1

7
0

文字

分享

1
7
0

能源轉型,稀有金屬是新能源的關鍵元素?!——《稀有金屬戰爭》

天下文化_96
・2020/07/30 ・2193字 ・閱讀時間約 4 分鐘 ・SR值 544 ・八年級

  • 作者/皮特龍 (Guillaume Pitron);譯者/蔡宗樺

一直以來,人類社會不斷希望將諸多大自然的能源(風力、熱能、太陽能)轉化為機械能。

風力轉換成電能供我們使用。圖/pixabay

因此,風車這種器具即是利用風力啟動葉片、風輪,後頭連接著壓碎橄欖或穀物的磨石。蒸汽機是能夠發動火車頭的引擎,利用水蒸氣形成的熱能,藉由活塞轉化為機械能。在內燃機中,則是再一次由燃燒石油產生的熱能,啟動活塞以及汽車。

事實上,我們製造能夠進行機械運動的機器,已長達數個世紀。我們愈增加機械運動的可能性,愈能夠快速移動和交易、將新任務交給機器和其他機器人、提高生產率,以及賺很多錢。

為了確保機器運作良好,必須提供機器充足且便宜的能源。要增加賭注,我們才能滿足經濟成長的目標。因此近三個世紀以來,我們不斷製造出尺寸—力量—價格的關係愈來愈出色的新機器:

愈來愈輕巧、愈來愈節省能源,同時產生愈來愈多的機械能。

這時,就輪到稀有金屬登場了。礦物學家從 18 世紀就知道這些元素的存在,但沒有人對大部分的稀有金屬感興趣,因為尚未發現它們的工業用途。不過,自 1970 年代開始,人類開始利用若干稀有金屬的特別磁性(如鐠和釹),用於製造超強磁鐵。

我們的生活逐漸被「磁化」

磁鐵豐富了我們生活。圖/giphy

當電荷進入磁鐵的磁場,將產生可製造機械運動的力量。最小的磁鐵只有別針頭的大小;人類所製造最大的電磁鐵,有 4 公尺高、重 132 噸,位於法國艾松省薩克雷(Saclay)鎮的原子能委員會。

無論是極小或巨大,這些磁鐵如今用來驅動大多數的電動馬達,就如同之前的蒸汽機與汽油引擎的活塞。這些磁鐵可製造數十億個大大小小的發動機,在日常生活中替人類不停重複某些動作,例如轉動電動腳踏車、推動大量的火車頭、使電動牙刷或手機震動、啟動轎車的電動車窗、或推升電梯至摩天大樓的最高樓層。

事實上,我們的社會在不知不覺中完全被磁化,如果沒有內含稀有金屬的磁鐵,世界將大幅變慢,這個說法並不誇張。下次你把玩所蒐集到的、貼在冰箱上的彩色磁鐵時,可以好好思考這一點!

電動馬達不只讓人類無止盡的更加富足,還使「能源轉型」成為可能實現的夢想。多虧電動馬達,我們發現能夠在完全不依賴煤炭和石油的情況下,製造最大量的動能與財富。電動馬達不久之後將取代所有傳統引擎,這一點也不令人驚訝。

我們已利用電動馬達來推進船艦、讓太陽能飛機「陽光動力號」(Solar Impulse)環遊世界、拋射太空探測器及人造衛星、使顛覆車輛市場的許多新汽車運行。當然,這些電動馬達的動能來自電池,電池提供所需電流,以啟動磁鐵運作。

不過,稀有金屬能夠使生產的電更為乾淨:它們使若干風機的葉片轉動,且透過光電板將陽光轉化為電流。因為稀有金屬能去除「從能源製造端到最終消費端的能源週期」裡大部分的汙染,使人類得以期待一個沒有核電廠、煤炭或燃油的新世界。

而這只是開頭而已,因為稀有金屬同樣擁有許多化學、催化性、光學特質,對無數的環保科技而言不可或缺。詳細說明這些特性需要一整本書籍的空間。我們需要記得的是,這些金屬能夠將汽車排出的氣體留在觸媒轉化器中、點亮更省電的 LED 電燈、製造出更輕巧且更強勁的新工業材料,以及改善汽車與飛機的能源效率。

