Loading [MathJax]/extensions/tex2jax.js

0

1
0

文字

分享

0
1
0

AI 晶片成長迅速!晶片設計面臨到三大可靠度難關,該如何突破?

宜特科技_96
・2025/03/03 ・4860字 ・閱讀時間約 10 分鐘
相關標籤:

本文轉載自宜特小學堂〈 AI 晶片設計面臨的三大可靠度挑戰 如何突破〉,如果您對半導體產業新知有興趣,歡迎按下右邊的追蹤,就不會錯過宜特科技的最新文章!

AI 熱持續延燒,確保晶片的品質與可靠度是研發關鍵。而 AI 晶片會面臨到三大可靠度挑戰:超高功耗、超低電壓與異質整合,工程師該怎麼迎戰?

點擊圖片收看影片版

2024 年 5 月 OpenAI 與 Google 日前於最新發表會中,揭曉了旗艦模型「GPT-4o」與「Project Astra」。當使用者與其對話時,不但可相互傳輸文字、圖像和音訊,甚至另一端的機器人還可以透過手機螢幕,描述出使用者身處的環境,並從使用者的口吻中,判斷出使用者的情緒,聊到開心之處甚至還會大笑和歌唱,溝通上完全就跟真人如出一轍。2024 年 12 月 OpenAI 的影像生成模型Sora 也終於正式上線,用戶只需要輸入文字描述或上傳圖片,就能在短時間內生成高品質的影像,可預期未來 AI 模組持續進化後,能讓影片更加維妙維肖、真假難辨。

「GPT-4o」與「Project Astra」發布會。圖/OpenAIGoogle

AI 人工智慧技術是透過模擬人腦的類神經網路,經過深度學習,取得物件特徵參數,產生模擬人腦的判斷能力。這看似艱深的 AI 技術,早已走進大眾的日常生活,從生成式內容、自動駕駛、智能家居到醫療保健,從金融到製造業甚至國防等…應用廣泛且深具潛力。今年 1 月美國政府更是宣布將加強限制 AI 晶片與技術出口,這項措施顯示 AI 技術舉足輕重的地位,它將成為推動產業發展的重要引擎。

-----廣告,請繼續往下閱讀-----

除了演算法與大數據不斷進化,在硬體方面, AI 晶片則依不同應用領域,不斷往高效能、高頻寬或低耗電等特性演進。但這些特性同時也跟 AI 晶片的效能、壽命息息相關,甚至會造成 AI 晶片可靠度試驗設計的設備與手法面臨到極大挑戰。宜特可靠度驗證實驗室在本文將歸納出 AI 晶片最常見的三大挑戰,並逐一說明解決辦法。

AI 晶片應用種類。圖/宜特科技

AI 晶片最常見的三大挑戰

雲端 AI 晶片的超高功耗挑戰:熱消散與熱平衡能力

資料中心的雲端 AI 晶片肩負著人工智慧深度學習的重任,因此必須具備極高的運算效能,這也意味著它們將耗費大量電能,單顆晶片耗電量甚至超過 200W(瓦),隨之產生的高熱會加速晶片老化。對於一年必須 365 天不間斷運作的雲端運算 AI 晶片,因老化而產生的可靠度問題就必須審慎評估。

可靠度測試的原理是透過抽樣(Sampling)一定數量的 IC 進行實驗,以預估整個母體的生命週期與故障機率。通常會抽樣 77 顆晶片進行測試。而當這 77 顆功耗高達數百瓦的晶片,在單一台可靠度系統設備做 1000 小時的可靠度測試時,會產生上萬瓦的功率熱能,嚴格考驗了可靠度測試系統的「熱消散」「熱平衡」能力。

唯有精準控制熱消散與熱平衡,才能確保每顆晶片在執行不同運算模式時,晶片能維持穩定的PN接面溫度(Junction 溫度(Tj)),如此一來,才能準確預測 IC 的生命週期。因此,如何有效消散並控制高效能雲端 AI 晶片所產能的熱能,是 IC 可靠度實驗設計中面臨的重大挑戰之一。

