的故事,而法海和尚、金山寺等關鍵人物與景點皆真實存在,金山寺最初就是由唐宣宗時期的高僧法海所建。

白蛇傳中鎮壓白娘子的雷峰塔。最早為五代吳越王錢俶於 972 年建造,北宋宣和二年(1120 年)曾因戰亂倒塌,大致為故事雛形到元素齊全的時期。照片中雷峰塔為 21 世紀重建。圖/Wikimedia

在 AI 的協助之下,我們得以跨時空比較不同文本,了解說書人如何結合印度神話、唐代傳奇、在地的真人真事,創作出流傳千年的白蛇傳經典。

最困難的挑戰:AI 如何判斷假新聞

除了應用在人文研究文本分析,AI 也可以查核新聞真偽,這對假新聞氾濫的當代社會是一大福音,但對 AI 來說可能是最困難的挑戰!蔡宗翰研究員指出 AI 的弱點:

如果是答案和數據很清楚的問題,就比較好訓練 AI。如果問題很複雜、變數很多,對 AI 來說就會很困難!

困難點在於新聞資訊的對錯會變動,可能這個時空是對的,另一個時空卻是錯的。雖然坊間有一些以「監督式學習」、「文本分類法」訓練出的假新聞分類器,可輸入當前的新聞讓機器去判讀真假,但過一段時間可能會失準,因為新的資訊源源不絕出現。而且道高一尺、魔高一丈,當 AI 好不容易能分辨出假新聞,製造假新聞的人就會破解偵測,創造出 AI 沒看過的新模式,讓先前的努力功虧一簣。

因此,現在多應用「事實查核法」,原理是讓 AI 模仿人類查核事實的過程,尋找權威資料庫中有無類似的陳述,可用來支持新聞上描述的事件、主張與說法。目前英國劍橋大學為主的學者群、Facebook 與 Amazon 等業界研究人員已組成 FEVEROUS 團隊,致力於建立英文事實查核法模型所能運用的資源,並透過舉辦國際競賽,廣邀全球學者專家投入研究。

蔡宗翰教授團隊 2021 年參加 FEVEROUS 競賽勇奪全球第三、學術團隊第一後,也與合作夥伴事實查核中心及資策會討論,正著手建立中文事實查核法模型所需資源。預期在不久的將來,AI 就能幫讀者標出新聞中所有說法的資料來源,節省讀者查證新聞真偽的時間。

AI 的無限可能:專屬於你的療癒「杯麵」

想像與 AI 共存的未來,蔡宗翰研究員驚嘆於 AI 的學習能力,只要提供夠好、夠多的資料,幾乎都可以訓練到讓人驚訝的地步!圖/研之有物

AI 的未來充滿無限可能,不僅可以成為分類與查證資料的得力助手,還能照護並撫慰人類的心靈,這對邁入高齡化社會的臺灣來說格外重要!許多青壯年陷入三明治人(上有老、下有小要照顧)的困境,期待有像動畫《大英雄天團》的「杯麵」(Baymax)機器人出現,幫忙分擔家務、照顧家人,在身心勞累時給你一個溫暖的擁抱。

機器人陪伴高齡者已是現在進行式,新加坡南洋理工大學 Gauri Tulsulkar 教授等學者於 2021 年發表了一項部署在長照機構的機器人實驗。這名外表與人類相似的機器人叫「娜丁」(Nadine),由感知、處理、互動等三層架構組成,可以透過麥克風、3D和網路鏡頭感知用戶特徵、所處環境,並將上述資訊發送到處理層。處理層會依據感知層提供的資訊,連結該用戶先前與娜丁互動的記憶,讓互動層可以進行適當的對話、變化臉部表情、用手勢做出反應。

長照機構的高齡住戶多數因身心因素、長期缺乏聊天對象,或對陌生事物感到不安,常選擇靜默不語,需要照護者主動引導。因此,娜丁內建了注視追蹤模型,當偵測到住戶已長時間處於被動狀態,就會自動發起話題。

實驗發現,在娜丁進駐長照機構一段時間後,住戶有一半的天數會去找她互動,而娜丁偵測到的住戶情緒多為微笑和中性,其中有 8 位認知障礙住戶的溝通能力與心理狀態有明顯改善。