環保科技與數位科技並進前行

兩千年前,希伯來人因為擁有了嗎哪(一種天上降下的天賜食物)而能夠穿越西奈沙漠;今日,另一項地底下的豐饒之物,已送到我們環保饗宴的桌上。每個環保的應用方法都含有稀有金屬,可以肯定的是,有個善良的仙女正在眷顧我們。

日新月異的科技,讓我們的生活更加方便,環保科技也在進步。圖/giphy

最令人驚訝的是,這些稀有金屬對資訊與通訊新科技而言,同樣不可或缺,因為稀有金屬的半導體特性能夠調節在數位儀器中傳導的電流。

因此,過去用於不同功能的環保科技,與數位科技正在融合——愈來愈精密的軟體和演算法得以在智慧網絡內,調節製造者與消費者之間的能源流動。這就是智慧電表 Linky 與智慧瓦斯表 Gazpar 的優勢所在,愈來愈多的家戶已配備這些智慧儀表。

在未來的智慧都市裡,藉由在路上加裝感應器,可依人行道上有無行人,來調整路燈明暗,我們將可省下高達 65% 的街道照明電力;同樣的,氣象預報軟體也能夠將太陽能光電板的效能,提高 30%。

因此,這兩種轉型皆需要彼此——數位科技伴隨著綠色科技,並使綠色科技的效果倍增。這樣的交融開啟了能源充足的年代,促進了新產業的發展,而且已經在全世界創造一千萬個就業機會。

這就是我們所謂的良機,而我們的政府首長明瞭這點:為了促進這些新市場的發展,歐盟已要求會員國在 2030 年前,將二氧化碳排放量比 1990 年減少 40%,且將可再生能源占總消耗能源的比例提高至 27%。

在如此正確的道路上,有什麼理由要停下來呢?法國非政府組織 négaWatt 表示:「到了 2050 年,完全以可再生能源來因應法國所有能源需求」甚至是可能的。就連美國民主黨眾議員歐加修-寇蒂茲(Alexandria Ocasio-Cortez)都於 2019 年,在她提倡的「綠色新政」(Green New Deal)法案中,為相同目標辯護。

——本文摘自《稀有金屬戰爭》,2020 年 5 月,天下文化

文章難易度
所有討論 1
天下文化_96
110 篇文章 ・ 597 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

2
1

文字

分享

0
2
1
每年有一千萬公頃的森林消失!把樹種回去,就可以解決問題了嗎?──《牛津通識課|再生能源:尋找未來新動能》
日出出版
・2022/07/19 ・1997字 ・閱讀時間約 4 分鐘

碳捕捉:把電廠排出來的二氧化碳再抓回去!

一九九〇年代,尚未開發出風能和太陽能,當時對氣候變遷的擔憂日益增加,因此有人建議捕捉和儲存那些從化石燃料發電廠排放出來的二氧化碳,如此就可將其轉變成一種低碳電力。

碳捕捉主要是透過化學反應將煙道氣(flue gas)中的二氧化碳分離出來,然後再將其壓縮液化,泵入地下洞穴,例如含水層或是廢棄的油氣田。

同時要針對傳統的發電機開收排放二氧化碳的費用。這將鼓勵電廠採用碳捕捉技術,不過前提是碳價要夠高,超過捕捉和封存二氧化碳的成本。

然而,即使在龐大的歐盟市場,碳的價格也從未高到足以讓碳捕捉在電力生產中具有競爭力,而且真正在運作的碳捕捉工廠很少。

碳捕捉將煙道氣(flue gas)中的二氧化碳分離出來,然後再加工處理。圖/Envato

即使如此,捕捉二氧化碳排放依舊可望成為一種脫碳方法,在未來某些產能製程中合乎成本效益。一個例子是將天然氣轉化為氫氣,這還能用於加熱和製造燃料電池,或用於生產水泥以及甲醇和氨等重要工業化學品。

碳捕捉的各種可行性:直接從空氣抓?多種一點樹?