-----廣告,請繼續往下閱讀-----

終端 AI 晶片的超低電壓挑戰:多組系統電源需求,挑戰可靠度測試極限與硬體解決方案

終端 AI 晶片除了需要高運算效能外,還必須具備「低耗電特性」,以滿足應用環境的需求。例如,行動裝置、物聯網(IoT)裝置、無人機及電動車自駕輔助等,皆仰賴電池供電,因此低功耗設計至關重要。

隨著半導體製程不斷進步,在相同邏輯閘數下的動態電流越來越省電,但尺寸微縮的物理特性效應,卻導致電晶體靜態漏電流隨之增加。根據摩爾定律,每兩年電晶體的面積可縮小一半,但這並不代表無法讓晶片的功耗密度減半,反之,相同面積的晶片將會消耗比以往更大的電流。為了降低功耗,除了採用低工作電壓設計之外,多工作電壓與多閘極電壓的設計也十分常見。然而,對於可靠度測試系統而言,動輒 10 組以上的系統電源需求,考驗著可靠度設備電源數目的極限。

同時,1V 或甚至低於 1V 的主電源(core power)低工作電壓,將使得 IC 電源的餘裕度(power margin)縮小,電路板上的電壓降(power IR drop)或者電源漣波(power ripple),更容易造成 IC 可靠度測試出錯。電壓降不僅發生在主電源,因為主電源的降低,部分邏輯閘訊號源(Pattern)電壓準位,也需要同步降低,這進一步造成硬體設計與測試上的困難,在在考驗著可靠度測試系統能力與硬體設計。

因此規劃一個符合終端 AI 晶片需求的高溫工作壽命(High Temperature Operating Life,簡稱HTOL)可靠度測試環境,從設備選擇、PCB 電路板模擬與製作,各種細節與設計上的考量,皆必須較一般邏輯 IC 更為嚴謹。

-----廣告,請繼續往下閱讀-----

異質整合挑戰:熱消散路徑複雜化

異質整合晶片。圖/宜特科技

異質整合(heterogeneous integration)是 AI 晶片中的一項重要技術。為了加快不同晶片間的傳輸頻寬,不同製程的異質晶片被整合在一個封裝內,常見的有高帶寬記憶體(High Bandwidth Memory,簡稱HBM)、感測器(sensor)、微機電系統(Micro-Electro-Mechanical Systems,簡稱MEMS)和天線(antenna)等。經由矽通孔(Through-Silicon Via,簡稱TSV)、重分佈層(Redistribution Layer,簡稱RDL)、凸塊(bump)和中介層(interposer)等製程手法,這些晶片可以並排或堆疊起來。這將大幅度提升異質晶片間的資料傳遞效率,並降低耗電量。

但是,這種複雜的異質封裝堆疊架構,熱產生與熱消散路徑亦隨之複雜,例如,較大功耗晶片不一定位在封裝中心位置,各個晶片厚度亦可能不盡相同,這將使得晶片產生的熱消散與熱感測方式不同於傳統封裝,如何在可靠度測試時正確量測與監控晶片溫度變得更具挑戰。

綜上所述,如何面對熱消散與熱平衡能力、測試系統的電壓極限,以及異質整合的熱消散路徑複雜化,是在進行可靠度設計驗證時,必須克服的關鍵。對此,宜特可靠度驗證實驗室提出如下建議。

如何克服 AI 晶片的可靠度挑戰

利用液態冷卻系統,穩定控制高功耗 AI 晶片產生的熱能

散熱設計功率(Thermal Design Power,簡稱TDP),是 CPU 晶片對主機板「散熱能力」的要求規格。目前桌上型電腦 CPU 的 TDP 規格最高在 150 瓦(W)左右,電競玩家為了維持 CPU 長時間高效高頻工作,往往升級主機板、散熱片、風扇等等配件,使得升級後的系統散熱能力高於 TDP 要求,讓 CPU 能長時間高頻工作,而不會發生過熱降頻,甚至休眠等問題。