照護機器人娜丁的運作架構。圖/研之有物

至於未來的改進方向,研究團隊認為「語音辨識系統」仍有很大的改進空間,需要讓機器人能配合老年人緩慢且停頓較長的語速,音量也要能讓重聽者可以清楚聽見,並加強對方言與多語混雜的理解能力。

臺灣如要發展出能順暢溝通的機器人,首要任務就是要開發一套臺灣人專用的 AI 語言模型,包含華語、臺語、客語、原住民語及混合以上兩種語言的理解引擎。這需花費大量人力與經費蒐集各種語料、發展預訓練模型,期待政府能整合學界與業界的力量,降低各行各業導入 AI 相關語言服務的門檻。

或許 AI 無法發展出情感,但卻可以成為人類大腦的延伸,協助我們節省處理資料的時間,更可以心平氣和地回應人們的身心需求。與 AI 共存的未來即將來臨,如何讓自己的行事邏輯跟上 AI 時代,讓 AI 成為自己的助力,是值得你我關注的課題。

延伸閱讀

文章難易度
所有討論 1
研之有物│中央研究院_96
253 篇文章 ・ 2221 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

1
0

文字

分享

0
1
0
邏輯駭客!霍金成功寄出穿越時空的邀請函,為何沒人赴約?
劉馨香_96
・2019/01/08 ・1540字 ・閱讀時間約 3 分鐘 ・SR值 528 ・七年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

史蒂芬·霍金 (Stephen Hawking) 是全球知名的理論物理學家、宇宙學家,在近代物理學上做出許多重大貢獻。

他曾預測黑洞會發出輻射(現稱霍金輻射)、提出了結合廣義相對論和量子力學的宇宙論等等,其講述宇宙、空間與時間本質的科普著作《時間簡史》更是暢銷多年。

縱使身體因為漸凍症而愈來愈不方便,霍金的內心仍是自由奔放的,大膽思索著宇宙奧秘、翱翔於無盡空間。

史蒂芬·霍金 (Stephen Hawking) 是全球知名的理論物理學家、宇宙學家。
圖/wikipedia

霍金舉辦派對竟無一人赴約?

對於時間旅行概念感到癡迷的他,有一回為了驗證時間旅行的可能性,更是決定直接邀請時間旅行者來場特別的約會,事先做好一切準備,就等著時間旅者上門。

霍金仔細地寫好:「誠摯地邀請您參加時空旅行者派對」的戰帖邀請函,除了基本的時間、地點資訊,甚至連準確的經緯度都一併附上,就是要讓時空旅者沒有迷路的藉口。

然而,要怎麼把邀請函送到時間旅行者手上呢?答案其實很簡單:不要送就對了!

這封邀請函,霍金按著不表,打算等派對結束後直接昭告天下、讓它流傳百世,如此一來就不會有現在的人跑來湊熱鬧,未來的人們也都能看到了。

2009 年 6 月 28 日中午 12 點,原定的派對時間到了。霍金在劍橋大學的岡維爾與凱斯學院舉辦盛大派對,桌上擺滿了美食和一杯杯斟好的香檳,柱子也綁上一簇簇的紅、白、藍色氣球,看起來歡樂又溫馨。然而,時間滴答滴答過去了,等了又等、等了又等,最後卻一個人都沒有來。

霍金心裡苦,霍金不說。圖/泛科動畫截圖

就這樣,派對結束了,只是從頭到尾都只有霍金一人。(年度最邊緣蓋章認證)看來,未來人即便看到了邀請函,也沒有能力穿越時空來參加派對呀!(絕對不是不喜歡霍金)

時空旅行沒有想像中容易!時空旅行的悖論

其實,霍金對時空旅行已經有一套看法了。他認為我們頂多前往未來,但不可能回到過去

自從愛因斯坦提出相對論,我們知道了物質的質量愈大或速度愈快,時間流動的速度就會愈慢。所以只要將太空船靠近一個超大質量黑洞,或者以接近光速的速度來旅行,那麼船上的人可能才過了一年,地球上的人們卻已經過了十年,這時太空船再回到地球,相當於他們前往了十年後的未來。

至於要回到過去,科幻作家最喜歡使用「蟲洞」假說,指的是將兩個不同地點之間連結起來的時空隧道,然而蟲洞比分子、原子還細小,即使真的掌握到一個蟲洞,也不可能讓你全身穿過,還得放大個數億倍並保持蟲洞的穩定才行,實在難以執行。

許多科幻作家喜歡使用「蟲洞」假說作為時空旅行的實現方法。圖/flickr

然而,回到過去最關鍵的問題在於:會產生悖論。

最簡單的例子就是:你回到了過去殺了你自己,那麼你在被殺當下就死了,又是誰穿越時空殺了你呢?這樣因果錯亂、邏輯不通的情況,宇宙會陷入混亂啊啊啊!