也有人認真思考過直接從空氣中捕捉二氧化碳的可行性,因為目前我們所面對的現實非常危險,即二氧化碳排放量下降的速度恐怕來不及讓上升溫度控制在攝氏 1.5 度內。

種植更多的樹木可能是最簡單也最便宜的方法,但首先必須遏止每年大量的伐林問題。

每年約有一千萬公頃的森林遭到砍伐,用於種植大豆、棕櫚油和其他作物,以及放牧牲畜。這樣的伐林導致全球每年約 10% 的二氧化碳排放量和生物多樣性的重大損失。

目前二氧化碳排放量下降的速度沒辦法使上升的溫度控制在 1.5°C 內,再加上樹木被大量的砍伐,導致全球每年約 10% 的二氧化碳排放量和生物多樣性的重大損失。圖/Envato

此外,封存大量二氧化碳所需的樹林面積也相當大──約要美國國土面積的四分之一,需要超過六年,甚至幾十年的時間才能讓樹木長到成熟,每年只能吸收平均全球燃燒化石燃料的 10% 排放量。

而在成長期過後,還需要更換樹木,因為在建築中也會使用到木材。有人建議,可以燃燒林業的廢棄物來產生能量(熱或電),並捕捉和封存排放出來的二氧化碳。

這種生質能源的碳捕捉尚有爭議,必須要確保改變土地利用的這項變動最後的結果是產生淨負排放,而不是增加碳的排放量。此外,這種方法尚在開發中,可能會與其他對可耕地和淡水的需求產生競爭關係。

多種樹,真的可以救地球嗎?事情可沒有我們想的那麼簡單!圖/Pixabay

不過,可以使用化學吸收器直接從空氣中捕捉二氧化碳,這種方法比生質能源更緻密、更可靠, 只是目前的價格較為昂貴。

奧利金能源公司(Origen Power)正在開發將碳捕捉與具有商業價值的石灰生產相結合,這樣的製程可望降低成本。

吸碳新創公司「Carbon Engineering」也在開發另一種方法,是使用與二氧化碳接觸會形成碳酸鈣的氫氧化鉀。整個過程以石灰來合成氫氧化鉀,形成碳酸鈣,然後將其加熱,釋放出二氧化碳,進行壓縮和封存──這時便會再度合成石灰。他們預估,以這種方式捕捉二氧化碳的成本可望降低至每噸 100 美元。

碳捕捉的展望與未來

為了增加產值,可以將捕捉來的二氧化碳與氫結合(比方說以再生電力來電解水,製造出氫氣),這可用來合成低碳燃料,取代汽油、柴油或航空燃料,這樣一來,其總排放量會遠低於某些生質燃料。

若是要捕捉和封存燃煤發電廠排放的二氧化碳,電力成本會增加約 60%,而使用再生能源來發電,成本則低得多。

然而,隨著空氣碳捕捉的研發和大量投資,再加上在某些工業製程中捕捉二氧化碳,以及重新造林,預估到二〇五〇年時,碳捕捉可能會吸收掉全球年排放量的 10%。

到二〇五〇年,再生能源和核能的總發電量可能接近當前全球需求量的 90%,透過碳捕捉,全世界可能會達到二氧化碳淨零排放。但要處理大量再生電力,電網在輸送和分配上需要適應風場和太陽光電場輸出量的種種變數,因此發展儲能設備非常重要。

——本文摘自《牛津通識課|再生能源:尋找未來新動能》,2022 年 6 月,日出出版,未經同意請勿轉載。

日出出版
8 篇文章 ・ 4 位粉絲

1

7
0

文字

分享

1
7
0
發電量增加 25 倍卻還是不夠用!再生能源是人類未來的救星嗎?──《牛津通識課|再生能源:尋找未來新動能》
日出出版
・2022/07/18 ・1730字 ・閱讀時間約 3 分鐘

立即填寫問卷,預約【課程開賣早鳥優惠】與送你【問卷專屬折扣碼】!

我們的能源從哪裡來、往哪裡去?

