Loading [MathJax]/extensions/tex2jax.js

0

0
0

文字

分享

0
0
0

耳朵太差聽不見求偶蛙鳴?南瓜蟾蜍用愛發光找伴侶

彥寧
・2019/07/25 ・2353字 ・閱讀時間約 4 分鐘 ・SR值 466 ・五年級

有時經過河邊或是水溝,仔細靜下來,就能聽見一陣一陣的蛙鳴聲。可是,你知道有些青蛙,是無法用蛙鳴進行溝通的嗎?

通體橘黃,南瓜一樣的小青蛙

世界上的蛙類百百種,有不斷想要侵略藍星的、也有每天都一直跑出門旅行的,不過,我們今天的主角是——鞍背短頭蟾 (Brachycephalus ephippium)。

牠就是本文的主角,鞍背短頭蟾 (Brachycephalus ephippium)。 圖/EurekAlert!

鞍背短頭蟾分布在巴西東南部的山地沿海森林,是一種小型青蛙,具體一點來說,牠真的超級小,成體只有 12.5 到 19.7 毫米,跟我們的手指甲差不多大而已。

而牠的俗名則是「Pumpkin toadlets」(直翻就是南瓜蟾蜍),顧名思義,牠的體色跟南瓜一樣,全身都是橘黃的喔!而且虹膜也是黑色的,看起來就像裝了一對假的圓滾滾黑色大眼睛,很可愛的樣子。

-----廣告,請繼續往下閱讀-----

大家都知道狐狸怎麼叫,那青蛙呢?

大部分的蛙類高度仰賴聲音來進行溝通,有些蛙類在不同的狀況下,還會發出不一樣的叫聲。比如說,當雄蛙或其他種蛙類嘗試找對象進行假交配,卻不小心抱錯蛙時,被抱錯的蛙會發出釋放叫聲 (Release call),而當牠們被敵人抓住時,則會緊急發出求救叫聲 (Distress call)。順帶一提,去網路上搜尋「screaming frog」就能找到大量的青蛙求救叫聲影片合輯,一開始看覺得滿好笑的,不過後來知道那是求救叫聲後,就越看越難過了。

當被敵人抓住時,也些青蛙會發出求救叫聲。那關於這隻青蛙克明, 泛科學也有做過詳細的介紹喔! 圖/uludagsozlukgaleri

不過今天主要要說的是求偶叫聲 (mating call)。有些青蛙在求偶時會發出特定頻率的叫聲,且蛙類能聽到的聲音頻率範圍很窄,對同種類叫聲頻率特別敏感,尤其雌性常利用叫聲來確定雄性的位置,並選擇適當的交配對象。

那青蛙是怎麼聽到聲音的呢?鼓膜就像是蛙類的耳朵,而鼓膜內面連著耳柱骨 (columella),耳柱骨是兩爬類與鳥類的聽小骨,能將聲音傳入內耳的感覺細胞,再刺激大腦產生聽覺。

聽不見彼此,蟾蜍的愛情也可以很安靜

令人震驚的是,根據一篇 2017 年的解剖結果顯示,鞍背短頭蟾和另一種同一屬的青蛙並沒有中耳骨可以將聲波傳進內耳。所以其實鞍背短頭蟾對同種之間的求偶叫聲非常不靈敏,甚至接近聽不見!

-----廣告,請繼續往下閱讀-----

這就奇怪了,既然聽不見,那為甚麼南瓜蟾蜍還要白做工,繼續發出求偶叫聲呢?

聽不見彼此聲音的鞍背短頭蟾,只好轉而仰賴視覺來溝通了。因此,研究團隊推斷,發出求偶叫聲這個行為,之所以沒有隨著演化消失的原因,可能是由於發出叫聲時,蟾蜍的鳴囊也會跟著震動,異性就可以藉由看見鳴囊的震動來判斷「噢!原來牠正在求偶。」

另一方面,南瓜蟾蜍求偶的季節正是沿海森林的雨季!這下子,牠們真的只能聽見下雨的聲音,還用唇語(鳴囊語?)說愛情了呢XD

在雨季期間求偶的南瓜蟾蜍真的只能聽見下雨的聲音,還用唇語說愛情,幸福也可以很安靜。 圖/Darius Krause@Pexels

你可能會想,在一整座下雨的森林中,單單只靠鳴囊震動,是絕對不夠讓南瓜蟾蜍在茫茫落葉海中,找到彼此的身影的!許多科學家及生物學家在發現牠們聽不見彼此的求偶叫聲後,也是這樣想的:「究竟他們是靠甚麼來溝通的呢?」

直到研究團隊用紫外線照了鞍背短頭蟾,一切的謎終於被解開了:發光的骨頭

-----廣告,請繼續往下閱讀-----

深埋在骨頭裡的光芒

骨頭、發光……聽起來好像是有那麼一點,中二?

不過這可是大發現!研究團隊發現,鞍背短頭蟾的頭部、背部、關節處、手指和腳趾在紫外線的照射下,都發出了螢光!大部分生物發光的原因都是由於化學變化,不過,南瓜蟾蜍骨頭發光的原理可不一樣,是因為骨頭的分子能將光反射,且反射光的波長更長。

同時,鞍背短頭蟾的皮膚也非常非常薄,成體的皮膚厚度大約只有 7 微米而已!如此薄的皮膚,才能讓骨頭的螢光順利透出來。

鞍背短頭蟾的頭部、背部、關節處、手指和腳趾在紫外線的照射下,都發出了螢光。 圖/The National

至於另一種我們常常想到的「發光生物」──螢火蟲,牠們的發光原理,就是典型的化學反應喔!螢火蟲的發光原理和發光蕈類大同小異,泛科學也有介紹過喔!

-----廣告,請繼續往下閱讀-----

發光的骨頭除了能求偶,還能做什麼啊?

關於鞍背短頭蟾的發光現象,還有一點很有趣,那就是年紀比較小的蛙發出來的螢光是偏藍色的,隨著年齡增長與皮膚增厚,螢光會漸漸變黃。研究團隊推斷,發出不同顏色螢光的原因,可能就是骨頭的膠原蛋白含量不同。(作者 OS:搞不好能透過螢光就能看出南瓜蟾蜍的年紀呢!)

另一方面,發光的骨頭不只有求偶作用。

對一些鞍背短頭蟾的掠食者(鳥類和蜘蛛)來說,紫外線都是可見光,意思就是南瓜蟾蜍平常骨頭的螢光,能對掠食者造成警示的效果喔!

原來,蛙兒們就算聽不見彼此的聲音,也能靠著發光找到對方,聽起來是不是有點浪漫呢?

-----廣告,請繼續往下閱讀-----
鞍背短頭蟾骨頭的螢光能對掠食者造成警示的效果。 圖/NYU Abu Dhabi Postdoctoral Associate Sandra Goutte
  1. The National – Abu Dhabi researchers discover toad’s ability to glow in the dark
  1. Amphibia Web – Brachycephalus ephippium
  1. 維基百科 – Pumpkin toadlet
  1. 楊懿如的青蛙學堂 – 鳴叫
  1. Types of frog calls
  1. 維基百科 – 耳柱骨
  1. Scientific Reports – Evidence of auditory insensitivity to vocalization frequencies in two frogs
  2. Science News – Tiny pumpkin toadlets have glowing bony plates on their backs
-----廣告,請繼續往下閱讀-----
文章難易度
彥寧
7 篇文章 ・ 1 位粉絲
比起鯛魚燒,我更喜歡章魚燒。

0

1
0

文字

分享

0
1
0
ECU: 汽車大腦的演化與挑戰
鳥苷三磷酸 (PanSci Promo)_96
・2025/07/02 ・3793字 ・閱讀時間約 7 分鐘

本文與 威力暘電子 合作,泛科學企劃執行。

想像一下,當你每天啟動汽車時,啟動的不再只是一台車,而是一百台電腦同步運作。但如果這些「電腦」突然集體當機,後果會有多嚴重?方向盤可能瞬間失靈,安全氣囊無法啟動,整台車就像失控的高科技廢鐵。這樣的「系統崩潰」風險並非誇張劇情,而是真實存在於你我日常的駕駛過程中。

今天,我們將深入探討汽車電子系統「逆天改運」的科學奧秘。究竟,汽車的「大腦」—電子控制單元(ECU),是如何從單一功能,暴增至上百個獨立系統?而全球頂尖的工程師們,又為何正傾盡全力,試圖將這些複雜的系統「砍掉重練」、整合優化?

第一顆「汽車大腦」的誕生

時間回到 1980 年代,當時的汽車工程師們面臨一項重要任務:如何把汽油引擎的每一滴燃油都壓榨出最大動力?「省油即省錢」是放諸四海皆準的道理。他們發現,關鍵其實潛藏在一個微小到幾乎難以察覺的瞬間:火星塞的點火時機,也就是「點火正時」。

如果能把點火的精準度控制在「兩毫秒」以內,這大約是你眨眼時間的百分之一到千分之一!引擎效率就能提升整整一成!這不僅意味著車子開起來更順暢,還能直接省下一成的油耗。那麼,要如何跨過這道門檻?答案就是:「電腦」的加入!

-----廣告,請繼續往下閱讀-----

工程師們引入了「微控制器」(Microcontroller),你可以把它想像成一顆專注於特定任務的迷你電腦晶片。它能即時讀取引擎轉速、進氣壓力、油門深度、甚至異常爆震等各種感測器的訊號。透過內建的演算法,在千分之一秒、甚至微秒等級的時間內,精準計算出最佳的點火角度,並立刻執行。

從此,引擎的性能表現大躍進,油耗也更漂亮。這正是汽車電子控制單元(ECU)的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)。

汽車電子控制單元的始祖—專門負責點火的「引擎控制單元」(Engine Control Unit)/ 圖片來源:shutterstock

ECU 的失控暴增與甜蜜的負荷

第一顆 ECU 的成功,在 1980 年代後期點燃了工程師們的想像:「這 ECU 這麼好用,其他地方是不是也能用?」於是,ECU 的應用範圍不再僅限於點火,燃油噴射量、怠速穩定性、變速箱換檔平順度、ABS 防鎖死煞車,甚至安全氣囊的引爆時機……各種功能都交給專屬的 ECU 負責 。

然而,問題來了:這麼多「小電腦」,它們之間該如何有效溝通?

-----廣告,請繼續往下閱讀-----

為了解決這個問題,1986 年,德國的博世(Bosch)公司推出了一項劃時代的發明:控制器區域網路(CAN Bus)。你可以將它想像成一條專為 ECU 打造的「神經網路」。各個 ECU 只需連接到這條共用的線路上,就能將訊息「廣播」給其他單元。

更重要的是,CAN Bus 還具備「優先通行」機制。例如,煞車指令或安全氣囊引爆訊號這類攸關人命的重要訊息,絕對能搶先通過,避免因資訊堵塞而延誤。儘管 CAN Bus 解決了 ECU 之間的溝通問題,但每顆 ECU 依然需要獨立的電源線、接地線,並連接各種感測器和致動器。結果就是,一輛汽車的電線總長度可能達到 2 到 4 公里,總重量更高達 50 到 60 公斤,等同於憑空多載了一位乘客的重量。

另一方面,大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。更別提這些密密麻麻的線束,簡直是設計師和維修技師的惡夢。要檢修這些電子故障,無疑讓人一個頭兩個大。

大量的 ECU 與錯綜複雜的線路,也讓「電子故障」開始頻繁登上汽車召回原因的榜首。/圖片來源:shutterstock

汽車電子革命:從「百腦亂舞」到集中治理

到了2010年代,汽車電子架構迎來一場大改革,「分區架構(Zonal Architecture)」搭配「中央高效能運算(HPC)」逐漸成為主流。簡單來說,這就像在車內建立「地方政府+中央政府」的管理系統。

-----廣告,請繼續往下閱讀-----

可以想像,整輛車被劃分為幾個大型區域,像是車頭、車尾、車身兩側與駕駛艙,就像數個「大都會」。每個區域控制單元(ZCU)就像「市政府」,負責收集該區所有的感測器訊號、初步處理與整合,並直接驅動該區的馬達、燈光等致動器。區域先自理,就不必大小事都等中央拍板。

而「中央政府」則由車用高效能運算平台(HPC)擔任,統籌負責更複雜的運算任務,例如先進駕駛輔助系統(ADAS)所需的環境感知、物體辨識,或是車載娛樂系統、導航功能,甚至是未來自動駕駛的決策,通通交由車輛正中央的這顆「超級大腦」執行。

乘著這波汽車電子架構的轉型浪潮中, 2008 年成立的台灣本土企業威力暘電子,便精準地切入了這個趨勢,致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台。他們專精於開發電子排檔、多功能方向盤等各式汽車電子控制模組。為了確保各部件之間的溝通順暢,威力暘提供的解決方案,就像是將好幾個「分區管理員」的職責,甚至一部分「超級大腦」的功能,都整合到一個更強大的硬體平台上。

這些模組不僅擁有強大的晶片運算能力,可同時支援 ADAS 與車載娛樂,還能兼容多種通訊協定,大幅簡化車內網路架構。如此一來,車廠在追求輕量化和高效率的同時,也能顧及穩定性與安全性。

-----廣告,請繼續往下閱讀-----
2008 年威力暘電子致力於開發整合 ECU 與區域控制器(Domain Controller)功能的模組化平台 /圖片來源:shutterstock

萬無一失的「汽車大腦」:威力暘的四大策略

然而,「做出來」與「做好」之間,還是有差別。要如何確保這顆集結所有功能的「汽車大腦」不出錯?具體來說,威力暘電子憑藉以下四大策略,築起其產品的可靠性與安全性:

  1. AUTOSAR : 導入開放且標準化的汽車軟體架構 AUTOSAR。分為應用層、運行環境層(RTE)和基礎軟體層(BSW)。就像在玩「樂高積木」,ECU 開發者能靈活組合模組,專注在核心功能開發,從根本上提升軟體的穩定性和可靠性。
  2. V-Model 開發流程:這是一種強調嚴謹、能在早期發現錯誤的軟體開發流程。就像打勾 V 字形般,左側從上而下逐步執行,右側則由下而上層層檢驗,確保每個階段的安全要求都確實落實。
  3. 基於模型的設計 MBD(Model-Based Design) 威力暘的工程師們會利用 MatLab®/Simulink® 等工具,把整個 ECU 要控制的系統(如煞車),用數學模型搭建起來,然後在虛擬環境中進行大量的模擬和測試。這等於在實體 ECU 誕生前,就能在「數位雙生」世界中反覆演練、預先排除設計缺陷,,並驗證安全機制是否有效。
  4. Automotive SPICE (ASPICE) : ASPICE 是國際公認的汽車軟體「品質管理系統」,它不直接評估最終 ECU 產品本身的安全性,而是深入檢視團隊在軟體開發的「整個過程」,也就是「方法論」和「管理紀律」是否夠成熟、夠系統化,並只根據數據來評估品質。

既然 ECU 掌管了整輛車的運作,其能否正常運作,自然被視為最優先項目。為此,威力暘嚴格遵循汽車業中一本堪稱「安全聖經」的國際標準:ISO 26262。這套國際標準可視為一本針對汽車電子電氣系統(特別是 ECU)的「超嚴格品管手冊」和「開發流程指南」,從概念、設計、測試到生產和報廢,都詳細規範了每個安全要求和驗證方法,唯一目標就是把任何潛在風險降到最低

有了上述這四項策略,威力暘確保其產品從設計、生產到交付都符合嚴苛的安全標準,才能通過 ISO 26262 的嚴格檢驗。

然而,ECU 的演進並未就此停下腳步。當ECU 的數量開始精簡,「大腦」變得更集中、更強大後,汽車產業又迎來了新一波革命:「軟體定義汽車」(Software-Defined Vehicle, SDV)。

-----廣告,請繼續往下閱讀-----

軟體定義汽車 SDV:你的愛車也能「升級」!

未來的汽車,會越來越像你手中的智慧型手機。過去,車輛功能在出廠時幾乎就「定終身」,想升級?多半只能換車。但在軟體定義汽車(SDV)時代,汽車將搖身一變成為具備強大運算能力與高速網路連線的「行動伺服器」,能夠「二次覺醒」、不斷升級。透過 OTA(Over-the-Air)技術,車廠能像推送 App 更新一樣,遠端傳送新功能、性能優化或安全修補包到你的車上。

不過,這種美好願景也將帶來全新的挑戰:資安風險。當汽車連上網路,就等於向駭客敞開潛在的攻擊入口。如果車上的 ECU 或雲端伺服器被駭,輕則個資外洩,重則車輛被遠端鎖定或惡意操控。為了打造安全的 SDV,業界必須遵循像 ISO 21434 這樣的車用資安標準。

威力暘電子運用前面提到的四大核心策略,確保自家產品能符合從 ISO 26262 到 ISO 21434 的國際認證。從品質管理、軟體開發流程,到安全認證,這些努力,讓威力暘的模組擁有最高的網路與功能安全。他們的產品不僅展現「台灣智造」的彈性與創新,也擁有與國際大廠比肩的「車規級可靠度」。憑藉這些實力,威力暘已成功打進日本 YAMAHA、Toyota,以及歐美 ZF、Autoliv 等全球一線供應鏈,更成為 DENSO 在台灣少數核准的控制模組夥伴,以商用車熱系統專案成功打入日系核心供應鏈,並自 2025 年起與 DENSO 共同展開平台化量產,驗證其流程與品質。

毫無疑問,未來車輛將有更多運作交由電腦與 AI 判斷,交由電腦判斷,比交由人類駕駛還要安全的那一天,離我們不遠了。而人類的角色,將從操作者轉為監督者,負責在故障或斷網時擔任最後的保險。透過科技讓車子更聰明、更安全,人類甘願當一個「最弱兵器」,其實也不錯!

-----廣告,請繼續往下閱讀-----
-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

0

0
0

文字

分享

0
0
0
一次搞懂主動式 vs 被動式降噪,讓你耳朵甲百二的法寶
雅文兒童聽語文教基金會_96
・2024/08/27 ・2155字 ・閱讀時間約 4 分鐘

  • /王子宜|雅文基金會 聽力師

世界衛生組織 ( WHO ) 統計,目前全球約有 5% 人口正接受聽力復健措施,如:助聽輔具協助,並預估到 2050 年前,將有 2.5 億人口存在一定程度的聽力損失,並有近 700 萬人,聽力度數已影響日常聆聽需介入,也就是說每十人就有一人需要助聽輔具協助,顯示聽力問題持續存在,影響人數逐年提升,且為全球重視議題。除了受損後的介入處遇外,預防更勝於治療,WHO 也發現全球約 11 億人面臨噪音性聽損風險,且相關防護裝置的使用仍不普及,可見噪音暴露是為有損聽力健康之高風險因素之一。

有什麼方式可以幫助我們遠離噪音傷害呢?因應而生的就是「聽覺防護工具」,可以是使用被動式降噪的耳塞,或是現在風行的耳機搭配主動式降噪設計,那到底主動和被動,哪一個降噪效果比較好呢?用這些防護工具有沒有需要注意的地方?以下就讓我們來探探究竟。

被動式降噪

被動式降噪的操作方式是將聲音傳入耳朵的通道堵住,盡可能降低進到耳朵裡面的音量,但我們如何知道各款耳塞的降噪能力呢?可透過產品提供的 NRR 值估算,NRR ( Noise Reduction rating ) 值指的是噪音衰減率,若要評估環境中使用耳塞後耳內仍有的噪音量,可利用原廠提供的 NRR 值做簡單計算如下

耳內噪音量 ( ENL ) [ dBA ] = 環境噪音 ( dBC ) – NRR = 環境噪音 ( dBA ) – ( NRR – 7 )* 計算時仍需考量耳塞密合度的影響,普遍來說若耳塞無氣孔,且佩戴大致貼合,則降噪效果約為原廠提供 NRR 值的 50%~70%。

依照耳道共振的特性,當我們將耳道口以各式耳塞塞住,雖塞入深度及耳塞材質仍有影響,但研究顯示可產生的降噪音量為高頻多於低頻 ( 如下圖 ),尤其在 3000-6000Hz 處可達最佳降噪效益,此段頻率也恰為噪音型聽力損失前期,耳蝸毛細胞先受到損傷的區段吻合,由此可見雖然各家抗噪耳塞的設計及佩戴方式不進相同,但只要在可能有噪音暴露風險的聆聽環境中使用抗噪耳塞,就能夠減低使耳蝸毛細胞受損,進一步產生不可逆聽力損失的風險。

-----廣告,請繼續往下閱讀-----
參考資料 3 表 1.

剛剛提到耳塞的材質、密合度及使用方式也會相應的有不同降噪表現,以下舉兩種常見耳塞供讀者參考。

3M 耳塞

3M 廠牌推出各種造型及佩戴方式的防護工具,主要可分為耳罩式和塞入式兩種,右圖為市面常見的橘色塞入式耳塞,原廠提供的 NRR 值為 29 分貝,平均來說,各塞入式耳塞的 NRR 值約落在 25-33 分貝間,詳細降噪效果請見參考資料 4。

非塞入式矽膠耳塞

此種耳塞的使用方式為利用將矽膠的延展性,密封住耳道口,即不用將耳塞塞入耳道內,提升佩戴舒適性,部分耳塞可透過清洗方式清潔並重複利用,各家廠商的抗噪能力不盡相同,網路搜尋商品資訊,平均降噪能力 ( NRR值 ) 落在 20-40 分貝間。

矽膠耳塞佩戴方式 ↑ ( 參考自耳酷點子官網 )

主動式降噪

How Does Noise Cancelling Work? | Built In

-----廣告,請繼續往下閱讀-----

主動式降噪的操作原理簡單來說就是透過降噪系統產生與外界噪音相等的反向聲波,以破壞性干擾原理消除噪音,因此需先由耳機麥克風收集並分析外部聲源後,才能複製並產生反向聲波來進行降噪,對於持續出現的噪音,如:風切聲、交通工具運轉聲效果較佳,但若是突然出現的噪音,如:他人聊天對話,則會因來不及進行運算分析,降噪效益較有限。

參考自 Noise-cancelling headphones: originally appeared in How It Works (issue 80)

研究統計,主動式降噪音量平均為 30 分貝,針對重複性的低頻噪音有機會達 60 分貝的降噪量,但因麥克風濾波設計,主動式降噪技術對於高於 1000Hz 的音頻處理較弱,也就是說他主要能夠降低的外部干擾多為低頻噪音。目前幾家耳機大廠皆有針對主動式降噪搭配藍芽串流的耳機設計,若佩戴方式為耳道 ( 塞入 ) 式,因不像耳罩式耳機多了被動式透過耳罩多一層降噪的設計,所以在高頻方面的效益會稍弱一些,建議讀者可依據聆聽情境、使用需求及佩戴舒適性做綜合考量。

隨著聽力保健意識抬頭,科技的快速發展也幫助我們有更多的防護工具選擇,然這些抗噪工具並非萬能,在使用上也會有其不便利之處,如:雖目前研究皆顯示主動式降噪為安全有效的技術,但有部分個案對低頻反向波刺激大腦時會相應有頭暈的症狀、若在馬路行走時使用,當外部噪音都被消除時,會有交通安全上的疑慮。

想達到聽能保健之成效,除了有效利用工具之外,在日常生活的一些細節調整,如把握 66 原則:「在聆聽個人音訊裝置時,音量須小於 60% 且每天不超過 60 分鐘」,也能幫助自己在享受聲音的同時,有效避免面臨噪音性聽力損失的風險。

-----廣告,請繼續往下閱讀-----
  1. https://www.ctwant.com/article/257729
  2. NRR Rating – Custom Protect EarCustom Protect Ear
  3. Niloofar Ziayi Ghahnavieh, Siamak Pourabdian, and Farhad Forouharmajd, 2018. Protective earphones and human hearing system response to the received sound frequency signals.
  4. https://multimedia.3m.com/mws/media/1064417O/3m-hearing-line-card.pdf
  5. 聽不聽,由你決定:降噪技術背後的奧秘 – Samsung Newsroom 台灣
  6. How Does Noise Cancelling Work? | Built In
  7. How do noise-cancelling headphones work? – How It Works (howitworksdaily.com)
  8. 聽覺照顧雲 (psa.org.tw)
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

雅文兒童聽語文教基金會_96
62 篇文章 ・ 223 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。

0

52
3

文字

分享

0
52
3
耳背腦就鈍?解密聽力受損與失智的關係
雅文兒童聽語文教基金會_96
・2024/02/17 ・4232字 ・閱讀時間約 8 分鐘

  • 文/雅文基金會聽語科學研究中心研究員 詹益智

阿明是位 65 歲的退休長者,總是積極參與各種社區活動,是熱心的志工。然而,近來他開始意識到自己在大型聚會中,必須使勁聆聽他人的話語,有時還是會錯過一些關鍵的內容,這使得他逐漸對大型活動感到焦慮,害怕因聽不清楚別人的對話而與人生分。隨著聽力問題逐漸浮現,他開始注意到自己的思緒也跟著變得混亂。比如說,他常常忘記事情發生的順序,甚至有時候不記得已經說過的話,這種記憶的衰退讓阿明感到十分困擾。最終,阿明去看了醫生並接受相關的測試,被診斷出患有中度聽損與早發性失智症。

在日常生活中,聽覺扮演了重要的角色,是我們與外界交流的管道之一。然而聽力受損不僅僅是一種單純的生理障礙,更可能與失智症之間存在著密切的關係。

關於失智症的二三事

失智症是一種大腦和日常功能逐漸衰退的疾病,主要涉及認知功能的喪失,包括思考、記憶、推理及語言能力等。有些失智症患者甚至無法控制情緒,個性也可能發生轉變。失智的症狀隨程度不同而有所改變,從最輕微的階段開始影響一個人的基本能力(如記憶),到最嚴重的階段,患者完全需要仰賴他人進行日常活動 [1]。失智症不僅對患者本身造成巨大的影響,也帶給家人和照顧者極大的負擔。

失智症是一種大腦和日常功能逐漸衰退的疾病,主要涉及認知功能的喪失,包括思考、記憶、推理及語言能力等。圖/Pixabay

2023 年世界衛生組織(WHO)的統計數據顯示,世界上目前約有 5,500 多萬的人口患有失智症,而每年全球正以 1,000 萬人的速度增加 [2],預計到 2050 年,全球失智症患者數量將達到 1.53 億人口 [3]。Livingston 等學者於 2020 年在國際著名的醫學期刊《刺胳針》(The Lancet)發表了一篇關於失智症的預防、介入與照護的研究 [4],列舉了 12 項風險因子,包括教育程度較低、聽力損失、創傷性腦傷、高血壓、酗酒、肥胖症、吸煙、憂鬱症、社交隔離、缺乏運動、空氣污染與糖尿病,將近 40% 的失智症都與這些因素有關(另 60% 為風險因子不明),其中,聽力損失佔最大宗,約有 8% 的比例。另一項研究更進一步指出,罹患失智症的風險會隨著聽損程度越重而增加,例如輕度、中度與重度聽損者罹患失智症的風險分別是聽常者的 1.27、3.00 與 4.94 倍 [5]。由此可見,聽損與失智症的關係不容小覷。

-----廣告,請繼續往下閱讀-----
失智症的風險因子,聽力損失約佔 8%。圖/引自HearingLife

聽力出包時,失智症有可能找上門!

聽損與失智症關聯的機轉究竟是什麼呢?綜合現有的研究文獻,大致可歸納出三大觀點:

一、聽損會耗費大腦的認知資源

聽損常使一個人在吵雜的環境下聽不清楚聲音,此時,大腦便會進行代償作用,將負責思維和記憶區塊所需的資源移轉用來處理這些模糊的音訊,而導致前述二項高階的認知功能受到影響,進而增加失智的風險 [6]。以上的論述主要來自 Mishra 等人的研究 [7],該研究比較輕度聽損年長者與聽常年輕人在「認知備用容量測驗(Cognitive Spare Capacity Test)」的表現:受試者聽完(無視覺提示)一串由男女穿插錄製之二位數的數字列表(如下表所示)後,要說出這串列表中由男生所錄製的奇位數數字(如 13 與 59,以圓圈標示)。要順利完成此項作業,受試者必須排除女生所錄製奇位數數字的干擾(如 77、89 與 61,以底線標示)。

數字5036774496895240612066
男/女
「認知備用容量測驗」實例(來源:Mishra 等人 [8]

結果顯示,在安靜的環境下,兩組受試者的表現無顯著差異,但在噪音環境下,聽損年長者的表現則顯著落後於聽常年輕人,研究者認為聽損年長者為了排除噪音的干擾以獲取正確的答案,其大腦會將高層次的認知資源挹注於彌補聽損所帶來的負面影響,而致使認知功能下降。長此以往,漸漸便埋下了失智症的導火線。

另一個較為直觀的證據則是透過腦造影技術觀察聽損者大腦活動的狀況。Glick 與 Sharma [9] 讓聽常與聽損老年人觀看電視螢幕的光影變化,並透過高密度的腦波圖(high-density electroencephalography;EEG)記錄其對視覺刺激反應的皮質視覺誘發電位(cortical visual evoked potentials;CVEPs),再透過電流密度源重建技術(current density source reconstruction)定位大腦皮質活動的區塊;此外,研究也評估了受試者的認知功能。結果顯示,相較於聽常者,聽損者觀看視覺刺激物時,腦部發生了視覺跨模重組(visual cross-modal reorganization)的現象:除了主司視覺的枕葉區被活化外,主司聽覺的顳葉與主司認知功能的前額葉也被活化用以輔助處理視覺訊息,這會為大腦帶來極大的負擔而增加認知負荷,並耗盡用以記憶的認知資源,最終可能引發失智症。

-----廣告,請繼續往下閱讀-----

二、聽損會使大腦組織萎縮

此外,聽損與否也可能會影響一個人大腦的結構與功能。美國約翰霍普金斯大學的研究人員 [10],利用「巴的摩爾老化長期研究(Baltimore Longitudinal Study of Aging)」的資料,針對聽損與腦容量的關係進行了一項有趣的研究,他們分析了一群受試者在逐漸老化時,其腦容量的變化。受試者在研究之初,做了聽力評估,接著接受為期長達十年、每年一次的核磁共振檢查。結果顯示,研究開始時就患有聽損的受試者,相較於聽常者,其大腦有較大幅度的萎縮,平均以每年一立方釐米以上的速度流失大腦組織,而這些大腦組織恰好與輕度認知功能退化和早期失智症所表現出的記憶衰退的行為有關 [11]

三、聽損會引發社交隔離

社交隔離(social isolation;意旨與他人很少有社交互動或是社交圈窄小的現象 [12])也可解釋為何聽損與失智症有關。一項由英國所進行的研究 [13] 追蹤了一群 50 歲以上成年人的聽損、社交隔離的程度與認知的狀況,並分析這三個因素間的關係,結果發現雖然聽損與認知功能下降有直接且顯著的關聯,但當加入了社交隔離程度的影響後,聽損與認知關聯的強度降低了近三分之一,此結果說明聽損可能會導致社交隔離,間接造成認知功能下降而引發失智症。這也顯示大腦須要透過適當的社交刺激,才能維持其活力,進而保持正常的認知功能。值得注意的是,當聽力閾值達到 25 分貝或以上(即輕度以上的聽損,亦為影響社交溝通的起始閾值)時,聽損所帶來的失智風險就會明顯地增加 [14]

如何預防聽損所帶來的失智風險

一般而言,聽力是與他人溝通互動不可或缺的元素之一;然而,聽力問題不僅僅是關乎聽覺本身,如前所述,它也可能與失智症存在直接或間接的關係,若能適時地做好聽力保健,或許就可避免老年時,讓失智找上你。那麼要如何維持良好的聽力呢?以下幾點可供參考:

  1. 定期聽力檢查是維護耳朵健康的重要關鍵。許多人並不瞭解即便是輕微的聽損也可能對認知功能造成負面的影響。在一般的情況下,聽力下降是漸進且微小的,而人類的大腦有極強的適應能力,這使得聽力衰退不易被察覺 [15]。透過定期的聽力檢查,有助於追蹤聽力狀況,即使是微小的變化也能及時掌握,並處理潛在的聽力問題,進而降低聽損所帶來的失智風險。
  2. 減少長期暴露在噪音環境中。噪音環境除了會加速聽損的惡化外,同時也會誘發海馬迴受損的記憶功能障礙,這也是失智典型的症狀 [16]。因此,避免長時間處在高分貝的環境下,或者適時地佩帶耳塞或耳罩,便是保護聽力健康進而降低失智風險的良方之一。

然而,就聽損人士而言,難道就只能坐視自身認知功能逐漸退化而毫無作為嗎?其實不然。還記得 Glick 與 Sharma 的研究 [9] 提到聽損者大腦的視覺跨模重組與其認知功能衰退息息相關嗎?但令人振奮的是,這些聽損者在穩定配戴助聽器六個月後,逆轉了視覺跨模重組的現象,其認知功能也隨之改善,這表示聽損者配戴助聽器後,失智風險也可能跟著降低。 

-----廣告,請繼續往下閱讀-----
聽損人士配戴助聽器後,失智風險可能會跟著降低。圖/iStock

雖然失智症並不全然與聽力問題相關,但就聽力而言,我們可做的就是聽力保健,如定期做聽力檢查、遠離噪音環境、適度保護耳朵,以及必要時配戴助聽輔具是維持良好聽力的重要關鍵,若能確實執行上述建議,或許就可降低那 8% 的失智風險。請記住,保護耳朵就是保護大腦,讓我們一起努力維護聽力,為未來的大腦健康奠定穩固的基礎吧!

  1. National Institute on Aging (n.d.). What is dementia? Symptoms, types, and diagnosis. https://www.nia.nih.gov/health/alzheimers-and-dementia/what-dementia-symptoms-types-and-diagnosis
  2. Dementia (2023, March 15). Dementia. https://www.who.int/news-room/fact-sheets/detail/dementia
  3. The Institute for Health Metrics and Evaluation (2022, January 6). The Lancet Public Health: Global dementia cases set to triple by 2050 unless countries address risk factors. https://www.healthdata.org/news-events/newsroom/news-releases/lancet-public-health-global-dementia-cases-set-triple-2050
  4. Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., … & Mukadam, N. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet396(10248), 413-446.
  5. Lin, F. R., Metter, E. J., O’Brien, R. J., Resnick, S. M., Zonderman, A. B., & Ferrucci, L. (2011). Hearing loss and incident dementia. Archives of Neurology68(2), 214-220.
  6. Fulton, S. E., Lister, J. J., Bush, A. L. H., Edwards, J. D., & Andel, R. (2015, August). Mechanisms of the hearing–cognition relationship. In Seminars in Hearing (Vol. 36, No. 03, pp. 140-149). Thieme Medical Publishers.
  7. Mishra, S., Stenfelt, S., Lunner, T., Rönnberg, J., & Rudner, M. (2014). Cognitive spare capacity in older adults with hearing loss. Frontiers in Aging Neuroscience6, 96.
  8. Mishra, S., Lunner, T., Stenfelt, S., Rönnberg, J., & Rudnera, M. (2013). Visual Information Can Hinder Working Memory Processing of Speech. Journal of Speech, Language, and Hearing Research56, 1120-1132.
  9. Glick, H. A., & Sharma, A. (2020). Cortical neuroplasticity and cognitive function in early-stage, mild-moderate hearing loss: evidence of neurocognitive benefit from hearing aid use. Frontiers in Neuroscience, 93.
  10. Lin, F. R., Ferrucci, L., An, Y., Goh, J. O., Doshi, J., Metter, E. J., … & Resnick, S. M. (2014). Association of hearing impairment with brain volume changes in older adults. Neuroimage90, 84-92.
  11. Liu, J., Zhang, X., Yu, C., Duan, Y., Zhuo, J., Cui, Y., … & Liu, Y. (2016). Impaired parahippocampus connectivity in mild cognitive impairment and Alzheimer’s disease. Journal of Alzheimer’s Disease49(4), 1051-1064.
  12. Steptoe, A., Shankar, A., Demakakos, P., & Wardle, J. (2013). Social isolation, loneliness, and all-cause mortality in older men and women. Proceedings of the National Academy of Sciences110(15), 5797-5801.
  13. Maharani, A., Pendleton, N., & Leroi, I. (2019). Hearing impairment, loneliness, social isolation, and cognitive function: Longitudinal analysis using English longitudinal study on ageing. The American Journal of Geriatric Psychiatry27(12), 1348-1356.
  14. Lin, F. R., Metter, E. J., O’Brien, R. J., Resnick, S. M., Zonderman, A. B., & Ferrucci, L. (2011). Hearing loss and incident dementia. Archives of Neurology68(2), 214-220.
  15. Audiology Associations of DFW. (August 31, 2023). Regular hearing tests could decrease your risk of getting dementia. Hearing Test Info. https://www.audiologyassociates.com/hearing-test-info/hearing-test-reduce-risk-dementia/
  16. Paciello, F., Pisani, A., Rinaudo, M., Cocco, S., Paludetti, G., Fetoni, A. R., & Grassi, C. (2023). Noise-induced auditory damage affects hippocampus causing memory deficits in a model of early age-related hearing loss. Neurobiology of Disease178, 106024.
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

雅文兒童聽語文教基金會_96
62 篇文章 ・ 223 位粉絲
雅文基金會提供聽損兒早期療育服務,近年來更致力分享親子教養資訊、推動聽損兒童融合教育,並普及聽力保健知識,期盼在家庭、學校和社會埋下良善的種子,替聽損者營造更加友善的環境。