-----廣告,請繼續往下閱讀-----

但是伺服器及 HPC 等雲端 AI 晶片,當前 TDP 規格已達 200W 以上超高發熱功耗。而晶片因封裝結構與材料等因素,已難以使用空氣對流當散熱媒介,將晶片 junction 溫度控制在目標值。

尤其是在可靠度測試中,要求的目標溫度高達 125°C,這遠遠高於桌上型電腦的 70°C。通常在 125°C 時,晶片的功耗牆已經處於解鎖狀態,因此稍有不慎就可能導致晶片因高溫而燒毀。因此,當對如此高功耗的 IC 進行高溫可靠度測試時,測試系統必須具備更快速的散熱能力。

液態冷卻系統(Liquid cooling socket)。圖/Enplas

宜特可靠度驗證實驗室建議的解法,是利用更高效的液態冷卻控制調節系統(Liquid cooling system),搭配客製化液態循環 socket(如上圖),此系統利用液態熱交換速率優於氣態的特性,以及即時監控晶片溫度與調節液態流速等方法,穩定控制超高功耗 AI 晶片產生的熱能,成功收集可靠度實驗數據。

熱二極體監控電路,監控 IC 本體溫度

雲端 AI 晶片的超高功耗,在進行可靠度測試時,容易因晶片本體溫度波動太快,導致無法及時消散熱能,造成產品非預期性故障,例如熱失控(Thermal Runaway)。因此,當 IC 內建熱二極體(thermal diode)元件時,透過可靠度系統與可靠度測試板設計,可以客製化熱二極體(thermal diode)監控電路,來監控 IC 內部溫度,將可監測到最即時與準確的接面(junction)溫度(如下圖)。

-----廣告,請繼續往下閱讀-----
IC 熱二極體(thermal diode)監控電路圖例。圖/宜特科技

此作法反應速度快,搭配前面提到的高效液態冷卻控制調節系統,更適合超高功耗 AI 晶片快速溫度變化,藉以提供即時熱消散動作。此外熱二極體(thermal diode)監控電路,可針對 3D 封裝的多晶體(multi-chip)結構下,獨立量測出各個晶片的溫度,以達到更精確的可靠度數據收集。

客製化治具,貼合高低不同的裸晶(die)

AI 異質整合晶片,裏頭的裸晶(die)高低不同,因此,在可靠度驗證測試的治具準備,必須依照不同的晶片,客製化 IC socket(測試座)和散熱系統(heat sink)和熱感測元件(sensor),才能夠緊密貼合高低不同的裸晶(die),藉此增加熱消散能力,溫度量測與監控才能更準確。

客製化IC測試socket。圖/宜特科技

測試電路板超前模擬,免去生產組裝後效能不符

AI 晶片採用先進製程,超低的工作電壓已來到 1V 以下。然而,當高電流經過電路板走線時,容易在電路板上產生由低到高的壓降(DC IR drop),IR drop 將壓低原本已超低的工作電壓,容易使得AI晶片因電源電壓餘裕度(Power voltage margin)不足而失效。

IR drop 的模擬測試。圖/宜特科技

此外,當 IC power 抽載大電流時,也會產生各種頻率的SSN(Simultaneous Switching Noise)。 而電路板的電源層阻抗(Power plane impedance),在各種不同抽載頻率下,因本身佈線(layout)因素可能反映出高低不一的阻抗(impedance)值(如下圖)當阻抗值在某個頻率下超越目標值時,就會造成嚴重雜訊(Power AC noise)與漣波(Power ripple)也會使得 AI 晶片因電源雜訊餘裕度(Power noise margin)不足而失效。