全球每年對能源的需求量相當巨大,若用「瓩時」──即一度電這樣的度量單位──來表示會出現天文數字,因此改用「太瓦時」(TWh)來表示,太瓦時等於 10 億瓩時。

在一八〇〇年,全球約有 10 億人口,當時對能源的需求約為 6000 太瓦時;而且幾乎全部來自傳統的生質能源。到了二〇一七年,全球人口達到 76 億,發電量增加了 25 倍(156000 太瓦時)。

在 2017 年的全球能源使用比例中,煤炭、石油和天然氣等化石燃料占了大約 80 %左右。圖/ Pixabay

下圖顯示在二〇一七年全球主要能源消耗總量的百分比,其中近 8 成為化石燃料。其他再生能源包括風能、太陽能和地熱能,其中成長最快的是風場和太陽光電場。生質能源則主要來自傳統生質能源。

2017 年的能源消耗總量,顯示出不同能源的百分占比。圖/BP Statistical Review of World Energy, 2018; World Energy Council, Bioenergy, 2016

大約有 1/3 的全球能源消耗在將化石燃料轉化為電力精煉燃料上。

剩下的稱為最終能源需求(final energy demand),是指用戶消耗掉的能源:每年約 10 萬太瓦時。

大約有 10% 是來自開發中國家傳統生質能的熱,22% 來自電力,38% 用於供熱(主要來自化石燃料) 30% 在交通運輸。熱能和電能主要都是用於工業和建築。汽油和柴油幾乎提供了所有用於運輸的燃料。

怎麼做比較不浪費?能量轉換效率大比拚!

我們看到供熱與供電一樣重要。兩者都可以用瓩時為單位,也就是一度電來測量,雖然電可以完全轉化為熱量,例如電烤箱,但只有一小部分以熱能形式存在的能量可以轉化為電能,其他的必然會散失到周圍環境裡

在火力發電廠中,存在於化石燃料中的化學能會在燃燒後轉化為熱能。這會將水加熱,產生蒸汽,蒸汽膨脹推動渦輪的葉片,轉動發電機。只有一部分熱量被轉化成電力;其餘的熱量在蒸汽冷凝,完成循環時,就轉移到環境中,成了殘熱。

這份熱電轉化的比例可透過提升高壓蒸汽的溫度來增加,但受限於高溫下鍋爐管線的耐受度。

在一座現代化的火力發電廠中,一般熱能轉化為電能的效率約為 40%。若是在較高溫的複循環燃氣發電機組(combined cycle gas turbine,CCGT)裝置中,這個比例可提高到 60%。

同樣地,在內燃機中也只有一小部分的熱量可以轉化為車子的運動能量(動能);汽油車的一般平均效率為 25%,柴油車則是 30%,而柴油卡車和公車的效率約為 40%。

另一方面,電動馬達的效率約為 90%,因此電氣化運輸將顯著減少能源消耗。這是提高效率和再生能源之間協同作用的一個範例,這將有助於提供世界所需的能源。

火力發電沒辦法 100% 轉換熱能變成電能,約有 60% 的損失。圖/envato

再生能源的過去跟未來

在十九世紀末,水力發電的再生資源幫助啟動了電網的發展,在二〇一八年時約占全世界發電量的 16%。而在再生能源──風能、太陽能、地熱能和生質能源──的投資上,相對要晚得多,是在二十世紀的最後幾十年才開始。

起初的成長緩慢,因為這些再生能源沒有成本競爭力還需要補貼。但隨著產量增加,成本下降,它們的貢獻開始增加。這些其他再生能源發電的占比已從二〇一〇年的 3.5% 上升到二〇一八年的 9.7%,包括水力發電在內,再生能源的總貢獻量為 26%。

不過,就全球能源的占比,而不是僅只是考慮用戶消耗的電力來看,再生能源僅占約 18%,而傳統生質能則提供約 10% 的能量。隨著太陽能和風能的成本在許多國家變得比化石燃料更便宜,它們在總發電量中的占比有望在未來幾十年顯著增加。

這世界花了很長的時間才意識到這一事實,從現在開始,再生能源勢必將成為主要的能源來源。

——本文摘自《【牛津通識課02】再生能源:尋找未來新動能》,2022 年 6 月,日出出版,未經同意請勿轉載。

所有討論 1
日出出版
8 篇文章 ・ 4 位粉絲

3

5
1

文字

分享

3
5
1
電子貨架標籤真的比紙本商品價格卡划算嗎|2021數感盃|高中專題|優選
數感實驗室_96
・2021/12/25 ・2804字 ・閱讀時間約 5 分鐘

  • 作者:彭姿寧、周丞祺、康育綸/新店高中

數感盃青少年寫作競賽」提供國中、高中職學生在培養數學素養後,一個絕佳的發揮舞台。本競賽鼓勵學生跨領域學習,運用數學知識,培養及展現邏輯思考與文字撰寫的能力,盼提升臺灣青少年科普寫作的風氣以及對數學的興趣。
本文為 2021 數感盃青少年寫作競賽/高中組專題報導類佳作之作品,為盡量完整呈現學生之作品樣貌,本文除首圖及標點符號、錯字之外並未進行其他大幅度編修。

一、研究動機 

台灣每個奇數月的 25 號是發票開獎的日子,不少人用行動載具存發票,取代紙張發票的使用,以減少樹木砍伐,保護環境。一般民眾在購物時,最常見的商品價格標籤大部分還是以紙張形式(紙價卡),但若能夠將全面設為電子紙貨價標籤(下簡稱「電子標籤」),又將能減少多少的樹木砍伐和更換的人力成本呢?對於環境的改善與影響是否划算呢?

圖/envato elements

二、研究背景 

(一)以 7-11 為研究對象,將實地訪查結果整理如下表:

(二)透過實地訪查與網路搜尋,整理紙本商品價卡和電子貨架標籤資訊比較,如下表:

三、探究過程 

(一)歷年來時薪的調整 

 雖然目前的時薪是 160 元/hr,但過去已有多次調整,因此考慮薪資的平均成長率。一個電子標籤的壽命是 6 年,所以我們取 104 年到 109 年期間的薪資調整。根據中華民國勞動部網站表示,薪資調整如下: 

運用「幾何平均數」來計算基本薪資每年平均成長率為 1.057:  \( \sqrt[5]{1.0500\times 1.0555\times 1.0526\times 1.0533\times 1.0714} \) ≒ 1.057

訪問結果可知 1 週需要花 1+0.5+0.5=2 小時的時間在價卡上,一個月大約有 4 週, 所以每個月需要花 2×4=8 小時的時間在這,每年則是 8×12=96 小時。我們有了調整倍律(公比),以及 110 年(首項)到 115 年(末項)的時薪,使用「等比級數」計算未來 6 年需花費的人力成本為 153600 元(110 年每小時基本工資為 160)。

 \( S6= \frac{96\times 160\left [ 1-\left ( 1.057 \right )^{6} \right ]}{1-1.057} \) ≒ 1.06335

(二)環境影響-樹木砍伐與碳足跡: 

我們上網蒐集樹木所能製造的產量。每噸紙漿可以做出 40 箱 5000 張紙,1 噸紙漿約需砍掉 24 棵高度 12 公尺、直徑 15~20 公分的樹木,所以 1 箱的紙需要砍掉:24÷40=0.6 棵樹 

1 箱的紙有 5000 張,因此 1 張 A4 紙需要: 0.6÷5000=0.00012 棵樹 

在保育環境方面,透過產品碳足跡資訊網,我們可以得知一包 500 張的 A4 紙的碳足跡為 3.8kg CO2e,一張 A4 紙的碳足跡為:3.8÷500=0.0076kg CO2e  

(三)紙本商品價卡與電子貨價標籤成本分析: 


更換時間這方面,人力更換 2 週換 250 張,1 次換 1 小時,1 個月大約有 4 週, 可得 1 個月換 250×2=500 張紙需要花費:1×2=2 小時 

(1)若新開一間便利商店,使用紙本商品價卡成本分析: 

一包 A4 大小的紙價卡有 20 張,價格為 47 元。而 1 張 A4 大小的紙可以分成 48 張的價卡,所以 1 包可以分成 20×48=960 張的價卡,是全店 960÷1000=0.96 倍所 以全店紙張需花費 47÷0.96≒49 元 

