1

2
1

文字

分享

1
2
1

阿斯巴甜傷鼠父,認知缺陷傳幼鼠

胡中行_96
・2023/10/09 ・2818字 ・閱讀時間約 5 分鐘

前美國總統川普曾經在社群媒體上,寫道:「我沒看過瘦子喝健怡可樂。」[1]雖然此話僅是他的個人觀察,沒什麼科學根據;但是這款標榜無糖,零卡路里,憑著阿斯巴甜走天下的飲品,[2]的確能帶來不怕變胖的滿足感。佛羅里達州立大學醫學院的研究團隊,不曉得是太為大眾著想,還是見不得人好,於 2023 年 8 月底的《科學報告》(Scientific Reports)期刊上,[3]不帶歉意地拿出實驗證據,剝奪世人平凡的喜悅。

川普:「我沒看過瘦子喝健怡可樂。」圖/參考資料 1

阿斯巴甜

美國食品藥物管理局(FDA)於 1981 年,核准人工甜味劑阿斯巴甜(aspartame)上市;之後又分別在 1983 與 1996 年,開放讓碳酸飲料及其他食品添加。不過,近來國際衛生組織(WHO)卻指出,包括阿斯巴甜在內的代糖,可能提高癌症以及代謝和心血管疾病的風險。佛羅里達州立大學醫學院的研究團隊,發覺上述警訊沒有涵蓋認知功能,所以還有他們可以強化威嚇的空間。[3]

阿斯巴甜經過腸胃道,分解成苯丙胺酸(phenylalanine)、天門冬胺酸(aspartic acid)和甲醇(methanol)。其中苯丙胺酸能穿過血腦屏障(blood brain barrier),進入腦部,而且是多巴胺、腎上腺素和血清素等的前驅物,[3]也就是經歷化學變化後,能成為這些單胺類神經傳導物質(monoamine neurotransmitters)。[3, 4]既然其產物負責調節記憶、情緒、動機和運動功能,科學家不免好奇阿斯巴甜是否會,以及如何對中樞神經系統,帶來特定效果。[3]

代糖透過活化人類感覺甜味的味覺受器,影響神經傳導物質的釋放。過往的文獻,曾測量攝取阿斯巴甜後,血液及腦部的苯丙胺酸與單胺類神經傳導物質的濃度。它們所得的數據並不一致,顯示阿斯巴甜干擾中樞神經的關鍵,根本不是單胺類神經傳導物質。然而,這回佛羅里達州立大學醫學院的團隊,買來味覺受器對阿斯巴甜無感的實驗動物,[3]還能發揮作用,並瞭解背後的機制嗎?

-----廣告,請繼續往下閱讀-----
C57BL/6 品系的實驗小鼠。圖/Lum JS, Brown ML, Farrawell NE, et al. (2021) ‘CuATSM improves motor function and extends survival but is not tolerated at a high dose in SOD1G93A mice with a C57BL/6 background’. Scientific Reports, 11, 19392.(CC BY 4.0)

實驗設計

研究團隊將一票 8 週大,C57BL/6 品系的雄性成年小鼠,隨機拆成3組,分別供應普通飲水,或是 0.03%、0.015% 的阿斯巴甜水溶液,讓牠們無限暢飲。FDA 建議攝取上限為每天 50 mg/kg,而一般人通常不會超過 4.1 mg/kg小鼠既嚐不出阿斯巴甜的甜味,對兩種濃度也沒有特別偏好或厭惡。牠們平均體重約26 g,每天差不多喝下7 ml的水份。換算成人類的情形,大概是 FDA 標準的 7–15%,即一天喝 2 至 4 小罐,8 oz(237ml)裝,含有阿斯巴甜的氣泡飲料。[3]

雄鼠的任務:Y 型迷宮(Y-maze)、交配、巴恩斯迷宮(Barnes maze)和懸尾測試(TST)。圖/參考資料 3,Figure 1A(CC BY 4.0)

這3組雄性實驗小鼠,在全長 16 週的實驗中,總共參加 3 個測驗:[3]