-----廣告,請繼續往下閱讀-----
電源層阻抗的模擬測試。圖/宜特科技

為了解決此問題,我們跳脫傳統電路板設計思維採用新的 BI 模組(Burn in module)設計理念,將電路板從原本的一板測試數顆晶片,微縮至僅測試單顆晶片。搭配目前許多佈線(layout)輔助設計工具,即可在可靠度電路板設計初期經由軟體分析模擬,調整電源走線長短寬窄、灌孔點大小與數目、解偶合(decoupling)電容值與放置位置等,改善工作電壓與訊號源IR drop與電源層阻抗等問題,避免測試電路板於生產組裝完成後,才面臨效能不符問題。此外,電路板設計微縮至單顆晶片,在測試老化實驗時,能協助客戶以個別待測物(Devices Under Test, 簡稱DUT)取得更多的實驗參數,同時能針對各晶片的電晶體靜態漏電流的不同,分別進行測試參數設定,進一步提升 AI 晶片的測試品質。

AI 晶片可靠度解決方案速查表

宜特的可靠度驗證實驗室從多年經驗中,統整出以上問題和解法,並製作一張圖表讓您快速了解 AI  晶片面對不同可靠度挑戰時的解決方案。

三大類 AI 晶片可靠度設計驗證速查表。圖/宜特科技

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

宜特科技_96
14 篇文章 ・ 4 位粉絲
我們了解你想要的不只是服務,而是一個更好的自己:) iST宜特自1994年起,以專業獨家技術,為電子產業的上中下游客戶, 提供故障分析、可靠度實驗、材料分析和訊號測試之第三方公正實驗室

0

0
0

文字

分享

0
0
0
沒有症狀也不能大意!30 歲後女性都該注意的子宮頸癌預警指南
careonline_96
・2025/06/18 ・2608字 ・閱讀時間約 5 分鐘

圖 / 照護線上

「即使完全沒症狀,也一定要接受子宮頸癌篩檢!」隨著羅氏診斷女性健檢週活動開跑,林口長庚婦產部教授張廷彰醫師如此表示。根據衛生福利部國民健康署 111 年癌症登記報告,子宮頸癌長期位居女性癌症死因前十名,儘管政府長年推動篩檢政策,仍有約 20% 至 30% 的患者在確診時已屬中晚期(二期以上)[1]。近年政府積極推動 HPV 疫苗,但許多 30 歲以上女性仍屬「疫苗空窗世代」,未能在黃金施打年齡接種疫苗,此類族群更應建立定期檢查習慣。

「早期發現對子宮頸癌非常重要!」張廷彰強調,若能及時接受標準治療,一期子宮頸癌的五年存活率可超過 90%,如果進展至中晚期子宮頸癌,便可能會需要接受大範圍手術,再搭配放射治療或全身性治療,對工作及生活造成影響,存活率也比較差。

預防子宮頸癌
圖 / 照護線上

遠離子宮頸癌威脅,三道防線守護健康

子宮頸癌的發生多與人類乳突病毒(Human Papillomavirus, HPV)的感染有關,主要經由性接觸傳染,或透過接觸帶有病毒的物品造成間接感染。張廷彰指出,多數人感染後沒有明顯症狀,甚至可能自行痊癒,但有部分人感染高風險HPV後,因體質因素無法清除病毒,造成高風險HPV持續感染,持續的定義為達半年以上,進而演變為子宮頸癌前病變或癌症。

由於HPV感染與初期病變通常無明顯症狀,許多女性容易忽略定期篩檢的重要性,若等到出現異常出血等明顯警訊時,多已進展為子宮頸癌,往往已錯過早期治療的最佳時機。因此,張廷彰強調女性應透過「三道健康防線」及早防治:第一,建立安全性行為觀念;第二,接種HPV疫苗;第三,定期接受子宮頸癌篩檢,包括抹片與高危HPV DNA檢測,才能有效攔截疾病於早期,守住自身健康防線。