根據店員所述,自行影印全電價卡的墨水費為 5 元左右,耗時 1.5 小時,耗電為 2 度電,而 1 度電為 1.5 元,所以電費是 2×1.5=3 元。 

價格卡上的字,是使用條碼掃得商品資訊,掃描再加上更換的時間,全店更換則需要 4 小時。目前總共是要花 5.5 小時去更換全商店的價卡,再加上平時的檢查和清點等其他時間,一共要 8 小時左右,目前員工的薪水是 160/hr,所以全部費用是 49+5+3+8×160=1337 元。

於環境方面,1000 張價卡相當於:砍 1000÷48×0.00012=0.0025 棵樹排放 1000÷48×0.1538=3.297kg CO2e。 

(2)若一間便利商店六年,「紙本商品價卡」與「電子貨架標籤」成本比較:

我們知道 2 週花 1 小時換 250 張價卡,1 個月大約為 4 週,算出 1 個月大約要花 1×2 小時換 250×2=500 張紙價卡。電子標籤的壽命是 5~7 年上下,我們打算以平均的 6 年(72 個月)為基準去估算。 

  • 「紙本商品價卡成本」: 

紙本商品價卡須花費 [(1000+500×72)÷960]×47+106335 ≒ 108146 元 

對於環境相當於砍伐 37000÷1000×0.0025×72=6.66 棵樹,並排放 37000÷1000×0.1583×72≒421.7kg 的 CO2e。 

  • 「電子貨架標籤成本」: 

1 個電子標籤是 140 元,全店一千項商品更換全部需要 140×1000=140000 元, 電子標籤更換效率是 3000 張/hr,而 6 年內會換 36000 張,需耗費 6000÷3000=12 小時。 

所以將紙本商品價卡更換成電子貨架標籤會少花費 236760-140000=96760 元,並省下人工耗費 (72×2)-12=132 個小時,減輕許多員工的工作量。

(四)不同規模商場比較 

以 6 年(110 年~115 年)為期限,假設中型商場(營業面積 200 至 2,000 坪)的用量是小型商場(營業面積 60 至 200 坪)10 倍,更換量是 5 倍,其他成本是 10 倍; 大型商場(營業面積超過 2,000 坪)的用量是小型商場的 30 倍,更換量是 15 倍, 其他成本是 30 倍。

因此由仿照前面的計算方式,可以推算不同規模商場使用不同商品價格卡所需成本:

四、發現與結論 

雖然汰換電子標籤並不是很划算,但與年營業額相比,更換的錢就像沙漠裡的一粒沙。電子貨架標籤不止能以彩色文字顯示商品價格,也能以圖案顯示顯示品牌 Logo,或顯示二維條碼,讓顧客立即掃描瞭解商品產銷履歷,除了能更吸引顧客目光、拉長顧客在店內停留時間進而提高商品購買數量,或者是另類廣告行銷等優勢,但因為這些為潛在效益,若不考慮價格,也可能吸引部分銷售業者使用。 

參考資料

  1. POS系統加值服務:電子標籤一秒完成你的售價更新!
  2. 到賣場買東西還要比價?電子標籤直接幫你比!
  3. 銷售時點情報系統
  4. 無線電紙整合線上線下 電子貨架標籤造就智慧零售
  5. 電子貨架標籤
  6. 紙張碳足跡基本資訊
  7. 勞動部:基本工資之制訂與調整經過(歷年薪資調整)
  8. 公交站牌變電子墨水屏黑白,代價是什麼?LCD與墨水屏技術的優缺點(電子標籤碳足跡)
  9. 1度電排放多少二氧化碳?(電力碳足跡)
  10. 便利商店(商場定義)
所有討論 3
數感實驗室_96
60 篇文章 ・ 34 位粉絲
數感實驗室的宗旨是讓社會大眾「看見數學」。 數感實驗室於 2016 年 4 月成立 Facebook 粉絲頁,迄今超過 44,000 位粉絲追蹤。每天發布一則數學文章,內容包括介紹數學新知、生活中的數學應用、或是數學和文學、藝術等跨領域結合的議題。 詳見網站:http://numeracy.club/ 粉絲專頁:https://www.facebook.com/pg/numeracylab/