4

5
2

文字

分享

4
5
2

「恆水創電」聯手比利時 Turbulent 研發超低落差機組——力拼「微水力發電」扎根台灣!

PanSci_96
・2021/12/09 ・1788字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

  • 本文依據 恆水創電 110 年 12 月 9 日新聞稿 改寫

文/郭椀濘、李先泰

為了地球的永續發展,台灣已將 2050 年淨零碳排列為重要政策目標,行政院也擬於2022年初提出路徑草案,檢討整體能源政策;為了實現淨零碳排目標,能源新創企業「恆水創電」9日與比利時台北辦事處共同舉辦記者會,發表與比利時水輪機製造商 TURBULENT 共同研發的超低落差機組「Turbulent S」,該機組針對台灣水利環境設計,只要 1.28m 超低落差即可發電,有助於微水力發電在台扎根。

比利時台北辦事處處長文浩德 Frédéric VERHEYDEN 致詞指出,比利時綠能產業擁有許多領先技術,為潔淨能源的先驅,是台灣發展能源最理想的合作夥伴,與台灣離岸風電領域已有深入合作,十分樂見 TURBULENT 與恆水創電在嶄新領域攜手共進,「台比合作將發展美好且綠化的台灣,為全球的淨零願景貢獻心力。」

恆水創電股份有限公司創辦人兼執行長鄒飛逯表示,推動「水利建設內建發電」是恆水創電的企業使命。他強調,台灣具有得天獨厚的水力發電條件,不但水力豐沛,地勢更是山高水急。然而,在河川渠道中卻有許多緩解水流力道的消能設施(如消波塊),以小水力發電的觀點來看相當可惜。

-----廣告,請繼續往下閱讀-----
比利時水輪機製造商TURBULENT於智利架設的機組。圖/恆水創電提供

鄒飛逯指出,若運用發電機組取代消能設施,用水流動能發電,就能使消能設施創造能量,既可兼顧設施安全,又能創造最乾淨的綠能,堪稱一舉數得,而這也是恆水創電的初衷。鄒飛逯強調:「思維轉個彎,水利基礎建設就是小電廠,每一滴水都能發好幾次電!」

針對 TURBULENT 機組的技術優勢,鄒飛逯指出,TURBULENT 垂直渦流水輪機的特色是韌性極強且應用場域廣泛。強韌的葉片讓機組不怕垃圾及泥沙堵塞(以Turbulent S為例,可容納直徑 25cm 的物體通過),一體成型的設計亦可抗震;若遇到強風豪雨導致河川水位暴漲,也有對應的斷電機制,讓發電機組自動跳離電網,在條件嚴苛的場域中仍可穩定運作。

鄒飛逯也說,TURBULENT 的機組體積小且易於施作,可與水利設施合為一體,多元發展性高。更關鍵的是,機組的設計也讓河道中的生物能無害通過葉片,可兼顧生態友善:「頂多讓通過的生物感到暈眩,但不會造成傷害。」

資料來源/恆水創電

而為徹底運用台灣的水力潛能,恆水創電與TURBULENT整合雙方專業,經過兩年場域資料蒐集及田野調查,為台灣水力環境量身設計 Turbulent S超低落差小水力發電機組,為台灣打造最佳化機組。

-----廣告,請繼續往下閱讀-----

Turbulent S可應用於台灣多數水力環境中,因其有效落差高度僅1.28m,所需流量為2cms (每秒2立方米),無論在灌溉溝渠跌水工、自然河川、淨水與汙水處理廠、給排水、水保設施等場域,都有極大發揮空間,讓鄒飛逯喊出「一落差一機組,一渠道一電廠」的綠能願景。

Turbulent S 的機組構面圖。圖/恆水創電提供

為推動台灣小水力產業發展,恆水創電與TURBULENT已簽訂合作備忘錄,授權Turbulent S機組國產化,比照風電模式在台灣落地生產。

恆水創電總經理廖弘毅指出,Turbulent S國產化不僅有助提升產業技術,更可確保長期料件供應與技術服務。「作為生命週期20至30年的基礎建設,國產化將能確保小水力發電在台灣長久發展、穩定維運;」廖弘毅總結,「這將是小水力發電在台灣遍地開花的重要一步!」

今日恆水創電也正式與台灣小水力綠能產業聯盟簽約入會,強調日後將會有緊密合作。對此聯盟洪正中理事長表示:「小水力發電是最環保再生能源,為對環境最友善的發電方式,小水力為台灣再生能源第三棒,聯盟與恆水創電公司將會持續為再生能源努力。」

-----廣告,請繼續往下閱讀-----
恆水創電9日與台灣小水力綠能產業聯盟簽約入會;左為恆水創電執行長鄒飛逯、右為台灣小水力綠能產業聯盟理事長洪正中。圖/李先泰攝

2021.12.12 PM 0:24 更新:原版本文中之「水頭」為英文 Hydraulic Head 之意,為單位重量液體通過泵所獲得的能量,單位為公尺(m)。為便於理解,改為「落差」。

文章難易度
所有討論 4
PanSci_96
1219 篇文章 ・ 2197 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。

0

2
1

文字

分享

0
2
1
減碳新招:二氧化碳再利用!光觸媒材料可以把二氧化碳還原成工業化學原料?——專訪中研院原分所陳貴賢特聘研究員
研之有物│中央研究院_96
・2023/11/03 ・5793字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院「研之有物」,為「中研院廣告」

  • 採訪撰文|簡克志
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

降低碳排還不夠,奈米材料幫你直接減少二氧化碳!

氣候變遷問題日益嚴重,2023 年 9 月成為全球有史以來最熱的月份,臺灣夏天飆破 38 ℃ 的頻率逐漸增加。為了避免地表升溫超過工業化前水準的 +1.5 ℃,世界各國訂出 2050 年淨零排放的目標,設法減少大氣中的溫室氣體。減碳解方除了低碳電力之外,直接減少二氧化碳也是一條路徑。中央研究院「研之有物」專訪院內原子與分子科學研究所陳貴賢特聘研究員,他的研究專長是奈米能源材料,我們將介紹一種複合光催化材料:硫化鋅(ZnS)/硫化銦鋅(ZnIn2S4,簡稱 ZIS),在太陽光照射下,此材料表面發生的氧化還原反應,會將二氧化碳還原成有用的工業化學原料!

為了避免全球升溫超過工業化前水準的 +1.5 ℃,我們需要減少碳排放與開發負碳技術,並盡量在 2050 年左右達到全球溫室氣體淨零排放量的目標。所謂的「工業化前水準」是指 1850-1900 年的平均溫度。
圖|iStock

地球「保冷」計畫——減碳是關鍵

我們每天排放多少二氧化碳?根據 Our World in Data 的人均二氧化碳排放數據,2021 年全球每人排放的二氧化碳為 4.69 噸,而燃燒 1 公升的汽油大概會產生 2.3 公斤的二氧化碳。換算一下,每人每天排放二氧化碳約為 12.8 公斤,相當於每人每天消耗 5.6 公升的汽油!

根據聯合國政府間氣候變化專門委員會(IPCC)的特別報告「全球暖化 1.5 ℃」,人類活動排放的溫室氣體,已經讓地球表面平均溫度上升了 1 ℃。若以人類目前經濟模式發展下去,碳排放量可預期將不斷上升,大量溫室氣體將讓暖化現象與極端天氣事件更加劇。

氣候科學家警示,地球表面平均溫度需控制在 +1.5 ℃ 以內 註 1,否則將有不可逆的後果,例如生物多樣性大幅度降低的風險。因此,世界各國有了 2050 年淨零排放的共同目標,並不是說都不排碳了,而是要設法讓溫室氣體的碳排放量和碳減少量相互抵消,達到「淨零」的目標。

-----廣告,請繼續往下閱讀-----

要達到淨零的目標,除了尋找與開發減碳電力之外,直接減少二氧化碳也是一個方法。想像一下,如果可以像植物一樣,只要照太陽光,就把二氧化碳變成有價值的碳氫化合物,聽起來不錯吧?但是二氧化碳做為燃燒後的產物已相當穩定,要如何以人工方式讓二氧化碳再次參與反應?

我們可運用「陽光」與「光催化材料」(又稱光觸媒,photocatalyst),不僅可以減碳,還能產生有價值的碳氫化合物,是一種「一舉兩得」的方法!

光觸媒(光催化)材料是什麼?

在談到光催化材料之前,先複習一下「催化劑」這個概念,催化劑不參與化學反應,但是它讓原先不可能的化學反應變得可行!陳貴賢分享,這就像過去從臺北到宜蘭需要翻過雪山,經過九彎十八拐的北宜公路;但如今有了「雪山隧道」之後,就大大降低臺北到宜蘭的時間與難度。「雪山隧道」就是臺北通往宜蘭的催化劑。

除此之外,催化劑也可以說是推進人類歷史發展的重要角色!在過去,農作物施肥只有天然氮肥可以使用,產量有限。而肥料意味著糧食增加與生產力增加,《巫師與先知》這本書就提到位於秘魯的鳥糞島嶼成為各家跨國公司必爭之地。另一方面,波斯人也在各地建造供鳥類休息的高塔,用來收集當肥料用的鳥糞。

-----廣告,請繼續往下閱讀-----

到了近代,陳貴賢提到在 20 世紀初,德國科學家哈伯(Fritz Haber)透過催化劑,在高溫高壓的條件下,以鐵粉做為催化劑,讓氮氣和氫氣轉換成氨。這讓人工固氮成為可能,人類不用再依賴緩慢的生物固氮反應就可以合成化學氮肥,農作物產量也大幅提昇。

本文主角「光催化材料」,顧名思義就是協助光化學反應的催化劑,但光催化材料與一般催化劑不同的地方在於,其化學反應通常發生在固態的表面環境,目標反應物、光子和電子都有參與反應。

比起光催化材料,你可能更常聽到它的同義詞「光觸媒」,例如某某產品宣稱具有「奈米光觸媒消毒」的功能,其實就是照射足夠的光,讓材料表面的氧化還原反應把細菌分解。而之所以光觸媒需要做到奈米尺寸,這是因為奈米小顆粒可以改變物質的電子能量結構,且大幅增加反應的表面積,讓光催化反應更有效率。

陳貴賢:「一個高表面積的奈米粉末,它的表面積可能是薄膜的一萬倍,甚至於十萬倍。」

給你電子,還你原形!光催化材料上的氧化還原反應是怎麼發生的?

光催化材料之所以能夠減少二氧化碳,是因為照光後材料表面發生「氧化還原反應」,氧化反應會失去電子,還原反應會得到電子。陳貴賢與團隊開發的複合光催化材料:硫化鋅(ZnS)/硫化銦鋅(ZnIn2S4,簡稱 ZIS),可以讓二氧化碳還原成甲醇(CH3OH)和乙醛(CH3CHO),這兩種產物都是工業常用的化學原料。反應式如下:

-----廣告,請繼續往下閱讀-----

要持續減少二氧化碳,就要持續發生上述還原反應,持續供給電子。不過,我們要怎麼讓電子快速又順利的補充到材料表面?這裡就開始涉及到半導體的核心問題:電子與電洞的產生、分離和傳輸

陳貴賢與團隊開發的複合光催化材料:ZnS/ZIS,是結合兩種奈米半導體材料,透過水熱法合成,將 0 維的 ZnS 奈米顆粒沉積在 2 維的 ZIS 奈米片之上,形成 0D-2D 結構的 ZnS/ZIS 複合物,就像製作巧克力豆餅乾,不過要複雜得多。

陳貴賢團隊將 0 維的 ZnS 奈米顆粒沉積在 2 維的 ZIS 奈米片之上,就好像做巧克力豆餅乾一樣,形成複合的異質半導體,做為光催化材料用途。左圖是示意圖,右圖是電子顯微鏡下的照片,Zn:In 比例為 1:0.46。
圖|研之有物(資料來源|Nano Energy

既然 ZnS/ZIS 是半導體,當受到光照之後,原來的價帶(valence band)電子會被光激發成導帶(conduction band)電子,原本價帶電子佔據的位置則留下一個空位,就是電洞。電子和電洞的遷移,就是半導體形成電流的原因,因此電子和電洞都稱為「載子」(charge carrier)

還記得上面的還原反應嗎?

-----廣告,請繼續往下閱讀-----

對光催化材料來說,為了在光照環境下把二氧化碳還原成乙醛和甲醇,必須獲得穩定的電子來源,材料內部要迅速補充電子到表面,因此:

照光產生的電荷載子數量越多越好;產生的電子和電洞要傾向分離,分得越遠越好;電子和電洞越快移動到表面參與反應越好。

載子輸送要快速穩定,首先照光產生的載子要多,就有更多電子和電洞參與反應。分離載子是為了避免復合,照光產生的電子和電洞很容易復合,一旦復合,等同於減少載子。再來是載子越快移動到表面越好,可以讓每次的氧化還原反應都是最佳效率。

尋找最有效的光催化材料

陳貴賢團隊總共做了 4 種不同比例的 ZnS/ZIS 光催化材料,依照 Zn:In 比例 1:0.12、1:0.26、1:0.46 和 1:0.99,分別標記為 ZnS/ZIS-1、ZnS/ZIS-2、ZnS/ZIS-3 和 ZnS/ZIS-4。其中,ZnS/ZIS-3 的光催化效果最好,可以有效減少二氧化碳,產生最多的乙醛和甲醇(如下圖)。

水熱法製備的 ZnS/ZIS-3 光催化效果最好,可以有效減少二氧化碳,產生最多的乙醛和甲醇。最右邊是將 ZnS 和 ZIS 簡單物理混合的對照組,沒有介面效應的輔助,催化效果不佳。
圖|研之有物(資料來源|Nano Energy

為了驗證光催化材料產生有效載子的效率,陳貴賢團隊計算了 ZnS/ZIS-3 的總 AEQ 值(apparent quantum efficiency),用來評估「照到光催化材料上的每顆光子數量,產生了多少實際參與催化反應的電子數」。測量之後,ZnS/ZIS-3 的 AEQ 值為 0.8%,量子效率比單獨的 ZnS 材料提高了將近 200 倍!

-----廣告,請繼續往下閱讀-----

這也是為什麼陳貴賢團隊要使用兩種不同的材料結合,因為單一半導體材料照光產生的電子和電洞有很高的復合機率,選擇兩種不同的半導體材料組合,讓兩種材料形成特殊的「能量階梯」就可以有效分離電子和電洞,並且把電子送到它該去的材料表面。

此外,使用兩種半導體材料的好處還有「二次激發電子到更高能階」,以符合光催化反應的能量門檻,自由電子掙脫 ZnS 的束縛之後,繼續往 ZIS 跑,光的能量會繼續把電子往上送到更高能級的材料表面,還原二氧化碳的反應在此發生。

Z 字形跑比較快!控制材料之間的微應變提升氧化還原效率

關於光催化材料的二次激發,陳貴賢提到:「材料低能階,然後光子進來後,把電子激發到高能階去做反應,太陽能電池也是這樣。但是呢,有時候沒那麼剛好,例如激發後的能階不夠高,雖然激發上去了,但電子沒有辦法跟二氧化碳做反應。那我把兩個材料拼在一起,電子上去以後又下來,然後再吸收第二個光子上去,那就變得很高了,高了以後它的反應效率就提升很多。」

如果我們把光催化材料的二次激發過程畫成示意圖,如下圖所示,電子在 ZnS 束縛區受到第一次光子的激發,變成自由電子,接著經過設計完善的材料介面,先降到較低的 ZIS 束縛區,受到第二次光子的激發,再次變成自由電子,跑到光催化材料的表面,和二氧化碳發生還原反應,將二氧化碳變成可再利用的乙醛和甲醇。

-----廣告,請繼續往下閱讀-----

看看電子走過的路,如果向左歪著頭看,是不是就是一個 Z 字呢?科學家把這個過程稱為「直接 Z 方案」(Direct Z-scheme)。「直接」的意思是,電子從 ZnS 跑到 ZIS 的過程,不需要再經過一個中間地帶,降低電子和電洞復合的機會。

為了將二氧化碳轉換成可用化學原料,電子在材料內部能階走 Z 字路徑,過程中受到光的二次激發,最後到達材料表面。電子參與還原反應,將二氧化碳變成乙醛和甲醇。電洞參與氧化反應,將水變成氧氣。
圖|研之有物(資料來源|Nano Energy

為什麼陳貴賢團隊設計的「直接 Z 方案」光催化材料,電子可以不需要中間的「轉接站」,直接轉移到另一個材料上呢?這裡也有一個巧思:不同材料之間的「微應變」

不同材料的晶體排列規律是不一樣的,當兩種材料接在一起時,接面處會發生「晶格不匹配」,也就是兩種材料的原子會互相卡到、晶格微微變形。但是,如果我們可以控制微應變(Strain)的程度,就可以控制兩種材料「能量階梯」的相對位置,微應變可以讓材料接面自動帶有「轉接站」的功能,進而形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。

總之,陳貴賢團隊開發的這套材料組合,是有微應變誘導的直接 Z 方案光催化材料,可做為未來量產光催化材料的研發設計參考,同時也是減碳的解方之一。

-----廣告,請繼續往下閱讀-----
ZnS 奈米顆粒接在 ZIS 奈米片上,兩邊的晶格排列方式不一樣,發生「晶格不匹配」,接面處晶格會微微變形。如果控制微應變(Strain)的程度,就可以微調材料能階的相對位置,微應變可以讓接面帶有「轉接站」的功能,形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。
圖|研之有物(資料來源|Nano Energy
ZnS 奈米顆粒接在 ZIS 奈米片上,兩邊的晶格排列方式不一樣,發生「晶格不匹配」,接面處晶格會微微變形。如果控制微應變(Strain)的程度,就可以微調材料能階的相對位置,微應變可以讓接面帶有「轉接站」的功能,形成一個內部電場,讓電子和電洞更能快速分離,提高光催化效率。
圖|研之有物(資料來源|Nano Energy

綠能趨勢——光催化材料未來可期

陳貴賢表示,目前表面科學和材料是中研院原分所的主要研究領域,他的實驗室選擇能源材料作為研究主軸,有太陽能電池和熱電材料,同時團隊也專注研究可還原二氧化碳的光催化材料,以及與燃料電池相關的催化劑。

陳貴賢看好將來能源材料的發展,因為在 2050 淨零排放之前,有愈來愈多企業紛紛加入「RE100 倡議」的行列,企業必須承諾最晚於 2030 年前使用 100% 再生能源。最著名案例是科技巨頭蘋果Google 和微軟等公司都已宣布其全球供應鏈將符合 RE100 的要求。其中,台積電為蘋果主要供應商,2020 年也加入 RE100,目前為臺灣再生能源的主要買家

可以預見,將來風能、太陽能與燃料電池的相關材料有其市場需求,而能夠減少二氧化碳的光催化材料,也將成為全球減碳的利器。陳貴賢提到,當前光催化材料還在基礎研究階段,目前的人工光合作用效率約 1%,接近大自然效率,而團隊希望提升到至少 5% 到 10% 以上,方能有其實用價值。

陳貴賢進一步強調,未來效率提高之後,能夠轉化二氧化碳的光催化材料就會有很大的經濟價值,不僅轉化後的燃料可以賣錢,處置二氧化碳原料亦可以收取負碳費用,是一種前所未有的概念。

陳貴賢強調,未來效率提高之後,能夠轉化二氧化碳的光催化材料就會有很大的經濟價值。
圖|研之有物

註解

  1. 根據 IPCC 的資料,如果要將全球暖化幅度控制在 +1.5 °C 以內,必須在 2050 年左右達到二氧化碳的淨零排放目標,同時也要大幅度降低非二氧化碳的溫室氣體排放,特別是甲烷。
研之有物│中央研究院_96
296 篇文章 ・ 3420 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook

0

6
0

文字

分享

0
6
0
比爾蓋茲的親筆揭露:淨零轉型應該何去何從?——《如何避免氣候災難》
天下雜誌出版_96
・2023/03/31 ・1271字 ・閱讀時間約 2 分鐘

2020 年迎來一場災難,一種新型冠狀病毒在全世界傳播開來。任何略知流行病史的人,應該都不會對新冠病毒造成的嚴重疫情感到太意外。我極為關注全球衛生問題,從多年前就開始研究疾病的爆發,一直很擔憂全球還沒準備好應付像 1918 年流感那樣的疾病大流行;那場大流行病造成幾千萬人死亡。我在 2015 年發表過一場 TED 演講,同時在幾次採訪中,也提出我們需要建立一個檢測和應對疾病大規模爆發的系統。

遺憾的是,全球還是沒有做好準備。當新冠病毒爆發,疫情造成巨大的人命損失,以及自大蕭條以來最嚴重的經濟痛苦。

付出高昂代價換來的 4.5% 減幅

由於經濟活動大幅衰減,2020 年全球的溫室氣體排放量比前一年少。減幅大約是 4.5% ,這是有效的減幅,假如溫室氣體排放量每年都能保持這樣的降幅,我們就可以高枕無憂了。

很可惜,這是不可能的事。

-----廣告,請繼續往下閱讀-----

想一想,我們付出了多少代價才有這 4.5% 的減幅:全球有上百萬人死亡,幾千萬人失業。沒有人希望疫情持續下去,更別說重來一遍。疫情使溫室氣體排放量下降,我感到驚訝的不是降這麼多,而是怎麼降這麼少。

這一點點減幅證明了我們不能光靠少搭飛機、少開車來達到零排放,甚至就連那些被我們視為減少排放的主要途徑,效果都十分有限。

由於經濟活動大幅衰減,2020 年全球的溫室氣體排放量比前一年少,減幅大約是 4.5%(示意圖)。圖/envatoelements

我的思維比較像工程師,不是政治人物,所以也不知該如何解決氣候變遷的政治問題,特別是在美國,氣候變遷的討論已經被政治綁架。能做的只是把討論重點放在該怎麼達到零排放:我們必須傾全世界之力、投入全人類的科學頭腦,讓現有的清潔能源方案能被有效運用,同時發明新技術,以徹底停止排放溫室氣體到大氣中。

關鍵在清潔能源如何變得便宜又穩定

我的碳足跡實在高得離譜。多年來,我一直對此感到內疚。由於寫這本書,更加意識到自己有責任減碳。身為憂心氣候變遷、公開呼籲大家攜手對抗的一份子,減少個人碳足跡是最基本該做到的事。

-----廣告,請繼續往下閱讀-----

我從 2020 年開始購買永續航空燃料,預計到 2021 年就會完全抵銷我和家人搭飛機所造成的碳足跡。至於其他方面,我也投資零碳技術,希望這也算是我個人碳足跡的補償,前後已經投入超過 10 億美元,但願這些技術最終能幫助全球實現零排放,研發出穩定而人人負擔得起的清潔能源。

儘管像我這樣的重度排碳者應該減少能源用量,全球整體其實應該使用更多由能源提供的產品和服務,只要是零碳能源,消耗更多能源就不是問題。解決氣候變遷問題的關鍵,就是使清潔能源和化石燃料一樣便宜和穩定。

——本文摘自《如何避免氣候災難:結合科技與商業的奇蹟,全面啟動淨零轉型新經濟》,2023 年 3 月,天下雜誌出版,未經同意請勿轉載。

天下雜誌出版_96
24 篇文章 ・ 17 位粉絲
天下雜誌出版持續製作與出版國內外好書,引進新趨勢、新做法,期盼能透過閱讀與活動實做,分享創新觀點、開拓視野、促進管理、領導、職場能力、教養教育、同時促進身心靈的美好生活。

0

3
2

文字

分享

0
3
2
邁向淨零排碳的未來:去碳燃氫技術!
研之有物│中央研究院_96
・2022/12/10 ・6194字 ・閱讀時間約 12 分鐘

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位。

  • 採訪撰文|廖英凱
  • 責任編輯|簡克志
  • 美術設計|蔡宛潔

高排碳發電方式的轉型

氣候變遷是全球議題,為了降低碳排放,發展低碳電力相當重要。臺灣目前主要使用天然氣發電,雖然排碳量較燃煤發電低,仍屬高碳排的發電方式,若未來要達到 2050 淨零排放,勢必要開發更多的低碳電力。

中央研究院「研之有物」專訪院內物理研究所陳洋元研究員,他與團隊應用天然氣催化裂解的理論,突破各種技術限制,打造出「去碳燃氫」(methane pyrolysis)裝置,使得燃氣發電可以更進一步減少碳排放,目前成果已接近歐盟需求,並預計陸續擴大運用至商用發電機組。

陳洋元向研之有物團隊介紹「去碳燃氫」技術。
圖|研之有物

因人類工業活動排放的二氧化碳而導致的氣候變遷問題,已是當代人類亟欲解決的難題。近幾年,國際組織與科學機構也不斷地強調減少碳排放的必要,以及調整減碳標準。2014 年聯合國政府間氣候變化專門委員會(IPCC)的綜合評估報告指出,人類應在 2100 年以前削減 90% 的碳排。

-----廣告,請繼續往下閱讀-----

但到了 2018 年的全球暖化特別報告時,IPCC 則將標準加嚴,人類需在 2050 年時達到「淨零排放」,亦即「人為溫室氣體的排放量,扣除透過碳匯碳捕等移除量後為零」。2021 年下半年,世界各大工業國也陸續提出在 2050 年前後達到該國淨零排放的政策目標和政策路徑。

在世界潮流的推動下,2021 年 4 月總統蔡英文在世界地球日的活動,宣示臺灣將努力在 2050 年達到淨零排放。同年中研院在廖俊智院長的主導下,啟動了「Alpha 去碳計畫」,院內物理所的陳洋元研究員與研究團隊也開始為臺灣的「去碳燃氫」技術建立基礎。

把天然氣變成氫氣,真的可能嗎?先來看看過去科學家怎麼做吧!

降低天然氣碳排的方法

為能達到降低碳排的能源轉型,又需兼顧產業發展的用電需求,臺灣目前的能源規劃,預估在 2025 年時,再生能源發電量佔比約 15.2%,其餘則為 45% ~60% 的燃氣發電與 25% ~40% 的燃煤發電所組成,到 2050 年時,樂觀理想情境中再生能源發電量佔比可逾 60%,剩下則以燃氣發電為主。

-----廣告,請繼續往下閱讀-----

儘管燃燒天然氣(甲烷)的理論排碳量,約只有燃燒煤炭的一半,但每燃燒 1 噸的甲烷,仍會產生 2.75 噸的二氧化碳排放,這與淨零排放的目標,仍有相當大的差異。因此,當代天然氣的運用,必須回應如何有效降低碳排放。

大抵來說,降低天然氣的碳排可以分成兩種不同方向的策略,其一是「碳捕捉、再利用與封存carbon capture, utilisation and storage, CCUS)」,方式是將燃燒後的二氧化碳,捕捉下來再利用,如應用於綠藻養殖、水泥製造等,或是將二氧化碳壓縮後封存於耗竭油氣庫這種地質結構上的特殊封閉構造,或是封存於海底富含鹽水的地層構造。

碳捕捉、再利用與封存(CCUS),就是將燃燒產生的二氧化碳,收集與分離出來,拿去工廠再利用或是封存於特殊地層。
圖|研之有物(資料來源|聯合國歐洲經濟委員會

然而碳捕存的技術與概念新穎且須有特定地質條件配合,要能達到具規模的運用仍有相當技術門檻需突破,且碳捕存在臺灣多年來也持續面臨政治及環保爭議,發展進度緩慢。

另一種策略方向,則是「燃料轉換」,將化石能源的天然氣,全部或部分替換為零碳的能源,例如利用微生物分解利用農業等方式生產的有機物質來產生「生質甲烷」(註1)作為燃料;利用大量的無碳電力,電解水後分解為氫氣和氧氣,再將氫氣做為燃料;或是再利用無碳電力將二氧化碳與氫氣合成為甲醇、甲烷、氨等「載氫劑(hydrogen carrier)」以利運送和利用。

-----廣告,請繼續往下閱讀-----

還有一種備受矚目的燃料轉換方式,是直接將甲烷裂解為氣態的氫氣和固態的碳黑(carbon black):

只要有足夠的能量,甲烷就能裂解為固態碳和氫氣。
圖|研之有物

其核心原理為,若能提供甲烷分子每莫耳 74 千焦耳的能量,就能把碳原子與氫原子的鍵結打斷,而關鍵在於如何提供能量以及如何提升使用能量的效率。

1999 年,M. Steinberg 發現當溫度夠高時,甲烷鍵結被打斷的效率隨之提升,而提出「甲烷熱裂解」(thermal decomposition of methane, TDM)技術,該技術是將甲烷處於高於 700°C 的高溫環境,使甲烷裂解為氫氣與固體的碳。固體碳可以穩定的儲存,不會增加大氣中的二氧化碳,也可以做為工業生產的原物料使用。

為進一步提升甲烷分解的效率與商業價值,近二十餘年來,許多針對 TDM 的研究,引入了各種催化劑,作為熱解甲烷的反應環境。目前常使用特定比例的惰性合金作為催化劑,將合金加熱成熔融態,當甲烷氣體通過液態合金時,即開始分為氫氣與固態碳。

-----廣告,請繼續往下閱讀-----

加熱溫度越高、氣體通過的熔融合金管柱越長,則甲烷熱裂解的程度越高,例如以一公尺長的管柱環境,利用不參與反應的 1175°C 熔融錫金屬,則可轉化 78% 的甲烷;利用具催化性的熔融金屬如 27% Ni–73% Bi 合金,則可在 1065°C 達成 95% 之甲烷轉化

如圖所示,此為天然氣裂解的簡易流程,當天然氣進入管柱時,需要熔融合金 Ni-Bi 作為催化劑,以便在高溫環境下轉化為固態碳(C)和氫氣(H2)。
圖|研之有物(資料來源|Science

為什麼需要催化劑?為了降低化學反應的難度。

化學反應的過程就像冒險者從小鎮(反應物)出發,克服山頂上的巨龍(活化能),並取得山谷寶藏(生成物)。而催化劑就像是幫冒險者開外掛的流浪法師,短暫加入冒險者一伙,開啟原本沒有的秘密通道,讓冒險者不用打龍就輕鬆取得寶藏。
圖|研之有物(資料來源|chemorphesis

實際運用上的限制與問題

以裂解方式生產氫氣的技術,有可能會成為未來氫能發展最主流的方向,歐盟針對氫能發展的預估中,即認為到 2050 年時,歐盟所使用的氫能會有 55% 來自於甲烷裂解,有 30% 來自目前化工產業較成熟使用的天然氣重組,以及 15% 來自於水電解產氫。

因此,2021 年 3 月起,在廖俊智院長的主導下,中研院啟動了「Alpha 去碳計畫」,目的在發展熱催化、電漿裂解等各種技術方法,以達成去碳產氫的發電目標。物理所陳洋元研究員的團隊,也開始在院內建構甲烷熱裂解的裝置,試圖為我國建立起去碳燃氫的技術基礎。

然而,儘管催化性熔融金屬的理論可行,在實務運作上此方法卻有其瓶頸,陳洋元研究員的團隊發現,當裂解後產生的氫氣和碳從熔融金屬表面冒出時,熔融金屬的蒸氣會把碳包住而在金屬表面變成如岩漿般的黏稠流體,必須不斷暫停實驗把岩漿給撈出去,使得學理上雖可高效率地裂解甲烷,但仍難以放大規模至發電機機組或提供給發電業使用。

-----廣告,請繼續往下閱讀-----
上述催化性熔融金屬用在天然氣裂解,理論上可行,但是陳洋元團隊實作發現,熔融金屬的蒸氣會把碳包住,會在金屬表面(如管壁)形成岩漿般的黏稠流體,必須不斷暫停實驗,把廢碳渣撈出去。
圖|研之有物(資料來源|Science、陳洋元)

體認到催化性熔融金屬的限制後,陳洋元研究員開始尋找其他也可具有類似催化效果的材質。其中一種可行的催化劑,就是碳黑本身。過去針對催化反應的研究中,即發現碳本身即是一種理想的催化劑。在甲烷裂解的過程中,研究者可以透過利用不同形式、結構與表面積的碳,來調控碳的催化活性

2013 年,韓國研究者 Seung Chul Lee 等人提出用碳黑作為催化劑的甲烷熱裂解裝置設計,其概念是將高溫管柱中,裝填直徑 30 nm 的碳粒作為催化劑,使甲烷通過高溫碳粒時,被催化裂解為氫氣和碳,再透過集塵器與過濾器捕捉碳黑。

2013 年韓國 Seung Chul Lee 等人提出了利用碳黑作為催化劑的甲烷熱裂解裝置。
圖|Korean Journal of Chemical Engineering

雖然概念裝置已提出逾十年,但至今市面上仍未有成功商業化與量產的設備。由於催化劑和裂解後的碳都是相同的物質,因此隨反應時間增加,實驗裝置中的碳黑會不斷吸附。

因此,該實驗設計若要能用於實務上的燃氣電廠減碳,關鍵就在如何能維持或定時減少高溫管柱中積存的碳;如何能延長集塵設備與濾網的更換週期,以須確保裝置能不間斷的長時間運作;以及如何與既有燃氣機組的系統結合。

-----廣告,請繼續往下閱讀-----

Alpha 去碳計畫:以局部比例的氫氣代替甲烷

面對過去研究的基礎與限制,中研院的團隊已在開發利用碳黑作為催化劑的甲烷熱裂解裝置,且能搭配自動化的清除積碳、與更新集塵、過濾器,使熱裂解裝置能持續性地運作。

熱裂解的裝置設計上,也並非追求極致的甲烷轉換率,由於氫氣比甲烷擁有更劇烈的燃燒反應,如在空氣中的燃燒速度,甲烷為 0.38 公尺/秒,但氫氣則高達 2.9 公尺/秒,這使得氫氣爆燃的衝擊力遠大於甲烷。

因此,目前仍未有純氫氣或高比例氫氣的商品化發電機組,而多以在甲烷中混合 10% ~30% 的氫氣,達到局部比例的減碳,因此在裝置設計上,須同步調控所產製氫氣與甲烷的比例,使發電機能持續燃燒固定成分比例的甲烷氫氣混合物。

中研院天然氣熱裂解裝置的實體照片。天然氣高溫裂解系統,包含:控溫電子儀器、高溫爐與流量計。放大區域顯示高溫爐上面的構造,白色為隔熱棉,石英管管壁已經有少許的碳渣附著。
圖|研之有物(資料來源|陳洋元)

從減碳效益來比較傳統天然氣發電和部分比例的去碳燃氫發電,以目前大潭電廠最新燃氣機組的熱效率 60% 來計算,每噸天然氣燃燒,可提供 9300 度的發電量,並排出 2.75 公噸的二氧化碳。

-----廣告,請繼續往下閱讀-----

但若能將其中 30% 的甲烷高溫裂解後,將氫氣與天然氣混燒,因氫氣的燃燒熱較低,且需額外提供裂解所需的能量,此時每噸天然氣則能發出 7400 度的電量,但碳排放降低為 1.92 公噸的二氧化碳,並生產 0.225 公噸的固體純碳。

也就是說,以大潭燃氣電廠為例,若將 30% 的甲烷裂解,產生氫氣與天然氣混燒,最終是以減少 20% 的發電量為代價,換得 30% 的減碳效益,以及具有精密工業、高產值化工業運用潛力的高純度碳黑原料。

目前中研院的 Alpha 去碳計畫已完成了將甲烷熱裂解裝置與 13 kW 天然氣發電機串聯,混燒 10% 氫氣燃料的概念驗證。

預計在 2025 年以前,將陸續擴大至針對建築物規模使用的 65 kW 燃氣渦輪發電機;和針對廠房、工商業用途使用的 1~2 MW 商用燃氣機組;以及與既有大型燃氣電廠使用的 170 MW 燃氣機組結合,以此建立我國去碳燃氫的產業鏈。

中研院將與業界合作,目標在 2025 年以前,推出裂解效率可達 40% 的去碳燃氫裝置,使臺灣天然氣發電的碳排達到歐盟訂定的永續標準。

開闢臺灣淨零排放的路徑

面對氣候變遷的威脅,世界各國無不積極且緊迫地尋找能達到零碳排放的方式,然而多數國家在有限的自然資源條件下,風力與太陽光電等再生能源的發電規模和穩定程度仍遠不及大型發電廠。

因此 2021 年起世界各國,相繼提出了符合淨零與永續精神的天然氣使用規準。2022 年 2 月,歐盟批准了有助實現歐盟環境目標的「永續活動分類法」與「氣候授權補充法案」,其中針對燃氣發電廠的規範,是要求 2035 年以前須完全由天然氣轉向低碳燃料或再生能源燃料;或是 2030 年前施工但每度電少於 270 克二氧化碳排放量,才能獲得永續金融投資的優惠。

以此作為標準來檢驗目前臺灣的燃氣發電,較先進且尚有機組興建中的大潭發電廠,碳排係數約低於每度電 388 克二氧化碳排放,若能順利搭配裂解效率 30% 的去碳燃氫技術,則碳排係數可降為每度電 271.6 克二氧化碳排放,幾乎符合歐盟的標準。

若再能輔以部分比例的生質甲烷混燒,排出二氧化碳又有部分比例利用碳捕存處理,至少就能使我國在未來最主要使用的天然氣,能符合目前歐盟看待永續能源的標準。

目前中研院陳洋元團隊打造的去碳燃氫技術,能利用臺灣既有天然氣和燃氣電廠的基礎建設,維持穩定的基載電力供給,又能達到減碳的效益,預計將是未來幾年內,能有效提供臺灣減碳成果的重要技術方向。

然而,去碳燃氫技術也因減碳目的而降低燃氣的發電量,這會使臺灣已經擴大天然氣使用的政策方向還要更加強化,如增加更多的天然氣進口量,興建更多的天然氣接收站、儲存槽與管線。近年烏俄戰爭帶來世界性天然氣的短缺,以及第三天然氣接收站的興建帶來海岸生態的危害,使用天然氣仍有難以忽視的環境與社會風險。

中研院的去碳燃氫技術,可能不是淨零未來的唯一選項,但傾力推動這項技術,才有機會在邁向淨零未來的過程中,爭取到足以讓永續與潔淨能源普及的時間。

中研院陳洋元團隊打造的「去碳燃氫」技術,利用臺灣既有天然氣和燃氣電廠的基礎建設,維持穩定的電力供給,又能達到減碳的效益,預計將是未來幾年內,能有效提供臺灣減碳成果的重要技術方向。
圖|研之有物

註解

  • 註1:生質甲烷的概念是,透過微生物分解農業生產的有機物質,由此生產甲烷,這種有機物的碳,是來自植物光合作用的固碳反應。因此理論上不會使用到地底下的化石碳,比天然氣還要減碳。

延伸閱讀:

研之有物│中央研究院_96
296 篇文章 ・ 3420 位粉絲
研之有物,取諧音自「言之有物」,出處為《周易·家人》:「君子以言有物而行有恆」。探索具體研究案例、直擊研究員生活,成為串聯您與中研院的橋梁,通往博大精深的知識世界。 網頁:研之有物 臉書:研之有物@Facebook