-----廣告,請繼續往下閱讀-----
子宮頸抹片搭配HPV DNA檢測篩檢更完善
圖 / 照護線上

子宮頸抹片搭配HPV DNA檢測 助精準掌握健康風險

目前子宮頸癌的篩檢方式主要有兩種:子宮頸抹片檢查與高風險HPV DNA檢測。抹片檢查是透過顯微鏡觀察子宮頸細胞型態,檢視是否有可疑性的癌細胞存在;而高危HPV DNA檢測則是利用基因技術分析是否有感染高風險型HPV,能在病變尚未發生前就偵測出潛在風險,讓防線更提前。

張廷彰醫師建議女性可搭配兩種篩檢方式使用,以提升篩檢準確度。若HPV DNA檢測結果為陰性,代表近期感染風險較低,可每五年再進行一次篩檢,不僅能減少不必要的頻繁檢查,也能更早掌握健康風險、規劃後續追蹤。

此外,目前政府亦有相關補助政策,鼓勵女性善加利用公費資源以守護健康:

  • 25至29歲婦女:每三年一次免費子宮頸抹片檢查
  • 30歲以上婦女:每年一次免費子宮頸抹片檢查
  • 當年度年齡為35歲、45歲、65歲女性可接受一次免費HPV DNA檢測

透過這些篩檢工具與政策支持,女性可更有效掌握自身健康,及早防範子宮頸癌風險。

-----廣告,請繼續往下閱讀-----
子宮頸癌高風險族群要注意
圖 / 照護線上

9 大子宮頸癌高風險族群要注意!醫:定期檢查遠離威脅

除了公費補助對象為,高風險族群應每年做一次子宮頸抹片檢查,也建議搭配高危人類乳突病毒 HPV DNA 檢測。高風險族群包括未曾接種過HPV疫苗、較早發生性行為、有多重性伴侶、HIV 感染、接受器官移植、使用免疫抑制劑、有家族病史、反覆陰道感染、抽菸或飲酒者等。即使沒有症狀,也應該定期接受子宮頸癌篩檢,才能及早處理。

張廷彰醫師表示,自 2025 年起國民健康署擴大補助子宮頸癌篩檢,符合公費篩檢條件的女性朋友務必好好把握,若未符合資格也可自費進行篩檢,守住健康防線,也呼籲民眾「挺身而出守護健康」,主動提醒身邊女性來一場健康篩檢約會!

筆記重點整理

  • 早期發現對子宮頸癌非常重要,若能及時接受標準治療,一期子宮頸癌的五年存活率可超過 90%,如果進展至中晚期子宮頸癌,可能會需要接受大範圍手術,再搭配放射治療或全身性治療,對工作及生活造成影響,存活率也比較差。
  • 子宮頸癌的發生大多與人類乳突病毒(HPV)感染有關,HPV 第 16、18 型屬於高危險人類乳突病毒,可能導致子宮頸癌前病變、子宮頸癌以及男女外生殖器癌;低危險人類乳突病毒則可能會引起生殖器疣(菜花)。
  • 預防子宮頸癌有三道關鍵防線,包括安全性行為、接種人類乳突病毒 HPV 疫苗、定期接受子宮頸癌篩檢。過去,子宮頸癌篩檢主要仰賴子宮頸抹片檢查近年來許多國家已開始採用 HPV DNA 檢測,因為HPV DNA 檢測能更準確預測未來罹患癌症的風險。
  • 自 2025 年起衛生福利部國民健康署擴大子宮頸癌篩檢,除了子宮頸抹片檢查,還納入 HPV DNA 檢測。在子宮頸抹片檢查部分,25 歲至 29 歲婦女,每 3 年 1 次子宮頸抹片檢查;30 歲以上婦女,每年 1 次子宮頸抹片檢查。當年度為 35 歲、45 歲、65 歲的女性,可接受 1 次人類乳突病毒 HPV DNA 檢測。
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

0
0

文字

分享

0
0
0
FOM 2025 台灣登場 顯微技術引領科研新紀元
顯微觀點_96
・2025/06/17 ・1649字 ・閱讀時間約 3 分鐘

本文轉載自顯微觀點

  • FOM 2025系列報導
圖 / 顯微觀點

全球光學顯微鏡領域的年度盛會—Focus On Microscopy(顯微鏡學科技學術研討會,簡稱 FOM)4 月 16 日於台灣大學醫學院國際會議中心圓滿落幕。為期四天的研討會​,吸引了來自全球的研究人員、工程師與產業代表,共同探討顯微技術的最新進展與未來趨勢。

FOM 自 1988 年於德國首次舉辦以來,持續推動光學顯微技術在生物醫學與材料科學領域的創新與應用,已成為國際間最具影響力的顯微技術學術平台之一。​由於主辦地並非以輪流方式選定,對於 FOM 大會今年選擇在台灣舉辦,台灣主辦召集人、國立陽明交通大學生醫光電研究所特聘教授高甫仁表示:「主辦地必須滿足許多條件,包括研究進化的程度。而這代表世界對台灣光學方面技術品質的肯定,不論是技術的提升抑或研究的深入,不只和 10 年前相比,也相對其他國家又更往前一步」。

多元議題 聚焦顯微技術前沿

江安世
江安世教授以「解碼大腦連結」(Decoding Brain Connectomes)為主題進行大會演講。攝影/楊雅棠

FOM 2025 涵蓋了廣泛的主題,從共軛焦與多光子激發顯微術、超解析顯微術、3D 與 4D 活細胞與組織影像、層光顯微術等。​此外,會議也深入探討了進階的螢光影像與光譜技術,如 FRET、FRAP、FLIM、FCS、SOFI 等,並介紹了新型螢光探針、蛋白質、量子點與單分子影像技術。​其他議題還包括清除與膨脹技術、相干非線性顯微術(如 SHG、THG、SFG、CARS)、多維螢光與拉曼光譜影像、光與電子顯微術的相關應用等。顯示顯微技術正在不斷進步,應用範疇也逐漸擴大。

-----廣告,請繼續往下閱讀-----

中研院院士、清華大學腦科學研究中心主任江安世也在本次大會中進行大會專題演講(Plenary Speech)。

江安世教授以「解碼大腦連結」(Decoding Brain Connectomes)為主題,展示團隊應用「水凝膠擴張顯微術(Expansion Microscopy)」整合一系列尖端技術觀測整個果蠅腦樣本的成果。

目前團隊也將應用從果蠅腦進一步至人腦,但仍面臨龐大的挑戰,包含資料量龐大、成像時間長、以及對儀器與計算資源的需求高昂。為了突破這些限制,團隊結合AI運算與攝影式成像,提出一種新策略:以高速相機陣列替代傳統顯微鏡,並藉由 AI 進行超解析度影像重建。

來自德國耶拿大學醫院的布許(Michael Börsch)則是25年來都致力於單分子 FRET(smFRET,螢光共振能量傳遞)顯微技術的開發。他聚焦於細胞中最基本的「能量生產線」——FoF₁-ATP 合成酶(FoF₁-ATP synthase),而其亞基旋轉過程被譽為「生物馬達」。而他的團隊導入奈米鑽石中的氮-空位(NV)中心作為量子螢光感測器,其非閃爍、高穩定的螢光性質,並藉由雷射與電場即時調控,使蛋白質可穩定觀察數秒。

-----廣告,請繼續往下閱讀-----

同樣鑽研於單分子技術的中研院單分子生物核心實驗室研究副技師黃婉媜解釋,傳統FRET可能好不容易測得螢光,但只測到分子的 1 個動作。透過布許加上電場調控的技術,原本只能測得三步(steps)的動作可以測得十步,不僅可以計算每一步的速度,也更能描繪出分子移動的動態過程。

