Loading [MathJax]/extensions/tex2jax.js

0

1
1

文字

分享

0
1
1

食蟲植物的藍光陷阱

活躍星系核_96
・2013/02/20 ・1028字 ・閱讀時間約 2 分鐘 ・SR值 501 ・六年級

-----廣告,請繼續往下閱讀-----

編譯 / 洗碗精

印度的學者指出,有些食蟲植物會發出藍色螢光吸引獵物

這棵小豬籠草(Nepenthes gracilis)的唇會不會吸引你駐足呢?
這棵小豬籠草(Nepenthes gracilis)的唇會不會吸引你駐足呢?

對於食蟲植物稍有了解的人應該都知道,食蟲植物可利用蜜汁、色彩及氣味吸引獵物,然而出人意料的是,最近又發現一種誘引機制—研究團隊以紫外光照射,發現植物的捕捉區(capture spots)竟然會發出藍色螢光!這項研究由印度熱帶植物園暨研究協會發表,刊登於《植物學》(Plant Biology點此看文章)期刊上,研究團隊的成員Sabulal Baby博士指出「以前從未有人發現食蟲植物的捕蟲器上竟然會發出這麼獨特的藍光」、「就我們所知,它發出的這種藍色螢光應該是所有已知植物中最強最清楚的」。

重大意義

這種藍光在豬籠草、瓶子草及捕蠅草的捕蟲囊都可觀察得到,其原理與分子層面的反應機制有關。以波長366 nm的紫外燈照射食蟲植物,可觀察到捕蠅草的捕蟲葉內側、豬籠草及瓶子草的籠蓋、捕蟲囊內側及唇上緣發出藍色螢光。多數昆蟲及節肢動物可感知紫外光譜,因此豬籠草、瓶子草會發光的籠唇就像是個清楚的停機坪,吸引飛行昆蟲降落。螢光同時也會吸引老鼠、蝙蝠及樹鼩(tree shrews)等小型哺乳類。

-----廣告,請繼續往下閱讀-----

這種藍色螢光在光線微弱的時候也能觀察得到,因此在夜間也具有誘引效果。

研究團隊設計了一項實驗來證明藍色螢光與誘捕獵物有關,他們以植物園中的印度豬籠草(Nepenthes khasiana)為材料,在籠唇上塗佈不會發出螢光的物質,結果在實驗進行的十天中,這些瓶子的獵物捕獲率遽降。由此證明,這種非常醒目的藍光訊號在誘捕獵物中扮演了重要角色。

珍貴的發現

生長在貧瘠土壤的食蟲植物,演化出了獨特的養分獲取方法,透過陷阱式(pitfall traps)、捕獸夾式(snap traps)、黏蠅紙式(flypaper traps) 等方法捕捉並消化獵物。例如捕蠅草利用類似捕獸夾的構造快速捕捉獵物,其夾子闔上的速度可說是植物界第一;以瓶子捕捉獵物的食蟲植物則具有光滑的唇緣,能 使獵物滑落跌至消化液中。除了上述已知的捕蟲機制之外,這次的研究發現了部分食蟲植物能在紫外燈下發出藍色螢光吸引獵物,使我們對於捕蟲機制以及動植物間 的互動又有了更深的了解。

資料來源:Carnivorous plant species glow blue to lure prey. BBC [19 February 2013]

-----廣告,請繼續往下閱讀-----

譯者:洗碗精,中山生科學士班、中興園藝碩士班畢業。希望一生都能與植物相伴的園藝愛好者,特別喜歡熱帶果樹、蔬菜和食蟲植物,目前於貝里斯技術團工作,閒暇時間寫個網誌或翻個文章有助於放鬆身心

-----廣告,請繼續往下閱讀-----
文章難易度
活躍星系核_96
778 篇文章 ・ 128 位粉絲
活躍星系核(active galactic nucleus, AGN)是一類中央核區活動性很強的河外星系。這些星系比普通星系活躍,在從無線電波到伽瑪射線的全波段裡都發出很強的電磁輻射。 本帳號發表來自各方的投稿。附有資料出處的科學好文,都歡迎你來投稿喔。 Email: contact@pansci.asia

0

1
0

文字

分享

0
1
0
純淨之水的追尋—濾水技術如何改變我們的生活?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/17 ・3142字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 BRITA 合作,泛科學企劃執行。

你確定你喝的水真的乾淨嗎?

如果你回到兩百年前,試圖喝一口當時世界上最大城市的飲用水,可能會立刻放下杯子——那水的顏色帶點黃褐,氣味刺鼻,甚至還飄著肉眼可見的雜質。十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」,當時的人們雖然知道水不乾淨,但卻無力改變,導致霍亂和傷寒等疾病肆虐。

十九世紀倫敦泰晤士河的水,被戲稱為「流動的污水」(圖片來源 / freepik)

幸運的是,現代自來水處理系統已經讓我們喝不到這種「肉眼可見」的污染物,但問題可還沒徹底解決。面對 21 世紀的飲水挑戰,哪些技術真正有效?

-----廣告,請繼續往下閱讀-----

19 世紀的歐洲因為城市人口膨脹與工業發展,面臨了前所未有的水污染挑戰。當時多數城市的供水系統仍然依賴河流、湖泊,甚至未經處理的地下水,導致傳染病肆虐。

1854 年,英國醫生約翰·斯諾(John Snow)透過流行病學調查,發現倫敦某口公共水井與霍亂爆發直接相關,這是歷史上首次確立「飲水與疾病傳播的關聯」。這項發現徹底改變了各國政府對供水系統的態度,促使公衛政策改革,加速了濾水與消毒技術的發展。到了 20 世紀初,英國、美國等國開始在自來水中加入氯消毒,成功降低霍亂、傷寒等水媒傳染病的發生率,這一技術迅速普及,成為現代供水安全的基石。    

 19 世紀末的台灣同樣深受傳染病困擾,尤其是鼠疫肆虐。1895 年割讓給日本後,惡劣的衛生條件成為殖民政府最棘手的問題之一。1896 年,後藤新平出任民政長官,他本人曾參與東京自來水與下水道系統的規劃建設,對公共衛生系統有深厚理解。為改善台灣水源與防疫問題,他邀請了曾參與東京水道工程的英籍技師 W.K. 巴爾頓(William Kinnimond Burton) 來台,規劃現代化的供水設施。在雙方合作下,台灣陸續建立起結合過濾、消毒、儲水與送水功能的設施。到 1917 年,全台已有 16 座現代水廠,有效改善公共衛生,為台灣城市化奠定關鍵基礎。

-----廣告,請繼續往下閱讀-----
圖片來源/BRITA

進入 20 世紀,人們已經可以喝到看起來乾淨的水,但問題真的解決了嗎? 科學家如今發現,水裡仍然可能殘留奈米塑膠、重金屬、農藥、藥物代謝物,甚至微量的內分泌干擾物,這些看不見、嚐不出的隱形污染,正在成為21世紀的飲水挑戰。也因此,濾水技術迎來了一波科技革新,活性碳吸附、離子交換樹脂、微濾、逆滲透(RO)等技術相繼問世,各有其專長:

活性碳吸附:去除氯氣、異味與部分有機污染物

離子交換樹脂:軟化水質,去除鈣鎂離子,減少水垢

微濾技術逆滲透(RO)技術:攔截細菌與部分微生物,過濾重金屬與污染物等

-----廣告,請繼續往下閱讀-----

這些技術相互搭配,能夠大幅提升飲水安全,然而,無論技術如何進步,濾芯始終是濾水設備的核心。一個設計優良的濾芯,決定了水質能否真正被淨化,而現代濾水器的競爭,正是圍繞著「如何打造更高效、更耐用、更智能的濾芯」展開的。於是,最關鍵的問題就在於到底該如何確保濾芯的效能?

濾芯的壽命與更換頻率:濾水效能的關鍵時刻濾芯,雖然是濾水器中看不見的內部構件,卻是決定水質純淨度的核心。以德國濾水品牌 BRITA 為例,其濾芯技術結合椰殼活性碳和離子交換樹脂,能有效去除水中的氯、除草劑、殺蟲劑及藥物殘留等化學物質,並過濾鉛、銅等重金屬,同時軟化水質,提升口感。

然而,隨著市場需求的增長,非原廠濾芯也悄然湧現,這不僅影響濾水效果,更可能帶來健康風險。據消費者反映,同一網路賣場內便可輕易購得真假 BRITA 濾芯,顯示問題日益嚴重。為確保飲水安全,建議消費者僅在實體官方授權通路或網路官方直營旗艦店購買濾芯,避免誤用來路不明的濾芯產品讓自己的身體當過濾器。

辨識濾芯其實並不難——正品 BRITA 濾芯的紙盒下方應有「台灣碧然德」的進口商貼紙,正面則可看到 BRITA 商標,以及「4週換放芯喝」的標誌。塑膠袋外包裝上同樣印有 BRITA 商標。濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計,底部則標示著創新科技過濾結構。購買時仔細留意這些細節,才能確保濾芯發揮最佳過濾效果,讓每一口水都能保證潔淨安全。

-----廣告,請繼續往下閱讀-----
濾芯本體的上方會有兩個浮雕的 BRITA 字樣,並且沒有拉環設計 (圖片來源 / BRITA)

不過,即便是正品濾芯,其效能也非永久不變。隨著使用時間增加,濾芯的孔隙會逐漸被污染物堵塞,導致過濾效果減弱,濾水速度也可能變慢。而且,濾芯在拆封後便接觸到空氣,潮濕的環境可能會成為細菌滋生的溫床。如果長期不更換濾芯,不僅會影響過濾效能,還可能讓積累的微小污染物反過來影響水質,形成「過濾器悖論」(Filter Paradox):本應淨化水質的裝置,反而成為污染源。為此,BRITA 建議每四週更換一次濾芯,以維持穩定的濾水效果。

為了解決使用者容易忽略更換時機的問題,BRITA 推出了三大智慧提醒機制,確保濾芯不會因過期使用而影響水質:

1. Memo 或 LED 智慧濾芯指示燈:即時監測濾芯狀況,顯示剩餘效能,讓使用者掌握最佳更換時間。

2. QR Code 掃碼電子日曆提醒:掃描包裝外盒上的 QR Code 記錄濾芯的使用時間,自動提醒何時該更換,減少遺漏。

-----廣告,請繼續往下閱讀-----

3. LINE 官方帳號自動通知:透過 LINE 推送更換提醒,確保用戶不會因忙碌而錯過更換時機。

在濾水技術日新月異的今天,濾芯已不僅僅是過濾裝置,更是智慧監控的一部分。如何挑選最適合自己需求的濾水設備,成為了健康生活的關鍵。

人類對潔淨飲用水的追求,從未停止。19世紀,隨著城市化與工業化發展,水污染問題加劇並引發霍亂等疾病,促使濾水技術迅速發展。20世紀,氯消毒技術普及,進一步保障了水質安全。隨著科技進步,現代濾水技術透過活性碳、離子交換等技術,去除水中的污染物,讓每一口水更加潔淨與安全。

-----廣告,請繼續往下閱讀-----
(圖片來源 / BRITA)

今天,消費者不再單純依賴公共供水系統,而是能根據自身需求選擇適合的濾水設備。例如,BRITA 提供的「純淨全效型濾芯」與「去水垢專家濾芯」可針對不同需求,從去除餘氯、過濾重金屬到改善水質硬度等問題,去水垢專家濾芯的去水垢能力較純淨全效型濾芯提升50%,並通過 SGS 檢測,通過國家標準水質檢測「可生飲」,讓消費者能安心直飲。

然而,隨著環境污染問題的加劇,真正的挑戰在於如何減少水污染,並確保每個人都能擁有乾淨水源。科技不僅是解決問題的工具,更應該成為守護未來的承諾。濾水器不僅是家用設備,它象徵著人類與自然的對話,提醒我們水的純淨不僅是技術的勝利,更是社會的責任和對未來世代的承諾。

*符合濾(淨)水器飲用水水質檢測技術規範所列9項「金屬元素」及15項「揮發性有機物」測試
*僅限使用合格自來水源,且住宅之儲水設備至少每6-12個月標準清洗且無受汙染之虞

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
225 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

2

19
5

文字

分享

2
19
5
泰瑞的顏色是真的!?——鴨嘴獸的生物螢光
椀濘_96
・2022/06/12 ・2806字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

在動畫《飛哥與小佛》(Phineas and Ferb)中超人氣角色——鴨嘴獸泰瑞/特務 P,可愛的外表加上寵物與特務的雙重身分,使牠成為家喻戶曉的大明星,鮮明的體色「泰瑞色」也蔚為風潮。

特務 P 是隻藍綠色的鴨嘴獸。圖/GIPHY

但你知道嗎?泰瑞的顏色其實是真的!

動物界神奇寶貝——鴨嘴獸的二三事

鴨嘴獸是棲息在澳洲東部的半水生單孔目動物,而單孔目代表著具有長期獨立演化的古老哺乳動物,雖是哺乳類但卻會產卵;現存的單孔目動物僅存鴨嘴獸及針鼴,均為澳洲特有種。

鴨嘴獸通常為夜間活動,並依靠一套獨特的表徵在黃昏、夜間和渾濁的水中,活動於弱光水生環境,牠們可以閉著眼睛游泳獵捕,使用機械感受及電感受來定位、感知水下獵物。鴨嘴獸的皮毛除了喙、腳和尾巴外,覆蓋身體均勻且緻密,可在水中起到絕緣的作用。

雄性鴨嘴獸的後肢長了尖刺並分泌有毒物質,在打架中會善用毒刺攻擊,藉此爭奪雌性,是目前為數不多的有毒哺乳類之一。

-----廣告,請繼續往下閱讀-----
動物界的神奇寶貝——鴨嘴獸。圖/維基百科

這些特徵已經讓鴨嘴獸夠特別了,現在又多了一樣更令人驚豔的能力:生物螢光

鴨嘴獸使出「生物螢光」!

生物螢光( Biofluorescence)是生物透過體內的螢光蛋白來吸收特定波長的光,然後發出另一波長的光。螢光蛋白吸收外來的能量,如紫外線,並發出螢光。

有一點還須特別注意:生物螢光與生物發光(bioluminescence)儘管都為發出螢光,但機制卻有所不同,又以生物發光較為常見,如螢火蟲、藍眼淚(夜光藻)等;站上亦有許多關於生物發光機制的文章,歡迎讀者閱讀~!

早期對於生物螢光的研究多半是在刺絲胞動物中發現,現今則觀察到越來越多不同物種也有此機制,從無脊椎動物到鳥類再到哺乳動物,遠比原先想像得還要更加普遍。

一切都是意外的發現?

2020 年 10 月期刊《哺乳類》(Mammalia)上發表了篇關於:鴨嘴獸在紫外光的照射下,會產生藍綠色的螢光,這項發現也使得在生物螢光研究領域有一大進展。

研究團隊在森林觀察螢光的生物時,發現北美飛鼠在紫外線照射下肚子會發出粉紅色的光,於是便前往芝加哥菲爾德自然史博物館(Field Museum of Natural History , FMNH)進一步確認,他們將存放在館內的飛鼠標本進行照射,證實牠們腹部的毛會散發粉紅螢光,並將研究成果發表於《哺乳類》期刊。

-----廣告,請繼續往下閱讀-----

在好奇心的驅使下,該研究團隊試著用紫外光照射了自然史博物館內,同為夜行性哺乳類的鴨嘴獸標本,意外發現鴨嘴獸的皮毛也會發出螢光!(以後出門都帶著 UV 燈好了)

研究過程

研究團隊詳細檢查了館內的兩個鴨嘴獸標本,分別為編號 FMNH 55559(雌性)和編號 FMNH 16612(根據腳踝上的尖刺推斷為雄性);在黑暗的房間裡以 385~395 nm 紫外線燈照射,並用濾光片阻擋短波長(包括反射的紫外線),以提高更長的生物螢光波長的可見度,然後拍攝紫外光反射圖像。

結果顯示,鴨嘴獸的背側和腹側毛皮在可見光下呈均勻棕色,在紫外光下則呈綠色至青藍色。

可從圖中看到,在紫外光照射下會發出青藍色至綠色生物螢光。圖/參考資料 1

團隊也檢查了這兩個標本的腹部共五個不同點,在每個位置上將探針與標本成 45° 角,並將採集的五個光譜結合起來創建平均光譜,檢測到了約 500 nm 的螢光波峰。

-----廣告,請繼續往下閱讀-----

與光源光譜相比,兩個標本光譜顯示的結果為:吸收紫外光(200~400 nm)並發出可見光(500~600 nm),確認了鴨嘴獸的生物螢光皮毛。

從 500 nm 開始的波峰與青藍色/綠色生物螢光有關。在 200~400 nm 範圍內,由於標本樣品對紫外光的吸收,導致黑、紅、藍色曲線之間的差異。圖/參考資料 1

為了驗證在 FMNH 標本中獲得的結果,團隊還檢查了另一個不同地點、日期收集的鴨嘴獸標本。存放在美國內布拉斯加州大學博物館(University of Nebraska State Museum , UNSM)內的雄性鴨嘴獸標本,再次驗證毛皮在可見光下呈均勻棕色,在紫外光下則呈生物螢光綠色。

在該團隊發表研究結果前不久,有另一篇論文報告了一隻剛被路殺的鴨嘴獸在黑光燈(一種照射出紫外光的燈)下發光,藉此印證了鴨嘴獸確實能發出螢光。

而在北美飛鼠及鴨嘴獸之前,唯一哺乳類會發出螢光的紀錄僅出現在 1983 年的一份有袋負鼠研究,該團隊這兩次的意外發現,無疑為哺乳世界的生物螢光拓展新知。

-----廣告,請繼續往下閱讀-----

發光的目的

到這裡不免讓人好奇,鴨嘴獸是為了什麼目的而發螢光,或是有什麼生物意義?然而科學家們表示,目前仍不清楚鴨嘴獸為何會發光。

科學家們也為此作出了一些推斷,鴨嘴獸、美洲飛鼠和負鼠都是在黃昏至夜間活躍,許多夜行性哺乳動物似乎具有對紫外線敏感的視力,生物螢光在弱光環境中強化了適應性,進一步表明紫外線在弱光環境中具有生態意義。

因此推測:鴨嘴獸對紫外線的吸收和隨後發出的螢光,可能會降低對紫外線敏感的捕食者對牠們的能見度。不過這還得靠實地野生生態研究記錄,觀察生物螢光功能對鴨嘴獸的重要性。

2021 年也有研究團隊發現了另一種有生物螢光機制的哺乳類——跳兔(Pedetidae),而牠們也同為夜間活動的哺乳動物[4]

-----廣告,請繼續往下閱讀-----

也許,生物螢光機制對在弱光環境中活躍的夜行性哺乳動物發揮著重要作用

後記

筆者非常好奇泰瑞的顏色為什麼就剛好是藍綠色,《飛哥與小佛》2007 年在迪士尼頻道首播,確認鴨嘴獸會發藍綠色螢光則是在 2020 年發表,嗯……,這也許就是個可愛的巧合吧!

圖/GIPHY
  1. Biofluorescence in the platypus(Ornithorhynchus anatinus)
  2. 若你覺得鴨嘴獸不夠神奇,現在我們知道牠們也會發光!
  3. 生物螢光—維基百科
  4. Vivid biofluorescence discovered in the nocturnal Springhare(Pedetidae)
-----廣告,請繼續往下閱讀-----
所有討論 2
椀濘_96
12 篇文章 ・ 20 位粉絲
喜歡探索浪漫的事物; 比如宇宙、生命、文字, 還有你。(嘿嘿 _ 每天都過著甜甜的小日子♡(*’ー’*)

0

9
3

文字

分享

0
9
3
「紫外光燈」為何可以消毒?又要注意哪些事項?
Aaron H._96
・2021/07/08 ・2094字 ・閱讀時間約 4 分鐘

-----廣告,請繼續往下閱讀-----

紫外光燈是應用非常廣的環境消毒工具,廣泛應用在手術室、圖書館、游泳池等公共場所,由於疫情的關係,又再次受到注意。但紫外光燈真的適用於家中進行消毒嗎?使用上又有什麼需要注意的地方呢?

紫外光是一種波長短、能量密度高的不可見光。圖/NASA

紫外光有分三種:UVA、UVB、UVC

紫外光可以依照波長分為三大類:分別是 UVA(波長介於320~400nm)、UVB(波長介於 280~320nm)以及 UVC(波長介於100~280nm)。

其中 UVA 的穿透力最強,抵達地球的陽光中,就有許多 UVA;UVA 可穿透大氣層、車窗、玻璃進入室內及車內,甚至抵達皮膚下的真皮層,使之生成黑色素、曬黑皮膚。

陽光中帶有大量的 UVA,能曬黑我們的皮膚。圖/envato elements

同時,UVA 可再細分為 UVA-2(320~340nm)與 UVA-1(340~400nm)。UVA-1 穿透力最強,即使在非夏季、比較感受不到「熱」的時候,UVA-1 仍然存在;此時如果長時間照射太陽或是坐在靠玻璃帷幕的辦公室,一樣有可能會造成皮膚的傷害。 UVA-1也會用在礦石鑑定、舞台裝飾、驗鈔或是吸引昆蟲時使用。

-----廣告,請繼續往下閱讀-----
紫外光照射下的礦石。圖/Hannes Grobe/AWI, wiki

透過陽光抵達地球的,還有UVB,只不過日光中多數的 UVB(波長介於 280~320nm),在前往地球的途中會被臭氧層吸收,只有約 2% 的 UVB 能到達地表。UVB 的能量非常高,能促進「體內礦物質代謝」和「形成維生素D」,但長期或過量照射除了會曬黑皮膚之外,甚至可能灼傷皮膚。

生活中,UVB 一般用於植物生長燈,調節植物的生長。

UVB 燈一般用來調節植物生長速度。圖/envato elements

最後,UVC 是波長最短,因此能量也最密集的紫外光。多數紫外光滅菌燈就是利用 UVC 波長。UVC 能夠破壞細菌、病毒等病原體中遺傳物質(DNA/RNA)的化學鍵,讓病原體因為無法正常製造蛋白質,而立即死亡或喪失繁殖能力,達到消毒效果。目前 UVC 已被證實能夠消滅細菌、病毒、黴菌等常見病原。

UVC 能消滅細菌、病毒、黴菌的常見病原。圖/wiki

但紫外光燈也不是開著就能夠有效消毒,而是要根據不同的微生物,設定不同的照射劑量。

-----廣告,請繼續往下閱讀-----

紫外線如何「有效」殺菌?

紫外線的殺菌量劑單位是 J/m2 ,一般來說,強度高但照射時間短,與強度低但照射時間長的效果相同。

不過,考量到微生物自我修復的機制,如果紫外線照射強度低於 40μW / cm2 ,就算持續延長照射時間,也無法有效消毒;所以待消毒的物體表面照射的強度必須大於 70μW / cm2 以上,並且離紫外光燈一定距離內,才能達到9成以上的殺菌力。

另外,UVC 的穿透力很差,在許多狀況下,UVC 都可能無法有效殺菌。

UVC 遇到葡萄酒,穿透力只剩 0.5-2.5mm。圖/envato elements

例如含有雜質的液體(例如葡萄酒或牛奶),UVC 穿透的深度大約只有 0.5 – 2.5 mm,而大部分的透明玻璃、塑膠甚至是厚紙箱,都能輕易阻擋 UVC,所以遇到過大、過厚的包裝,就無法用 UVC 有效對內容物進行殺菌。

-----廣告,請繼續往下閱讀-----

紫外光具的殺菌力也容易受到灰塵、油漬的影響穿透力;相反地,對沒有照射到紫外光的家具背面與死角、衣物內面等,不但沒有殺菌效果,甚至還可能會加速家具、染料、藝術品、牆面表面褪色。

沒有照射到紫外光的家具背面與死角,可能會加速褪色。圖/envato elements

雖然多數的商用紫外光燈具,都會搭配藍紫色的光,讓我們可以看見它的照射範圍,但由於最主要的紫外光是不可見光,所以不應該完全依賴肉眼所見;而長時間例行使用的設備,每三到六個月,也應定期檢查燈管的照射強度。

用紫外光殺菌,也要小心別傷到自己!

雖然使用紫外光消毒看起來非常方便,不過既然紫外光對各種病原體都有殺傷力,對人體的傷害也不容小覷。

紫外光燈對人體也可能帶來傷害!圖/Chetvorno, wiki

最常見的,就是因為直視紫光燈管,導致眼睛出現「強光性角結膜炎」​;長期照射紫外光,也可能會造成皮膚灼傷、皮膚癌、黑色素瘤等傷害。此外,2011 年 4 月 13 日,世界衛生組織也已經將所有類別的紫外光輻射歸類為「一級致癌物質」。

-----廣告,請繼續往下閱讀-----

如果真的想用紫外光燈消毒環境時,建議使用能夠設定時間啟動的固定式設備,等人離開環境了之後,再開始進行消毒,並保持空間通風,才是正確的使用方式。

參考文獻

  1. UV Lights and Lamps: Ultraviolet-C Radiation, Disinfection, and Coronavirus
  2. Ultraviolet (UV) Radiation
-----廣告,請繼續往下閱讀-----