  • Y 型迷宮(Y-maze):前 12 週,雄性小鼠每 4 週走一次 Y 型迷宮。每條路的盡頭皆有獨特的視覺記號,以利辨識,[3]考驗小鼠是否會依序探索不同的路徑,展現空間工作記憶的能力。[3, 5]喝阿斯巴甜溶液的小鼠,無論攝取的濃度,從第 4 週起表現就比單純喝水的組別差。[3]
Y 型迷宮示意圖。圖/參考資料 5,Figure 1b(CC BY 4.0)
  • 巴恩斯迷宮(Barnes maze):雄性小鼠在第 14 週,被放到沿邊挖了一排小洞的圓盤上,其中一個洞是下方裝有逃脫盒的正確出口。[3, 6]遠處牆面設有視覺記號,以供辨識。研究團隊計算牠們順利離場所需的時間,還有嘗試錯誤的次數。最初讓小鼠自由探索,從錯誤中學習;一段時日後,取消出口,看小鼠是否直奔原處,並在附近逗留;到了最後階段,出口則被調換至對角。在空間學習方面,3組的表現都逐漸進步,只是喝阿斯巴甜溶液的2組比較緩慢;不過記憶保留回憶,還有逆轉學習的能力,則不受影響。[3]
非本研究的巴恩斯迷宮:盤面洞數與牆上記號,依各實驗而異。圖/參考資料 6,Figure 1(CC BY 4.0)
  • 懸尾測試(tail suspension test):在第 16 週貼住雄性小鼠的尾巴,將牠們倒吊,結果3組一樣無助,狀似憂鬱的反應沒有差別。[3](延伸閱讀:〈逼小鼠游泳,還怪牠放棄掙扎?〉)

禍延子孫?

3 組雄性小鼠於走 Y 型和巴恩斯迷宮之間的第 13 週,抽空去跟喝普通飲水的雌性交配。阿斯巴甜組小鼠的子女,從出生就不接觸代糖,沒有發育問題,卻遺傳到父親在空間工作記憶和學習方面的缺陷。研究團隊考慮該用下列哪種可能的機制,來解釋這個現象:[3]

  1. 表觀遺傳變化(epigenetic changes):尼古丁、古柯鹼、酒精、大麻等內分泌干擾物質,會在不改變DNA排序的情況下,影響精子的基因表現。[3, 7]如果阿斯巴甜引發同樣的作用,雄性小鼠確實能把問題傳給子代。[3]
  2. 基因突變(genetic mutation):倘若阿斯巴甜直接使精子基因突變,雄性小鼠的認知功能障礙,自然會代代相傳。[3]

這個實驗裡,阿斯巴甜對雄性小鼠認知功能的危害,只延續了一代,不會禍及孫輩,可以推測屬於表觀遺傳變化。而在研究團隊先前的另一個實驗中,阿斯巴甜所致的類焦慮行為,從第一代的雄性小鼠,一路不分性別地傳到第三代。不過該特徵逐代遞減,因此機制理應相同。此外,他們以前的研究發現,阿斯巴甜改變相關基因的表現後,神經傳導物質 GABA 和麩胺酸(glutamate),會向腦部傳遞受影響的訊號。這或許就是認知功能減損的肇因[3]

-----廣告,請繼續往下閱讀-----

儘管目前尚處動物實驗階段,研究團隊認為阿斯巴甜的危險,遠遠超越過往的理解,[3, 8]並嚴正呼籲要在關注孕婦飲食與所處的環境之餘,也正視父親健康對後代的影響。[3]

  

參考資料

  1. Trump DJ. (15 OCT 2012) ‘I have never seen a thin person drinking Diet Coke’. X (a.k.a. Twitter).
  2. Diet Coke®’. Coca-Cola. (Accessed on 27 SEP 2023)
  3. Jones SK, McCarthy DM, Stanwood GD, et al. (2023) ‘Learning and memory deficits produced by aspartame are heritable via the paternal lineage’. Scientific Reports, 13, 14326.
  4. American Psychological Association. ‘Precursor’. APA Dictionary of Psychology. (Accessed on 30 SEP 2023)
  5. Song S, Yu L, Hasan MN, et al. (2022) ‘Elevated microglial oxidative phosphorylation and phagocytosis stimulate post-stroke brain remodeling and cognitive function recovery in mice’. Communications Biology, 5, 35.
  6. Gawel K, Gibula E, Marszalek-Grabska M, et al. (2019) ‘Assessment of spatial learning and memory in the Barnes maze task in rodents—methodological consideration’. Naunyn-Schmiedeberg’s Archives of Pharmacology, 392, 1–18.
  7. What is Epigenetics?’. (15 AUG 2022) U.S. Centers for Disease Control and Prevention.
  8. Thomas R. (18 SEP 2023) ‘College of Medicine researchers discover learning and memory deficits after ingestion of aspartame’. Florida State University News, U.S.
-----廣告,請繼續往下閱讀-----
文章難易度
所有討論 1
胡中行_96
169 篇文章 ・ 67 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

2
0

文字

分享

0
2
0
地震之島的生存法則!921地震教育園區揭開台灣的防災祕密
鳥苷三磷酸 (PanSci Promo)_96
・2024/09/20 ・4553字 ・閱讀時間約 9 分鐘

為什麼台灣會像坐在搖搖椅上,總是時不時地晃動?這個問題或許有些令人不安,但卻是我們生活在這片土地上的現實。根據氣象署統計,台灣每年有 40,000 次以上的地震,其中有感地震超過 1,000 次。2024年4月3日,花蓮的大地震發生後,台灣就經歷了超過 1,000 次餘震,這些數據被視覺化後形成的圖像,宛如台北101大樓般高聳穿雲,再次引發了全球對台灣地震頻繁性的關注。

地震發生後,許多外國媒體擔心半導體產業會受影響,但更讓他們稱奇的是,台灣竟然能在這麼大的地震之下,將傷害降到這麼低,並迅速恢復。不禁讓人想問,自從 25 年前的 921大地震以來,台灣經歷了哪些改變?哪些地方可能再發生大地震?如果只是遲早,我們該如何做好更萬全的準備?

要找到這些問題的答案,最合適的地點就在一座從地震遺跡中冒出的主題博物館:國立自然科學博物館的 921地震教育園區。

圖:跑道捕捉了地震的瞬間 / 圖片來源:劉志恆/青玥攝影

下一個大地震在哪、何時?先聽斷層說了什麼

1999年9月21日凌晨1點47分,台灣發生了一場規模7.3的大地震,震央在南投縣集集鎮,全台 5 萬棟房子遭震垮,罹難人數超過 2,400 人。其中,台中霧峰光復國中校區因車籠埔斷層通過,地面隆起2.6公尺,多棟校舍損毀。政府決定在此設立921地震教育園區,保留這段震撼人心的歷史,並作為防災教育的重要基地。園區內兩處地震遺跡依特性設置為「車籠埔斷層保存館」和「地震工程教育館」。

-----廣告,請繼續往下閱讀-----

車籠埔斷層保存館建於原操場位置,為了保存地表破裂及巨大抬升,所以整體設計不採用樑柱結構,而是由82根長12公尺、寬2.4公尺、重約10噸的預鑄預力混凝板組成,外觀為曲線造型,技術難度極高,屬國內外首見,並榮獲多項建築獎。而地震工程教育館保留了原光復國中受損校舍,讓民眾親眼見證地震的驚人破壞力,進一步強調建築結構與安全的重要性。毀損教室旁設有由園區與「國家地震工程研究中心」共同策劃的展示館,透過互動展示,讓參觀者親手操作,學習地震工程相關知識。

國立自然科學博物館地質學組研究員蔣正興博士表示,面積上,台灣是一個狹長的小島,卻擁有高達近4000公尺的山脈,彰顯了板塊激烈擠壓、地質活動極為活躍的背景。回顧過去一百年的地震歷史,從1906年的梅山地震、1935年的新竹-台中地震,到1999年的921大地震,都發生在台灣西部,與西部的活動斷層有密切關聯,震源位於淺層,加上人口密度較高,因此對台灣西部造成了嚴重的災情。

而台灣東部是板塊劇烈擠壓的區域,地震震源分佈更廣。與西部相比,雖然東部地震更頻繁,但由於人口密度相對較低,災情相對較少。此外,台灣東北部和外海也是地震多發區,尤其是菲律賓海板塊往北隱沒至歐亞板塊的隱沒地震帶,至沖繩海槽向北延伸,甚至可能影響到台北下方,發生直下型地震,這種地震因震源位於城市正下方,危害特別大,加上台北市房屋非常老舊,若發生直下型地震,災情將非常嚴重。

除了台北市,蔣正興博士指出在台灣西部,我們特別需要關注的就是彰化斷層的影響,該斷層曾於1848年發生巨大錯動。此外,我們也需要留意西南部的地震風險,如 1906 年的梅山地震。此兩條活動斷層距今皆已超過 100 年沒活動了。至於東部,因為存在眾多活動斷層,當然也需要持續注意。

-----廣告,請繼續往下閱讀-----

我們之所以擔心某些斷層,是因為這些區域可能已經累積了相當多的能量,一旦達到臨界點,就會釋放,進而引發地震。地質學家通常會沿著斷層挖掘,尋找過去地震的證據,如受構造擾動沉積物的變化,然後透過定年技術來確定地震發生的時間點,估算出斷層的地震週期,然而,這些數字的計算過程非常複雜,需要綜合大量數據。

挑戰在於,有些斷層的活動時間非常久遠,要找到活動證據並不容易。例如,1906年的梅山地震,即使不算久遠,但挖掘出相關斷層的具體位置仍然困難,更不用說那些數百年才活動一次的斷層,如台北的山腳斷層,因為上頭覆蓋了大量沉積物,要找到並研究這些斷層更加困難。

儘管我們很難預測哪個斷層會再次活動,我們仍然可以預先對這些構造做風險評估,從過往地震事件中找到應變之道。而 921 地震教育園區,就是那個可以發現應變之道的地方。

圖:北棟教室毀損區 / 圖片來源:劉志恆/青玥攝影

921 後的 25 年

在園區服務已 11 年的黃英哲擔任志工輔導員,常代表園區到各地進行地震防災宣導。他細數 921 之後,台灣進行的六大改革。制定災害防救法,取代了總統緊急命令。修訂了建築法規,推動斷層帶禁限建與傳統校舍建築改建。組建災難搜救隊伍,在面對未來災害時能更加自主應對。為保存文化資產,增設了歷史建築類別,確保具有保存價值的建築物得到妥善照料。

-----廣告,請繼續往下閱讀-----

最後,則是推行防災教育。黃英哲表示,除了在學校定期進行防災演練,提升防災意識外,更建立了921地震教育園區,不僅作為教育場所,也是跨部門合作的平台,例如與交通部氣象署、災害防救辦公室、教育部等單位合作,進行全面的防災教育。園區內保留了斷層線的舊址,讓遊客能夠直觀地了解地震的破壞力,最具可看性;然而除此之外,園區也是 921 地震相關文物和資料的重要儲存地,為未來的地震研究提供了寶貴的資源。

堪稱園區元老,在園區服務將近 19 年,主要負責日語解說工作的陳婉茹認為,園區最大的特色是保存了斷層造成的地景變化,如抬升的操場和毀壞的教室場景,讓造訪的每個人直觀地感受地震的威力,尤其是對於年輕的小朋友,即使他們沒有親身經歷過,也能透過這些真實的展示認識到地震帶來的危險與影響。

陳婉茹回憶,之前有爸媽帶著小學低年級的小朋友來參觀,原本小朋友並不認真聽講,到處跑來跑去,但當他看到隆起的操場,立刻大聲說這他在課本看過,後來便聚精會神地聽完 40 分鐘的解說。

圖:陳婉茹在第一線負責解說工作 / 圖片來源:921地震教育園區

除了每看必震撼的地景,園區也透過持續更新策展,邀請大家深入地震跟防災的各個面向。策展人黃惠瑛負責展示設計、活動規劃、教具設計等工作。她提到,去年推出的搜救犬特展和今年的「921震災啓示展」與她的個人經歷息息相關。921 大地震時的她還是一名台中女中的住宿生,當時她儘管驚恐,依舊背著腿軟的學姊下樓,讓她在策劃這些展覽時充滿了反思。

-----廣告,請繼續往下閱讀-----

在地震體驗平臺的設計中,黃惠瑛強調不僅要讓觀眾了解災害的破壞力,更希望觀眾能從中學到防災知識。她與設計師合作,一樓展示區採用了時光機的概念,運用輕鬆、童趣的風格,希望遊客保持積極心態。二樓的地震體驗平臺結合六軸震動臺和影片,讓遊客真實感受921地震的情境。她強調,這次展覽的目標是全民,設計上避免了血腥和悲傷的元素,旨在讓觀眾帶著正向的感受離開,並重視防災意識。

圖:地震體驗劇場 / 圖片來源:921地震教育園區

籌備今年展覽的最大挑戰是緊迫的時間。從五月開始,九月完成,為了迅速而有效地與設計師溝通,黃惠瑛使用了AI工具如ChatGPT與生成圖像工具,來加快與設計師溝通的過程。

圖:黃惠瑛與設計師於文件中討論設計/ 圖片來源:921地震教育園區

蔣正興博士說,當初學界建議在此設立地震教育園區,其中一位重要推手是法國地質學家安朔葉。他曾在台灣指導十位台灣博士生,這些博士後來成為地質研究的中堅力量。1999年921大地震後,安朔葉教授立刻趕到台灣,認為光復國中是全球研究斷層和地震的最佳觀察點,建議必須保存。為紀念園區今年成立20週年,在斷層館的展示更新中,便特別強調安朔葉的貢獻與當時的操場圖。

此外,作為 20 週年的相關活動,今年九月也將與日本野島斷層保存館簽署合作備忘錄(MOU),強化合作並展示台日合作歷史。另一重頭戲則是向日本兵庫縣人與自然博物館主任研究員加藤茂弘致贈感謝狀,感謝他不遺餘力,長期協助園區斷層保存館的剖面展品保存工作。

-----廣告,請繼續往下閱讀-----
右圖:法國巴黎居禮大學安朔葉教授。左圖:兵庫縣立人與自然博物館主任研究員加藤茂弘
/ 圖片來源:921地震教育園區

前事不忘,後事之師

盡力保存斷層跟受創校舍,只因不想再重蹈覆徹。蔣正興博士表示,921地震發生在車籠埔斷層,其錯動形式成為全球地質研究的典範,尤其是在研究斷層帶災害方面。統計數據顯示,距離車籠埔斷層約100公尺內,住在上盤的罹難率約為1%,而下盤則約為0.6%。這說明住在斷層附近,特別是上盤,是非常危險的。由於台灣主要是逆斷層活動,這一數據清楚告訴我們,在上盤區域建設居住區應特別小心。

2018年花蓮米崙斷層地震就是一個例證。

在921地震後,政府在斷層帶兩側劃設了「地質敏感區」。因為斷層活動週期較長,全球大部分地區難以測試劃設敏感區的有效性,但台灣不同,斷層活動十分頻繁。例如 1951 年,米崙斷層造成縱谷地震,規模達 7.3,僅隔 67 年後,在 2018 年再次發生花蓮地震,這在全球是罕見的,也因此 2016 年劃設的地質敏感區,在 2018 年的地震中便發現,的確更容易發生地表破裂與建築受損,驗證了地質敏感區劃設的有效性。

圖:黃英哲表示曾來園區參訪的兒童寄來的問候信,是他認真工作的動力 / 圖片來源:921地震教育園區

在過去的20年裡,921地震教育園區不僅見證了台灣在防災教育上的進步,也承載著無數來訪者的情感與記憶。每一處地震遺跡,每一項展示,都在默默提醒我們,那段傷痛歷史並未走遠。然而,我們對抗自然的力量,並非源自恐懼,而是源自對生命的尊重與守護。當你走進這座園區,感受那因地震而隆起的操場,或是走過曾經遭受重創的教室,你會發現,這不僅僅是歷史的展示,更是我們每一個人的責任與使命。

-----廣告,請繼續往下閱讀-----

來吧,今年九月,走進921地震教育園區,一起在這裡找尋對未來的啓示,為台灣的下一代共同築起一個更堅固、更安全的家園。

圖:今年九月,走進921地震教育園區 / 圖片來源:劉志恆/青玥攝影

延伸閱讀:
高風險? 家踩「斷層帶、地質敏感區」買房留意
「我摸到台灣的心臟!」法國地質學家安朔葉讓「池上斷層」揚名國際
百年驚奇-霧峰九二一地震教育園區|天下雜誌

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
208 篇文章 ・ 312 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

1
0

文字

分享

0
1
0
多重宇宙真的存在?艾弗雷特三世(Hugh Everett III)的多世界詮釋
PanSci_96
・2024/07/28 ・2651字 ・閱讀時間約 5 分鐘

在前一篇我們聊到,為了反駁量子力學的機率詮釋和疊加態的說法,薛丁格提出著名的思想實驗:「薛丁格的貓」。既然貓在現實中不可能既生又死,所以量子理論一定有不夠完備的地方。

延伸閱讀:物理學四大神獸「薛丁格的貓」,其實是在嘲諷量子力學?物理學家對波函數機率詮釋的爭辯

然而,真的是這樣嗎?有沒有既符合量子理論又能解釋這個實驗的說法呢?

測量問題:量子系統的確定性

在量子力學中,量子系統的狀態在被測量前是不可確定的,所有可能狀態以機率的形式共存,這時系統處於所有狀態的疊加態。只有當我們進行測量時,系統才會變成某個特定狀態。

-----廣告,請繼續往下閱讀-----

例如,原子裡的電子並沒有一個確定的位置,它可能出現在任意地方,像波一樣散佈於空間中。當你測量它,它有一定機率出現在某處。愛因斯坦曾問:「是不是只有當你在看它的時候,月亮才在那兒呢?」對他而言,月亮不管有沒有人在看,都懸掛在天上,他認為量子系統應該也是如此,總是有個確定的狀態,只是我們還沒搞清楚而已。

而薛丁格在與愛因斯坦討論後提出「薛丁格的貓」思想實驗。薛丁格利用貓不可能處於既生又死的疊加態來質疑量子理論,雖然引起了話題,但並未成功反駁量子理論。

量子力學的理解不斷累積,我們知道了許多愛因斯坦和薛丁格當時不知道的事情,因此在某種程度上,回應他們的質疑已經不再是問題。

多世界詮釋:分岔的宇宙

1957 年,美國普林斯頓大學的博士生艾弗雷特三世(Hugh Everett III)提出了一個大膽的想法。他認為,宇宙的一切可以由單一個宇宙波函數(universal wave function)來描述,遵循量子力學的波動方程式。當我們進行測量時,例如檢查「薛丁格的貓」實驗結果,不同的子系統(如貓、毒藥瓶和測量者)會在交互作用下彼此連動,呈現出兩組狀態:貓死亡、毒藥瓶打破、測量者看到貓死亡,或貓活著、毒藥瓶沒破、測量者看到貓活著。

-----廣告,請繼續往下閱讀-----
艾弗雷特三世(Hugh Everett III)提出的多世界詮釋,之後成為許多科幻題材的靈感來源。圖/wikimedia

延伸閱讀:首創平行世界理論,艾弗雷特三世誕辰|科學史上的今天:11/11

測量會讓宇宙波函數分岔出兩個不同的分支,或說兩個平行世界。在其中一個宇宙,貓會活著;另一個宇宙,貓則會死亡。兩個宇宙都真實存在,沒有貓既死又活的事情。

在艾弗雷特的詮釋中,宇宙波函數隨著時間演化,就像一株大樹,每當有測量發生,就會分出不同的枝幹。每個枝幹代表一個獨立的平行世界或平行歷史,這就是著名的多世界詮釋(many-worlds interpretation)。歷史上每次的測量或選擇都會分裂出不同的世界,產生超級龐大的平行世界數量,彼此之間無法溝通或交換資訊。

雖然我們在這個世界買樂透沒中獎,但在另一個平行世界裡,我們可能是中頭獎的大富翁。多世界詮釋的優點是,它與量子理論沒有矛盾,能解決薛丁格的貓等悖論。

然而,儘管有人曾提出過驗證多世界詮釋的方式,現今的科技無法做到。艾弗雷特的博士論文沒有受到學界的多大關注,他之後改從事與物理研究無關的工作。直到1970年代,多世界詮釋才開始受到注意,並在艾弗雷特於1982年去世後,變得越來越受歡迎,甚至被科幻作品挪用。