此外,一旦蟲洞擴張,就可以讓輻射進入,引發「回授」現象,也就是來自未來時空的輻射通過蟲洞增加了過去時空的輻射,到了未來就又有更多輻射通過蟲洞增加過去的輻射,如此循環往復、正向回饋,蟲洞就爆掉啦!碰!

霍金雖然也想要回到過去看看瑪麗蓮夢露、拜訪伽利略,然而經過科學性的思考便知道這是不可能的。唉,這麼可惜的事情不能只有我知道,辦個時空旅行派對讓大家一起認清現實吧(邪笑)。

想知道各種神祕的時空悖論是怎麼回事?快來看看這部影片吧:

參考資料:

0

1
0

文字

分享

0
1
0
硬碟掉入黑洞,D槽裡的電影還會在嗎?
活躍星系核_96
・2015/04/14 ・979字 ・閱讀時間約 2 分鐘 ・SR值 528 ・七年級

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

 

5438540_8d837c780941c5caeb8f3cf968c3801a_wm

編譯 / 許瑞福(台大電機系雙主修哲學,人文與科學的兩棲類)

困擾物理學界近四十年的問題-黑洞中的「資訊遺失悖論」-很可能根本不存在!

將文件切碎,你還是可以想辦法拼回來。把書燒掉,理論上你也可以辦到同樣的事。但如果把資訊傳入黑洞中,就永遠找不回來了?這是物理學家爭論已久的問題,黑洞是否如同一座終極金庫,把資訊吸入並永久蒸發,不留下任何蛛絲馬跡。最新的研究顯示這個觀點很可能是錯的!

水牛城大學(University at Buffalo)物理學家Dejan Stojkovic博士說:「根據我們的研究,資訊並不會因進入黑洞就遺失。」

Stojkovic於《物理評論》(Phsical Review Letters)上,與他的博士生Anshul Saini共同發表了〈從崩塌物體的輻射具明顯的資訊守恆〉(Radiation from a Collapsing Object is Manifestly Unitary)。

這份論文簡述黑洞輻射粒子的交互作用,揭示不少關於構成黑洞的物體的特性,甚至透露了關於內部的物質與能量的資訊。

Stojkovic認為這是一項重大的發現,因為即便是深信資訊不會在黑洞中遺失的物理學家,也很難使用數學描述這個現象,但他的論文卻能清清楚楚地計算出資訊是如何被保留。

從霍金(Stephen Hawking)提出黑洞輻射的概念已經超過四十年的問題-「資訊遺失悖論」(information loss paradox),這份研究可說是一大進展!資訊遺失悖論一直是物理研究上的一大問題,如果黑洞中的資訊跟著黑洞一同消失,將破壞量子力學中的資訊守恆的原則。

粒子交互作用背後的隱藏資訊

在1970年代,霍金提出黑洞能夠輻射粒子,而失去的能量將造成黑洞縮小甚至於消失。霍金甚至說輻射的粒子,並不會透露黑洞內部的任何線索;這意味著隨著黑洞的變化,其中的資訊將永遠消失。

霍金隨後修正他的說法,認為資訊是否無法逃離黑洞,或是從黑洞中找回資訊的可能性仍有待商榷,而Stojkovic和Saini的新研究正好幫助我們更加了解真相。

除了觀察黑洞本身的輻射粒子外,這份研究也考慮了粒子間的微弱互動。如此一來,黑洞外的觀察者就有可能找出黑洞中的資訊。

粒子間的互動包含重力或是中介物的交換(例如光子)。這樣的對應關係早就被發現,但過去的科學家們並不太重視。

Stojkovic說:「由於被認為過於微小而無法造成影響,這些對應關係在相關的計算時常被忽略。我們的計算發現雖然這樣的對應關係一開始非常微小,隨著時間的會逐漸變大而改變結果。」

資料來源:

研究文獻:

  • Saini, A., & Stojkovic, D. (2015). Radiation from a collapsing object is manifestly unitary. Physical review letters, 114(11), 111301.
活躍星系核_96
752 篇文章 ・ 97 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia