0

3
1

文字

分享

0
3
1

除了發現量子力學,普朗克還有第二個重大發現是什麼?

賴昭正_96
・2022/07/16 ・4600字 ・閱讀時間約 9 分鐘
  • 文/賴昭正 前清大化學系教授、系主任、所長;合創科學月刊

(瓦特斯頓)論文的歷史說明了:… 價值不確定的文章,高度投機性的研究⎯⎯尤其是不知名的作者⎯⎯最好(先)通過科學界以外的其它渠道呈現給世界。

-瑞利爵士(Lord Rayleigh)1904年諾貝爾物理獎得主

在「抱歉了愛因斯坦,但我真的沒辦法頒獎給那個酷理論—為何相對論與諾貝爾獎擦身而過?」裡,筆者提到了 19 世紀末的物理學家曾經非常自滿地認為物理學上的基本問題都已經解決了,剩下的只是細節問題。例如 1874 年,量子師祖普朗克(Max Planck)的指導教授久利(Philipp von Jolly)就告訴他說:「在這個(物理)領域,幾乎所有的東西都已經被發現了,剩下的就是填補一些不重要的漏洞。」普朗克回答說他不想發現新的東西,只想「了解」這個領域的已知基礎。

現在我們當然知道事與願違,19 世紀末的物理不但未靜如止水,反而是刮起大風大浪的預兆。例如誰想到就在那個世紀結束前的 12 月,普朗克為「了解」靠猜測所提出來的黑體輻射公式,被「迫」提出能量量化的觀念,成了發現量子力學的第一大功臣(參見「黑體輻射光譜與量子革命」),改變了整個物理學家對客觀世界的看法。

普朗克為「了解」靠猜測所提出來的黑體輻射公式,被「迫」提出能量量化的觀念。圖/Wikipedia

而後在 20 世紀才開始不久的 1905 年,瑞士專利局最低等級的審查員愛因斯坦(Albert Einstein)更不知道從何處突然冒出一篇題爲「關於運動物體的電動力學(On the Electrodynamics of Moving Bodies)」論文,吹起了 20 世紀的第一個物理革命號角,徹底改變了統領物理界 300 多年的牛頓時空觀念。可是良馬⎯愛因斯坦這一篇論文—如果沒有遇到伯樂,它會是一匹良駒嗎?如果不會,那誰是那一篇論文的伯樂呢?

誰會是愛因斯坦的伯樂?

這篇題為「關於運動物體的電動力學」的論文事實上是很奇怪。這標題通常應是討論磁性或介電物質在電磁場中的運動特性,但愛因斯坦根本沒有分析這個主題,而是花了很多篇幅在前半部分討論:許多物理學家都認為理所當然之某些基本物理概念的性質。而論文中唯一明確討論之法拉第的電磁感應實驗,則是用當時的理論就可以充分解釋、大多數物理學家認為已不甚重要性的題目;最後建議丟棄一些廣泛使用的概念(例如「同時」及以太等)。更不尋常的是:作者是一位名不見經傳、任職於專利局的小職員,其撰寫的風格和格式都非正統,沒有引用任何當時的文獻!

愛因斯坦曾希望他當年在《物理年鑑》這傑出期刊上的大量論文能夠讓他擺脫默默無聞的三流專利審查員,獲得一些學術認可,甚至找到一份學術工作;因此在論文出版後,他妹妹後來回憶說:

「(愛因斯坦)曾努力翻閱《物理年鑑》,希望能找到對他理論的回應。……但他非常失望,出版之後(的反應)是冰冷的沉默。」

愛因斯坦寫出「關於運動物體的電動力學」受到普朗克的讚賞,圖為 1929 年愛因斯坦獲得普郎克獎(Planck medal)時,與普朗克的合影。圖/American Institute of Physics, Emilio Segre Visual Archives.

在無奈的失望中,愛因斯坦突然於 1906 年 3 月收到了第一個物理學家的反應;令他驚奇的是:這位物理學家竟然不是別人,而是當時歐洲受人尊敬的理論物理學大師普朗克!普朗克給愛因斯坦寫了一封充滿熱情洋溢的信,謂其相對論論文「立即引起了我的熱烈關注」,並將到專利局所在地伯爾尼(Bern)拜訪他!愛因斯坦當然很興奮,立即寫信告訴他以前的家教學生、合創「奧林匹亞學院(Olympia Academy)」、剛剛搬離伯爾尼的好友索洛文(Maurice Solovine):

「我的論文倍受讚賞,並引起了進一步的研究。普朗克教授最近寫信告知我此事。」

普朗克是如何成為愛因斯坦的伯樂

普朗克當時擔任《物理年鑑》編輯,在接觸到愛因斯坦那篇關於空間、時間、和光速的想法前,他事實上已經相當明白:當涉及到由不同觀察者測量的光速時,古典物理學存在一個令人討厭的問題,即測不出地球在絕對靜止之以太中的速度,迫使當時一些名物理學家到處貼補漏洞。因此當愛因斯坦大喊(開玩笑的,當時他還是一位無名小卒,怎麼敢大喊):不要再費心了,讓我們假設(在任何慣性參考系中測量的)光速為一定值,來取代「標尺和時鐘不會永遠誤導我們」之錯誤概念時,普朗克立舉雙手贊成。在其 1949 年的自傳裡,普朗克謂:

「光速之於相對論就像基本的作用量子之於量子論:光速是相對論的絕對核心。」

在該論文出版後,普朗克立即在柏林大學講授相對論!由於他的影響,這個理論很快在德國被廣泛接受,因此德國在許多方面對愛因斯坦之相對論的反應是獨一無二的;例如 1905-1911 年期間有關相對論的論文,沒有其它國家在數量上能夠與德國相媲美。在法國、英國和美國的回應中,雖然也有熱情的支持,但只有在德國才有人說「我理解愛因斯坦的研究」。但當時的「不敢苟同」聲事實上也不少;例如德國物理學家索末菲 (Arnold Sommerfeld)一大早就認為愛因斯坦的理論方法有某種猶太色彩(後來被利用成為反猶太主義者的工具),對秩序和絕對的概念缺乏應有的尊重,而且似乎沒有堅實的基礎。1902 年諾貝爾物理獎得主、荷蘭理論物理大師洛倫茲(Hendrik Lorentz)在 1907 年更寫道:

「愛因斯坦的論文雖然出色,但在我看來,這種難以理解和無法形象化的教條裡仍然存在一些幾乎不健康的東西。一位英國人幾乎不會給我們這種理論。」

普朗克顯然是第一位認識到愛因斯坦在相對論方面開創性工作的主要人物,也是愛因斯坦在科學界最忠誠的擁護者。兩人在個性上雖然非常不相似(前者非常保守,後者不理傳統),但也成為最親密的朋友。普朗克於 1906 年公開為愛因斯坦理論辯護,反對一波又一波的懷疑論者,寫信給愛因斯坦說「(我們)必須團結一致」。他將愛因斯坦的理論描述為洛倫茲理論的「延伸」(generalization),並將「洛倫茲-愛因斯坦理論」命名為現在大家所接受的「相對論」。儘管如此,普朗克還是不接受狹義相對論之無可避免的「不需要以太」結論。

普朗克不接受狹義相對論之無可避免的「不需要以太」結論。圖/wikipedia

普朗克是第一位以愛因斯坦理論為基礎來發展的物理學家。他在 1906 年春天發表的一篇文章中,證明愛因斯坦的相對論符合物理學基礎之「最小作用原理」(least action principle):任何物體(包括光)在兩點之間的移動都應該遵循最簡單的路徑,開展了如何在這個新的彈性時空中正確處理物體的動力學。

 普朗克並未履約到伯爾尼拜訪愛因斯坦,只派比他更先獲得諾貝爾獎(1914 年)的助手勞鴻(Max von Laue)於 1906 年夏天去拜訪本以為應在伯爾尼大學任教的愛因斯坦。勞鴻與愛因斯坦兩人相談甚歡,不但成為終生好友,前者在此後四年內還寫了八篇相對論論文,包括嚴格地證明了 E=mc2。愛因斯坦謂勞鴻 1911 年所寫的第一本相對論教科書「是一個小傑作,其中的一些內容是他的知識產權」,並從中學習到了一些他後來創建廣義相對論所需的張量(tensor)數學。

瓦特斯頓發展的氣體動力學

瓦特斯頓(John Waterston,1811-1883)是蘇格蘭物理學家,在印度工作期間發展了氣體動力學理論,謂氣體分子與容器表面的碰撞導致我們感受到氣體壓力,正確地推導出理想氣體定律。他於 1845 年投稿到英國皇家學會,但審稿人認為那論文「不過是胡說八道」而被拒絕出版;現在的物理學家都認為馬克斯威(James Maxwell)為氣體動力學(kinetic theory of gases)的創始者。

John James Waterston。圖/Wikipedia

瓦特斯頓去世幾年後,瑞利爵士(Lord Rayleigh,1904 年諾貝爾獎得主,當時的皇家學會秘書)從皇家學會的檔案中挖掘出那篇論文,將它重新發表於1892年的《皇家學會哲學彙刊》上。瑞利爵士警告說:。

(瓦特斯頓)論文的歷史說明了:因為科學界不願在其印刷品中記錄價值不確定的文章,高度投機性的研究⎯⎯尤其是不知名的作者⎯⎯最好(先)通過科學界以外的其它渠道呈現給世界。也許有人可能會更進一步(建議)說,一位相信自己有能力做大事的年輕作家,應該在開始更高的飛行之前,先通過範圍有限、且價值容易判斷的工作來獲得科學界的良好認可。

相信這類事件在物理學上是時常發生的。在「思考別人沒有想到的東西—誰發現量子力學?」一文裡,筆者就提到了 1924 年 6 月 4 日,一位任教於東巴基斯坦的講師波思(Satyendra Bose)將一篇被英國名《哲學雜誌》(The Philosophical Magazine)退稿的論文,轉寄給愛因斯坦,並附函謂「……如果你認為它值得發表,可否請您將它譯出(成德文),投稿到《物理學雜誌》(Zeitschrift für Physik)… 」。波思毫無疑問地是一位「不知名的作者」,那篇文章也毫無疑問地是「價值不確定,高度的投機性」!還好愛因斯坦眼光獨特,否則不但波思可能淪為另一個瓦特斯頓,量子統計力學是否會那麼早就出現就不得而知了。

結論

有歷史學家說普朗克在近代物理上有兩大貢獻,其一是發現量子力學,另外一個則是發現愛因斯坦!愛因斯坦發表那篇「價值不確定」之狹義相對論論文時也是一位「不知名的作者」,因此如果沒有普朗克慧眼識英雄,幫他推銷與辯護,愛因斯坦或許也可能淪為另一個瓦特斯頓,那篇論文可能於 1908 年在閔可夫斯基(Hermann Minkowski)的時空(spacetime)中消失[註]

有了理論物理界權威普朗克教授做後盾,愛因斯坦平步青雲、離開專利局、進入學府、及成名應只是遲早的事情。說來有趣,在「思考別人沒有想到的東西—誰發現量子力學?」一文裡,筆者談到了如果沒有愛因斯坦興風作浪,普朗克是否會成為創建近代物理的第一革命先鋒(量子力學);而在這裡我們卻在懷疑如果沒有普朗克拔刀相助,愛因斯坦是否會成為創建近代物理的第二革命先鋒(相對論)。

至於愛因斯坦是否真是首位發現狹義相對論的物理學家,則請待下回分解。

註解

事實上普朗克及愛因斯坦本人完全低估了該篇論文的創見性,認為它只是洛倫茲理論的「延伸」而已。愛因斯坦的數學老師閔可夫斯基於1908年將時間和空間組合成一個現在稱為「閔可夫斯基時空(Minkowski space或spacetime)」的嶄新觀念,奠定了相對論的數學基礎,成為現在物理學家學習、了解、與討論愛因斯坦相對論主要(唯一)工具。

延伸閱讀

文章難易度
賴昭正_96
31 篇文章 ・ 30 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

1
0

文字

分享

0
1
0
愛因斯坦的理論問世,讓牛頓學說的世界觀出現裂痕--《科學大歷史》
azothbooks_96
・2017/08/04 ・3488字 ・閱讀時間約 7 分鐘 ・SR值 575 ・九年級
  • 【科科愛讀書】人類花了數百萬年學習和思考,才從那個連「科學」怎麼寫都還沒一撇的古早時代,到今天能夠運用科技超越肉身的限制,探索小粒子的無窮和大宇宙的廣袤。但是人類的璀璨成就絕非是一蹴可幾,而是建立在無數先人的跌跌撞撞之上,這過程其中也不乏許多學校沒教、卻相當有趣的故事。就讓《科學大歷史》帶你坐上時光機重回科學史萌芽的年代,來一趟精彩的發現之旅吧!

圖/emdot@Flickr

理論物理學令人醉心的一大誘惑,是你的概念有可能對人類的思維、甚至生活方式產生重大的影響。沒錯,瞭解與吸收主題,以及瞭解其技術和議題需要很多年的時間。沒錯,你想破解的許多問題最後都無法解決。沒錯,你的概念絕大部分最後證實是無稽之談,而且很多時候光是極小的貢獻就需要花上好幾個月的時間。

當然,如果你想成為理論物理學家,你的個性最好是固執又執著,而且只要一丁點小發現,一點看似神奇的數學,或是得知在你發表前只有你知道的自然祕密,就足以讓你興奮得要命。不過,這個過程中,總是存在著另一種可能:你想出或碰巧發現一個遠比自然的小祕密還要強大的概念,因此改變了同行或甚至全人類觀看宇宙的方式。愛因斯坦提出的就是那種概念,而且他是在專利局工作的一年間,接連提出了三個概念。

那三個突破性的理論中,最著名的是相對論。愛因斯坦在這方面的研究徹底改變了我們對空間和時間的概念,他證明空間和時間是密切相關的,而且空間和時間的衡量不是絕對的,而是因觀察者的狀態而定。

愛因斯坦突破性的理論中,最著名的是相對論。圖/Flickr

愛因斯坦想以相對論解決的議題,是馬克士威的電磁學理論所衍生的矛盾。根據馬克士威的理論,任何人測量光速都會得到同樣的結果,無論他們自己的速度相對於光源的速度是多少。

我們可以秉著伽利略的精神,運用簡單的「想像實驗」來瞭解為什麼上述說法與我們的日常體驗相互矛盾。想像火車迅速駛過月台時,有一個攤販正好站在月台上。那輛移動的火車上,有個乘客把一顆球(或任何物體)往前拋,攤販會覺得那顆球移動的速度比他自己以同樣勁道拋出的球還快。那是因為從攤販的觀點來看,火車上那顆球移動的速度是乘客的拋速加上火車的速度。但是根據馬克士威的理論,在移動火車上閃動的光速,不會移動得比較快,在攤販和乘客的眼中,那道光移動得一樣快。對於想把一切簡化成原理的物理學家而言,那是說不通的。

橫空出世的相對論,動搖牛頓的物理世界

區別物質的是什麼原理?多年來,物理學家一直在探討這個問題,最熱門的論點主張「光是透過某種尚未偵測到的介質傳播的」,但愛因斯坦抱持不同的看法。他認為,關鍵不在於光傳播的某種未知性質,而是在於我們對速度的瞭解

由於速度是距離除以時間,愛因斯坦推論,假設光速是固定的,馬克士威的理論等於是告訴我們:距離和時間的衡量可以沒有統一的共識。愛因斯坦證明,這世上沒有通用的時鐘或通用的量尺,一切衡量端看觀察者的運動而定-—唯有如此,每個人看到的光速才會一樣。所以,每個人看到與衡量的東西只是個人的觀點罷了,不是每個人都一致認同的現實,這就是愛因斯坦狹義相對論的精髓。

相對論不需要取代牛頓的理論,而是加以修改:牛頓的運動定律必須改變,重新建構在愛因斯坦那個新的空間和時間架構上,測量的結果是取決於一個人的運動。物體和觀察者的相對移動速度比較慢時,愛因斯坦的理論基本上和牛頓理論一樣。但是移動速度接近光速時,相對論的效果就很明顯了。

由於相對論的新奇效果只在極端的情況下顯而易見,它對日常生活的重要性遠不如量子理論(量子理論說明了為什麼構成我們的原子極其穩定),但是當時沒有人知道量子的深遠影響。於此同時,相對論的出現反而像地震一樣撼動了物理學界:牛頓的世界觀已經塑造科學界兩百多年了,他的理論架構在這時出現了第一道裂痕。

牛頓理論的根據是單一客觀的現實。空間和時間形成一個固定架構,世上的活動就在那個舞台上展開。觀察者可以觀賞舞台上的演出,無論他們身在何處或如何移動,都看到同樣的表演,就像上帝從外頭觀看我們所有人那樣。相對論反駁了那種觀點,它主張不是只有一齣表演--在日常生活中,每個人經歷的事實各不相同,端看每個人所處的地方和行動而定。愛因斯坦開始拆解牛頓的世界觀,就像伽利略開始拆解亞里斯多德的世界觀一樣。

在日常生活中,每個人經歷的事實各不相同,端看每個人所處的地方和行動而定。圖/Tuncay @ Flickr

相對論的發表,算是一場革命嗎?

愛因斯坦的研究對物理學的文化有重大的意義:他幫新生代的思想家壯大了膽子,讓他們更容易挑戰舊有的思維。例如,愛因斯坦為高中學生寫了一本談相對論的書,那本書啟發了待會兒我們會談到的維爾納.海森堡(Werner Heisenberg),促使他投入物理學界。愛因斯坦研究相對論的方法也啟發了之後會介紹的尼爾斯.波耳(Niels Bohr),讓他有勇氣想像原子依循的定律可能和日常生活的一切物體截然不同。

諷刺的是,所有吸收與瞭解愛因斯坦相對論的偉大物理學家中,愛因斯坦本人對自己的理論最不重視。在他看來,他不是在主張推翻牛頓世界觀的一大面向,他只是提出一些修正罷了—-那些修正對當時多數的實驗觀察幾乎沒有影響,但重要的是,那些修正改掉了理論邏輯架構的缺陷。而且,為了使牛頓理論和相對論相容,必要的數學改變並不難。所以,即使愛因斯坦後來覺得量子理論拆解了牛頓物理學,套用物理學家兼傳記作家亞伯拉罕.派斯(Abraham Pais)的說法,愛因斯坦「認為相對論根本不是革命」。愛因斯坦覺得,他一九○五年發表的論文中,相對論是最不重要的,另外兩篇有關原子和量子的論文比較重要。

從原子推進到量子

愛因斯坦那篇有關原子的論文是分析所謂的「布朗運動」(Brownian motion),那是一八二七年達爾文的老友羅伯.布朗發現的效應。這裡的「運動」是指微小粒子神祕又隨機的游移,例如花粉裡的微粒在水中懸浮的樣子。愛因斯坦解釋,那是超微分子從四面八方以超高頻率衝擊浮性粒子所致。雖然個別衝擊太細微,無法撼動粒子,但愛因斯坦以統計證明,粒子搖動的幅度和頻率可以用罕見的情況來解釋--亦即在偶然的機會下,衝撞粒子某一面的超微分子遠比衝撞對面的超微分子還多,因此產生足夠的力量,推動了那個粒子。

模擬較大的塵埃粒子(黃點)受到周遭微粒不規則碰撞而產生隨機動態。圖/ Lookang @ wikimedia commons.

那篇論文發表後馬上引起轟動,連最不相信原子的奧斯特瓦爾德在讀了以後都說,他相信原子是真實的。相反的,原子的強力支持者波茲曼不知怎的從未聽過愛因斯坦的研究,也不知道那篇論文帶來的觀念改變。部分原因在於他覺得自己提出的概念始終未受重視,深感沮喪,隔年就自殺身亡了。這實在非常遺憾,因為那篇布朗運動的論文以及一九○六年愛因斯坦發表的另一篇論文,使物理學家終於相信他們看不見、摸不著的原子確實存在。而那些概念就是波茲曼從一八六○年代開始一直提倡的,只不過沒什麼成效。

往後的三十年內,採用新方程式描述原子的科學家,就能解釋化學反應的根本原理--終於可以為道爾頓和門得列夫的概念提出解釋和證明。科學家也開始鑽研牛頓的夢想:以原子之間的作用力為基礎來瞭解物質的性質。到了一九五○年代,科學家又更進一步,以原子知識來深入瞭解生物學。在二十世紀後半葉,原子的理論開始帶來科技革命、電腦革命、資訊革命。原本一開始只是分析花粉粒子的運動,最後卻演變成塑造現代世界的工具。

不過,那些實務運用所依賴的定律,以及描述原子性質的方程式,都不是來自牛頓的古典物理學,甚至不是來自經過相對論修訂的版本。想要描述原子需要新的自然定律—-量子定律-—而愛因斯坦一九○五年發表的另一篇革命性論文就是談量子的概念。


 

 

本文摘自《科學大歷史:人類從走出叢林到探索宇宙, 從學會問「為什麼」到破解自然定律的心智大躍進》漫遊者文化出版。

文章難易度
azothbooks_96
38 篇文章 ・ 12 位粉絲
漫遊也許有原因,卻沒有目的。 漫遊者的原因就是自由。文學、人文、藝術、商業、學習、生活雜學,以及問題解決的實用學,這些都是「漫遊者」的範疇,「漫遊者」希望在其中找到未來的閱讀形式,尋找新的面貌,為出版文化找尋新風景。

5

6
2

文字

分享

5
6
2
思考別人沒有想到的東西——誰發現量子力學?
賴昭正_96
・2022/06/01 ・4633字 ・閱讀時間約 9 分鐘

  • 文/賴昭正 前清大化學系教授、系主任、所長;合創科學月刊

發現就是看到別人都看到的東西,但思考別人沒有想到的東西。

-Albert Szent-Györgyi,1937年諾貝爾醫學獎

在「黑體輻射光譜與量子革命」(科學月刊,2022 年)一文裡,筆者提到了普朗克如何於 1900 年 10 月 19 日靠猜測幸運地導出了符合實驗的黑體輻射光譜分佈公式;然後花了約兩個月的時間找出了可以解釋那猜測的背後物理,於 1900 年 12 月 14 日的德國物理學會會議上提出了電偶極振盪子能量(ε)量化 ε =h 為普朗克常數,ν 為振動頻率)的背後物理。因此 1900 年 12 月 14 日被公訂為「量子理論的誕生日」。

但如果良馬沒有遇到伯樂,它會是一匹良駒嗎?

普朗克:「量子假設永遠不會從世界上消失」

Max Karl Ernst Ludwig Planck,1858 年 4 月 23 日- 1947 年 10 月 4 日。圖/Wikipedia

普朗克雖然找到了物理的答案,解決了他的「幸運猜測」;但那個物理卻是非常奇怪:

  1. 輻射的能量怎麼跟頻率有關呢?在古典物理裡,輻射能量只與強度有關。
  2. 任何頻率的輻射能都應該是連續的(即任何能量值都可能),怎麼是量子化的、不連續的?普朗克長期以來一直認為這只是一種數學假設或方便而已,與實際的物理無關。

在他看來,沒有理由懷疑古典力學和電磁力學定律的崩潰。普朗克不認為他的理論與古典物理學大相逕庭,因此他在 1901 年到 1906 年間,根本沒有發表任何關於黑體輻射或量子理論的文章。

1905 年,愛因斯坦提出了支持能量量化的光量子理論(見後);但 1913 年,當普朗克推荐愛因斯坦為普魯士皇家科學院士時,卻謂光量子是過分越矩的大膽假設。1914 年,普朗克本人在向柏林大學推薦愛因斯坦任教時,也做了類似的評語(儘管愛因斯坦的光量子理論構思不周,還是希望他的同事們接受愛因斯坦)。

所以普朗克真的是發現量子力學嗎? 歷史學家和科學哲學家庫恩(Thomas Kuhn)指出:普朗克在 1900 年和 1901 年的論文中沒有一處清楚地寫道:單個振盪器的能量只能根據 ε =n獲得或耗散能量(n 是整數)。

如果這確是他的意思,他為什麼不這麼說? 如果他意識到他已經引入了能量量子化的奇怪新概念,為什麼他在四年多的時間裡一直保持著沉默? 此外,在他 1906 年的熱輻射理論講座中,普朗克還是只闡述傳統的能量連續理論,沒有提到任何電偶極振盪子能量量化的可能性。

如果普朗克早在 1900 年就如他後來聲稱那樣地「看到了曙光」,是什麼讓他在六年後改變了主意?答案應該是他 1900 年時沒看到了曙光吧?!所以庫恩認為普朗克不值得稱為發現量子力學之先驅。

無可否認地,當然也有不同意庫恩看法的科學家。事實上,普朗克也曾「確信」過量子理論標誌著物理學史新篇章的開始;例如他在 1911 年的一次演講中就自豪地宣稱「量子假設永遠不會從世界上消失」,有朝一日,這一理論注定會以新的光芒迅速地滲透到分子世界中。但那可能只是曇花一現,在他的內心裡可能還在懷疑著能量量化的真實性,否則他怎麼不支持愛因斯坦的光量子理論呢?儘管如此,諾貝爾獎委員會還是因他「發現能量量子」,於 1918 年頒發了物理獎給普朗克。

愛因斯坦是真正的「能量子不連續性的發現者」

Albert Einstein,1879 年 3 月 14 日- 1955 年 4 月 18 日。圖/Wikipedia

如果普朗克在 1900 年沒有提出能量量子假說,那是誰先提出的?1877 年,波茲曼(Ludwig Boltzmann)雖然在其統計熱力學裡使用能量量化的概念來計算物理態的分佈,但那只是為了數學處理上的方便而已。事實上,當普朗克還一直在努力地想使他的量子解釋能容於古典力學時,愛因斯坦卻馬不停蹄地在開發量子力學,所以真正認識到量子理論本質的人應該是愛因斯坦——年輕的愛因斯坦顯然比普朗克看得更深。

1905 年,愛因斯坦已認識到量子不連續性是普朗克黑體輻射理論的重要組成部分:

比較維恩體系中的輻射與古典不相互作用之點粒子氣體的熵(entropy)後,愛因斯坦提出了光量子的假設,謂「就其熵的體積依賴性而言,如果單色輻射的行為與由許多獨立之 能量子組成的介質相似,則值得研究光的產生和轉換規律是否意味著光本身就是個能量子(energy quanta)」。

基於這種「啟發式原理」,愛因斯坦提出光電效應:光量子(light quantum)將其全部能量提供給單個電子;謂用這一原理導出的方程式可以解釋連納德(Phillip Lenard, 1905 年諾貝爾物理獎得主)1902 年的觀察結果,即被光打出來的電子能量與光的強度無關。所以嚴格說來,愛因斯坦才是真正的「能量子不連續性的發現者」。17 年後,愛因斯坦終因「光量子」的主要貢獻,而獲得 1921 年諾貝爾物理獎(泛科學 07/28/2021)。

在古典統計熱力學裡,有一稱為「能量均分原理(equipartition principle)」謂:在達到熱平衡時,物理體系內的任何一個自由度均應具有 kT/2 熱能。依照這個原理,晶體因原子在晶格的振動,其熱能應該是每個原子具有 3kT(每個震動有兩個自由度、三個方向,故總共有六個自由度),所以晶體的比熱是每個原子 3k(Dulong-Petit 定律)。

這一古典理論所推測出來的結果在高溫時與實驗相符;但在低溫時,實驗發現晶體的比熱趨近於零。1907 年,愛因斯坦假設晶格具有單一的振動頻率 v,因為量化的關係,其能量只能有 nhv(n 為整數)值,然後透過馬克斯威-波茲曼統計分佈求得每個振動的平均能量,對溫度微分而得到低溫時趨近於零的晶體比熱!晶體的振動實際上當然比愛因斯坦的模型複雜多了;1912 年,迪拜(Peter Debye)做了改進得到符合(非金屬固體之)實驗的結果。愛因斯坦的此一比熱理論是推動量子理論成為物理學主流的一個重要旅程碑。 

迪拜、愛因斯坦分別對於熱容與溫度之間關係的預測,在高溫時趨於 3Nk (每個原子每個方向k)的實驗值。圖/Wikipedia

第一次的索爾維會議

索爾維(Ernest Solvay, 1838-1922)是比利時化學工程師,發明了一種製造蘇打(碳酸氫鈉)的工藝而積累了大量財富,慷慨捐贈大學,並在布魯塞爾創立了索爾維醫學和社會學研究所(Solvay Institute)。索爾維的課外嗜好是物理,認為自己發現了一種關於重力如何影響「物質和能量構成」的理論。

雖然這是一個瘋狂的理論,但「錢多學問大」,他不接受否定的答案。當索爾維向柏林大學名化學家能斯特(Walther Nernst)詢問如何傳播他關於引力的想法時,能斯特看到了一個幫物理學發展的好機會。

他狡猾地向索爾維建議資助一個探討物理學最新發展的會議:索爾維可以在會議開始時向聚集在場的最優秀物理學家講授他的瘋狂理論,然後讓物理學家開始自由地進行自己的討論。

索爾維接受了能斯特的建議,於 1911 年 10 月下旬,邀請了來自歐洲各地的 18 位頂尖科學家,在布魯塞爾舉行了第一次會議。這就是物理界名聞遐邇的「索爾維會議(Solvay Conference)」,每隔三年舉行一次,雖然一直持續到今天,但已經不再那麼獨特和奢華了。

1911 年第一次索爾維會議的照片。圖/Wikipedia

第一次索爾維會議由比利時理論物理學大師洛倫茲(Handrik Lorentz)主持,被認為是物理學界的一個轉折點[註]。那次會議的成員包括普朗克、居里夫人、盧瑟福(Ernest Rutherford )、龐加萊(Henri Poincaré)、及愛因斯坦等人,主題是輻射理論和量子,探討了古典物理學和量子理論兩種方法的問題。

儘管愛因斯坦謂該次會議「沒有任何積極的結果」,但是可以看到歐洲最著名的科學家在量子革命中的不同態度。愛因斯坦顯然最清楚當時物理學基礎已經開始動搖之危機的深刻本質,因此雖發表了題為「比熱問題的現狀」的最後演講,但卻將主題置於量子問題上,引發了一系列-特別是來自洛倫茲、普朗克、龐加萊等人-的挑戰。愛因斯坦謂普朗克在會中「頑固地堅持一些毫無疑問是錯誤的先入之見」。

波思「發現」量子統計力學

সত্যেন্দ্র নাথ বসুSatyendra Nath Bose),1894 年 1 月 1 日-1974 年 2 月 4 日。圖/Wikipedia

在「量子統計的先鋒——波思」(科學月刊,1971 年 4 月號)一文裡,筆者提到了 1924 年 6 月 4 日,一位任教於東巴基斯坦的講師波思(Satyendra Bose)寄了一篇被英國名物理雜誌退稿、題為「普朗克定律及光量子的假設」的 1500 字論文給愛因斯坦,附函謂「如果你認為它值得發表,可否請您將它譯出,投稿到 Zeitschrift für Physik 。」。

愛因斯坦不但親自將該篇英文論文譯成德文,於七月初以波思的名義投稿至該雜誌,並於文後註曰:「依我看來,波思推導普朗克公式的方法為一重要里程碑。該法亦可用來推演理想氣體的量子論;不久我將發表其詳細結果。」。

在該論文中,波思做了一個誤打誤撞、連他自己本人都不知道、在整篇論文中隻字未提的重要及創新性假設:光量子是不可分辨的!在古典力學裡,物理學家認為銅板是可以分辨的,因此兩個銅板出現「一正及一反」的或然率是 2/4;但如果它們不能分辨呢?則出現「一正及一反」的或然率將變成 1/3。沒想到這一「錯誤」的假設後來竟成為打開量子統計力學的鑰匙!

如果我們說普朗克「發現」量子力學,我們不是也應該說波思「發現」量子統計力學嗎?可是波思沒有普朗克幸運,未受到諾貝爾物理獎會員們的青睞!他只自嘲地說:「我已得到我所應得的名聲了。」現在物理學家稱自旋為整數的基本粒子為波思子(boson),它們所需要服從的統計力學為「波思-愛因斯坦統計」(Bose–Einstein statistics)。

結論

普朗克與波思的發現印證了前者的名言:「科學發現和科學知識只有在沒有任何實際目的的情況下追求它的人才能獲得」。但兩人似乎都沒想到他們發現了新的東西,並未思考著別人沒有想到的,只是覺得那樣做可以正確地導出黑體輻射光譜分佈及普朗克定律而已。

是誰首先思考別人沒有想到的問題呢?如果說「發現就是看到別人都看到的東西,但思考別人沒有想到的東西」,那麼發現量子力學及量子統計力學的應該是愛因斯坦了-是他思考著別人沒有想到的東西,開闢了新物理領域。

讀者認為呢?

註解

另一影響物理學發展深遠的是 1927 年舉行的第五次索爾維會議。該會議也是由比利時理論物理學大師洛倫茲主持,主題是「電子和光子」,與會的科學家熱烈地討論了新興的量子理論基礎。出席的 29 位科學家中當然少不了愛因斯坦及普朗克,其中一半以上是或將要成為諾貝爾獎得主。

延伸閱讀

賴昭正:《我愛科學》(華騰文化有限公司,2017 年 12 月出版):裡面收集了:「太陽能與光電效應」(科學月刊 2011 年 12 月號)、「量子統計的先鋒——波思」(科學月刊,1971 年 4 月號)、「量子力學的開山祖師-普朗克」(科學月刊 1982 年 2 月號)。

文章難易度
所有討論 5
賴昭正_96
31 篇文章 ・ 30 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

0

37
0

文字

分享

0
37
0
照出黑洞不算什麼,科學家連量子纏結都能拍到!?
linjunJR_96
・2020/02/26 ・2523字 ・閱讀時間約 5 分鐘 ・SR值 535 ・七年級
  • 文/林祉均 就讀清大物理系的斜槓理工男,喜歡學習與嘗試新事物。目前對科學和翻譯有點上癮,看到 Netflix 上奇怪的字幕翻譯會皺眉頭。

除了數百萬光年外的遙遠黑洞,現在就連最微小、最難以捉摸的量子現象,也透過成像技術呈現在我們眼前。不過要了解這張照片,得先從量子物理糾纏不清的歷史開始說起。

你看過量子纏結的照片嗎?如果沒看過,現在讓你看看。圖/Moreau et al, 2019

「你們只是把所有東西名字前面加個『量子』吧?」儘管嘴上這麼吐槽,蟻人在穿梭量子領域時和初代黃蜂女所產生的量子纏結,後來依舊成為劇情的重要推手。

量子纏結描述的正是像蟻人一樣的微小粒子。這些由特定方式成對產生的粒子,兩兩之間具有某種「連結」。

一般在量子系統中進行測量時,粒子的測量值會依據特定的機率來決定,也就是說,測量結果是「隨機」的。但是兩顆纏結的粒子,不論相距多遠,被測量時都會表現出一致(或是相反)的行為。

可以把它們想像成兩顆不斷滾動的骰子,當我們想要壓住其中一顆觀察上面的點數,另一顆的點數也會在那瞬間被決定。如此看來,纏結粒子似乎能夠突破相對論的限制,進行超光速的資訊交換。

量子纏結?那鬼魅一般的遠距效應

然而,老一輩的物理學家對這種觀點十分不能接受。愛因斯坦便曾稱呼量子纏結為「鬼魅一般的遠距效應(spooky action at a distance)」,顯示有部分人認為量子纏結的說法聽起來簡直就像星座運勢和心電感應一樣,不該見容於物理科學的基礎架構。

愛因斯坦:我不信這套!(設計對白)圖/giphy

於是,局域隱變數理論 (local hidden-variable theory) 吹起了反攻的號角。這個理論設想:每顆纏結的粒子在成對生成時,便各自攜帶兩份相同的指南,告訴它們被測量時該給出哪種結果。人類目前還沒探知這本「指南」的物理本體,因此被稱為「隱變數」。

儘管乍聽之下有些彆腳,但這個理論確實避開了超光速的難題──一切都是事先決定好的,沒有機率的成分,也不需要傳遞訊息。你很難反對這種說法,因為這種隱藏起來的變數似乎很難用實驗去確認。

哪種理論才正確?用貝爾實驗見真章

兩種理論之間微妙的區別,需要高明的手段來驗明正身。

約翰‧貝爾相信隱變數理論是正確的,因此構思了一個巧妙的實驗:如果纏結粒子真的遵守隱變數理論的隱形指南,那麼他的實驗結果應該會符合貝爾不等式;反之則是量子力學獲勝

貝爾實驗有點複雜,但其中原理可說是相當聰明,可以參考以下這部影片

人們往後實際進行他的實驗,利用各種方法在不同地點重複了無數次。幾乎所有實驗結果都違反他的不等式,這應該是貝爾本人沒有料到的,局域性隱變數理論也因此不再被重視。

貝爾本人惋惜地表示:「我曾經以為是其他人不願面對事實,不過歷史已經還他們一個公道了。我好希望愛因斯坦是對的。但有時候很合理的說法終究是錯的。」

(p.84,  Bernstein, Jeremy (1991). Quantum Profiles

圖(一)、貝爾實驗的理論預測。紅色線代表古典的隱變數理論,藍色則是量子力學的預測。圖/Moreau et al, 2019

貝爾實驗已經被多次驗證,而量子纏結現象也早已走入實際應用,像是量子電腦和量子加密技術。不過,一直到 2019 年 7 月,研究人員才首次捕捉到量子纏結的面貌。所以,它究竟長什麼樣子?

所以說,量子纏結到底長什麼樣?

像是黑洞這類的天文奇觀,儘管十分遙遠,畢竟還是個實際的物體。「量子纏結」卻是抽象物理現象。該怎麼拍攝這種東西呢?

如果要拍攝的是「重力加速度」,你可以去拍攝一顆掉落的蘋果。蘋果的位置隨時間的變化會遵守某種數學關係,呈現某種模式或圖案(在這個例子中是一個二次曲線。)只要找出模式,你就可以告訴新聞媒體:「我不是在拍蘋果。我拍到了重力加速度!」

有了這個觀念,讓我們來看看量子纏結的「照片」:

圖(二)對,這就是「量子纏結的照片」,也是實驗結果照。圖/Moreau et al, 2019

……看不懂沒關係。雖然這不是蘋果,但其實不難懂。

上圖所呈現的其實是貝爾實驗的原始結果,白點代表著影像技術所記錄的「事件數」。我們選用最左邊的圖,幫它加上顏色,並沿著圓心攤開(如紅色框線所示),變成右下角的長條。將事件數繪製成數據點之後,便出現了非常類似圖(一)的曲線!

圖(三)實驗結果分析。by Moreau et al, 2019

在這裡必須說明,圖(三)中的曲線和圖(一)並不完全一樣。它們之間還相差幾個物理和數學上的步驟,不過概念上是相同的。

這次的實驗是由格拉斯哥大學的團隊所完成,並刊登在《Science Advances》上。他們利用新穎的材料和極為敏感的成像技術,成功捕捉了貝爾不等式被打破的圖案。

「我們捕捉到的前所未見的影像,巧妙的展示了宇宙最根本的性質,」研究論文的第一作者,Dr. Paul-Antoine Moreau 這麼說:「這個技術帶來了讓人振奮的結果,未來可以被應用在發展中的量子計算領域,或是帶來全新的成像技術。」

參考資料:

文章難易度
linjunJR_96
28 篇文章 ・ 449 位粉絲
清大理工男。不喜歡算數學。喜歡電影、龐克、和翻譯小說。不知道該把科普當興趣還是專長,但總之先做再說。