-----廣告,請繼續往下閱讀-----

量子去相干:量子特性的喪失

量子去相干(quantum decoherence)是另一種解決方法。在雙狹縫干涉實驗中,同一波源的波從兩個狹縫出來並產生干涉條紋,代表它們存在相干性(相互干涉的性質)。若對其中一道狹縫的光波進行干擾,相干性會消失,干涉條紋不會出現,這就是去相干。

在量子力學裡,微觀粒子具有波的特性,也會發生相互干涉。波函數隨外在環境存在許多不同可能狀態,彼此相干。在電子的雙狹縫實驗中,電子以波的形式通過兩個狹縫,接著彼此干涉,形成干涉條紋。當我們測量電子的路徑,就會讓系統不同可能狀態的相干性消失,這就是量子去相干。

只要一個量子系統沒有完全孤立,與外界有交互作用,就算是干擾。想像將熱水和冷水倒在一起,熱水分子和冷水分子會互相作用,交換熱能和動量,最終達到平衡——一杯溫水。原本的每個熱水分子和冷水分子可以視為孤立系統,但當它們互相作用,改變狀態,就必須將整杯水視為整體。

量子系統的測量就像這個例子,測量者和量子系統之間的交互作用會導致量子系統與外界交換資訊,無法再用原本的波函數描述,最終逐漸喪失量子特性。

-----廣告,請繼續往下閱讀-----

現實中的量子去相干

在電子的雙狹縫干涉實驗中,若要知道電子通過雙狹縫時的確切位置和路徑,就必須偵測它,與之產生交互作用,導致量子去相干,干涉條紋消失。量子去相干的概念下,測量是一種交互作用,會引起量子去相干現象。隨著交互作用程度不同,量子系統會逐漸失去量子特性。

在現實世界中,所有量子系統都不可能完全孤立,與外界互動後,時間久了必然去相干。現實生活中的所有物體,雖然由量子系統組成,但當原子構築成更大的結構,會因彼此的交互作用喪失量子特性。因此,愛因斯坦問的「是不是只有當你在看它的時候,月亮才在那兒呢?」我們可以回答:「並不是這樣。」因為月亮已經不是量子系統。

薛丁格的貓不可能存在?

在「薛丁格的貓」實驗中,當作為量子系統的不穩定原子核被偵測到衰變後,交互作用就完成了,量子系統的狀態就確定了,貓也就死定了。此外,貓自身因量子去相干的關係,不會是量子系統,不可能同時處於生和死的狀態。

目前量子相關科技,如量子電腦、量子通訊等,在研發上遇到的困難,部分來自於量子去相干現象。量子電腦使用的量子位元必須保持在隔絕於外界、不受干擾的環境中,才能維持在量子態。一旦有風吹草動,量子位元可能出錯。隨著量子位元數目變多,要同時維持全部的量子態也變得更加困難,這些就是當前技術需要克服的挑戰了。

-----廣告,請繼續往下閱讀-----
歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

PanSci_96
1244 篇文章 ・ 2378 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

1
1

文字

分享

0
1
1
物理學四大神獸「薛丁格的貓」,其實是在嘲諷量子力學?物理學家對波函數機率詮釋的爭辯
PanSci_96
・2024/07/27 ・2152字 ・閱讀時間約 4 分鐘

在上一篇,我們探討了德布羅意提出物質波的概念,指出微觀粒子如電子也具有波的特性,這一點已被實驗所證實。

延伸閱讀:量子革命的開端——物質波的發現

然而,故事並未因此結束。隨著相關研究的深入,物理學家對物質波的啟示展開了激烈辯論。一些在量子力學發展初期做出卓越貢獻的物理學家並不認同量子理論的主流觀點,甚至提出了薛丁格的貓這一思想實驗,愛因斯坦也曾言道:「上帝不會擲骰子。」

究竟,發生了什麼事情呢?

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

從確定性到不確定性

在 20 世紀以前,古典物理學基於決定論,認為掌握某一時刻系統中所有物體的狀態,就能根據物理定律預測系統未來的演變。比如,當一顆蘋果從樹上掉下,我們可以根據物理法則計算出它掉到地面的時間和速度。

-----廣告,請繼續往下閱讀-----

然而,量子力學的觀點則不同,認為量子系統的行為無法完全確定,只能用機率描述。這一觀點源自德布羅意提出的物質波概念。

1926 年,奧地利物理學家薛丁格發表了薛丁格方程式,用來描述物質波的波函數。他成功地用該方程式解釋了氫原子的光譜能量,開啟了量子力學的新篇章。然而,波函數的物理意義一度難以被理解。

幾個月後,德國物理學家玻恩提出了波函數的機率詮釋,認為波函數與量子系統的狀態機率有關。當我們測量量子系統時,系統可能呈現不同狀態,其機率由波函數決定。這一觀點對當時的物理學界造成了巨大衝擊。

決定論的終結?波函數的機率詮釋與衝擊

玻恩的機率詮釋表明量子系統在測量後呈現的狀態無法事先確定,只能了解系統可能狀態的機率大小。這種理解框架革命性地挑戰了決定論的世界觀,部分物理學家因此感到不滿。德布羅意和薛丁格對此持保留態度,而愛因斯坦則認為量子力學還不夠完備,堅信「上帝不會擲骰子」。

-----廣告,請繼續往下閱讀-----

儘管有反對聲音,量子力學的機率詮釋在經過多次驗證後成為主流觀點。量子系統在測量前的狀態是未確定的,所有可能狀態以疊加形式同時存在,而測量後才會呈現其中一種。這一觀點對傳統的決定論提出了挑戰。

根據量子力學的主流說法,量子系統的狀態在測量之前是未確定的,所有可能狀態以疊加形式同時存在,測量後才會呈現其中一種。這就像在抽卡時,不同的卡都有一定機率會出現,但具體出現哪一張卡,要等抽取後才知道。

此外,在量子系統中,有些物理量無法同時精確測量,例如粒子的位置和動量,這稱為不確定性原理。對愛因斯坦等支持決定論的科學家來說,無法確切預測和精確測量物理系統狀態的量子理論是不夠完備的。他們認為在量子力學背後,應該還有一些隱藏的變量,導致我們無法完整預測和測量量子系統。

1935年,愛因斯坦在與薛丁格的通信中,提出一個想法來質疑量子理論的疊加態概念:想像一桶品質不穩定的火藥,經過一段時間後,可能會爆炸,也可能不會爆炸,那麼這桶火藥豈不是處於爆炸與未爆炸之間的疊加狀態?

-----廣告,請繼續往下閱讀-----

受到愛因斯坦的啟發,薛丁格進一步提出了「薛丁格的貓」思想實驗:把一隻貓放進鐵製房間,裡面有測量輻射的偵測器和少量放射性物質。放射性物質衰變是隨機的,處於衰變與未衰變的疊加態。如果放射性物質衰變,偵測器會觸發機關釋放毒氣,貓就會死亡;如果沒有衰變,貓則活著。整個系統的波函數處於貓活著和貓死亡的疊加狀態。

薛丁格提出了著名的思想實驗「薛丁格的貓」,反駁量子力學的疊加態說法。圖/Envato

這一思想實驗引發了人們對量子理論的深刻思考。薛丁格提出這個實驗,是為了強調量子疊加態的荒謬性,反對量子理論的測量詮釋。對愛因斯坦和薛丁格來說,物理真實應該是確定的,而不是機率和疊加的。

世界是決定論還是機率論?

薛丁格的貓思想實驗提出後,引發了更多的討論和質疑。例如:既然量子系統的狀態要測量之後才會確定,那麼貓的死活是要我們打開房間觀察後才會知道嗎?還是說,貓自己本身就可以是一個測量者呢?需要有一個生命意識去測量它嗎?到底,貓的死活是在什麼時候確定的呢?

儘管目前學界對測量問題還不算有一致公認的答案,但我們對量子力學的認知,已經比薛丁格那個時候增加許多,所以愛因斯坦和薛丁格對量子力學的質疑,以及薛丁格的貓引發的疑竇,我們已有能力給出大致確定但不完全塵埃落定的答覆。

-----廣告,請繼續往下閱讀-----

在下一集,我們將繼續探討這些問題,「上帝真的不玩骰子嗎?」

歡迎訂閱 Pansci Youtube 頻道 獲取更多深入淺出的科學知識!

-----廣告,請繼續往下閱讀-----

討論功能關閉中。