產學合作 展示創新技術​

FOM 2025 不僅聚集多位大師演講,為顯微技術擘劃最新且深刻的前景,也安排了基礎與進階的教學課程和多場平行研討會、快閃海報展示,為職業生涯各個階段的科學家提供平台。除此之外,大會也吸引了眾多國際知名廠商參展,展示最新的顯微技術與解決方案。

隨著 FOM 2025 在台灣圓滿落幕,不僅展示了台灣在顯微技術領域的研究實力與創新能力,也促進了國際間的學術交流與合作。期待未來台灣能持續在全球顯微技術舞台上發光發熱,推動科學研究的蓬勃發展。

P4142832
FOM 2025 會場一隅。攝影/高啟航
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

0

0
0

文字

分享

0
0
0
【成語科學】龍騰虎躍:老虎真的能跳高?
張之傑_96
・2025/06/14 ・1261字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

在海外旅行期間,收到《小達文西》編輯部簡訊,希望章老師再寫一年「成語與科學」。章老師已是髦耋之年,但為了小讀者們,就勉力重出江湖吧。

今年是龍年,讓我們以成語「龍騰虎躍」開場。龍騰虎躍,字面上的意思是:如龍飛騰,如虎跳躍,形容生氣勃勃,或精神振奮,或筆勢起伏有力。讓我們先造兩個句。

班際躲避球賽開始,兩班隊員個個龍騰虎躍,都想擊敗對方。

唐代的張旭有草聖之稱,他的草書寫得龍騰虎躍,氣勢非凡。

「龍」從哪裡來?

接下去循例要談談這個成語的科學意涵。先談龍,龍是一種想像的動物。那麼,先民為什麼要創造「龍」這種想像的動物?這就要從圖騰崇拜說起。在先民的原始信仰中,認為他們的祖先源自某種動物,也就是與某種動物具有親緣關係,於是圖騰崇拜便與祖先崇拜相聯繫。

上古的圖騰信仰與祖先崇拜互有關連性。圖 / unsplash

華夏文明發展早期,不可能不經歷圖騰林立的階段,其後逐漸整合成少數幾種。史前有不少東方部族以鳥類為圖騰,經過整合就成為「鳳」。史前有不少中原部族以爬蟲類為圖騰,經過整合就成為「龍」。

-----廣告,請繼續往下閱讀-----

因此龍起源於上古部族圖騰,歷經綜合和修飾,逐漸演變成唐宋以後的造型。這種造型看起來威風凜凜,其實既不能適應陸地生活,也不能適應水中生活,更不要說在空中飛騰了。

再談虎。中國原本是個多虎的國家,直到 1949 年,全中國仍有 529 個縣產虎,其中華南亞種占370個縣,可說是中國虎的代表,難怪華南虎又有中國虎之稱。然而,從 1950 年代到 1960 年代,中國大陸曾經迭次發動「除害運動」,使得華南虎、華北虎和西北虎滅絕,殘存的也岌岌可危。

虎能「躍」多高?比比貓科動物的跳躍實力

老虎雖然是跳遠高手,跳高卻不怎麼拿手。圖 / unsplash

由於古時中國多虎,於是衍生出許多與虎有關的成語,龍騰虎躍就是其中之一。前面說過,以龍的造型來說,牠沒有翅膀,「龍騰」是不可能的。那麼「虎躍」呢?虎屬於貓科,貓科動物大多擅跳躍,以虎來說,可說是跳遠高手,一跳最遠可達 10 公尺;虎的跳高不算出色,只能跳 2 公尺左右,不如豹和獰貓,牠們都能跳 3 公尺。

然而在貓科動物中,跳遠和跳高的總冠軍是美洲獅,牠跳遠可達 12 公尺,跳高可達 4 公尺。以跑步來說,美洲獅是貓科中第二快的,僅次於獵豹。

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

張之傑_96
104 篇文章 ・ 224 位粉絲
張之傑,字百器,出入文理,著述多樣,其中以科普和科學史較為人知。