22

2
1

文字

分享

22
2
1

那些搞錯用途的毒物:第二屆泛泛泛科學 Podcast 主題票選

stage_96
・2021/11/10 ・1285字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

現代人會接觸到的有毒物質早已超越本草綱目記載,日常生活與醫療體系中都傳出過一些「搞錯用途的毒物」。他們隱身在動植物、食物與環境中,以意想不到的方式滲透你我生活,常人一不小心就有可能中毒。另外醫療史上也有過各種誤觸雷區的用藥,大規模的成癮與不良反應更是讓人心痛。

第二屆泛泛泛科學 Podcast 主題票選精選五種猛毒,邀請你投票選出兩種最毒的話題!y 編將邀請該領域的「絕命毒師」在節目中說毒給你聽。

毒物清單

1. 真實世界的「毒系神奇寶貝」:動物性天然毒

你知道河豚毒素是氰化鈉的1000倍嗎?你知道有種貝毒會讓人失憶嗎?動物毒素百百種,就算你不像貝爺一樣在野外生吃動物,他們還是有可能送上你的餐桌。根據食藥署統計的各類食物中毒原因,每年都會有零星的動物性天然毒案例。雖然規模小,但如果這些毒素進入食物供應鏈就會引發嚴重的集體中毒,就讓我們來一探世界各地發生過意想不到的恐怖中毒事件!

2. 世界有毒植物圖鑑

有毒植物一大票,你以為對他們敬而遠之就沒事了嗎?其實「誤食」是植物性天然毒的中毒主因!在台灣,就常有人把有毒的大苦薯與蔥蘭當成山藥與韭菜花吃下肚,更曾傳出有火鍋店的食材混入了與一般芋頭相似的姑婆芋造成民眾食物中毒!而在世界範圍還有更多的毒植物有著各種奇葩的誤食案例等你來聽!*

-----廣告,請繼續往下閱讀-----

3. 古柯鹼的黑歷史

你可知道現在惡名昭彰的一級毒品古柯鹼,在十九世紀末期是居家生活的好夥伴?從精油、噴鼻液、酒類、鼻菸,連早期的可口可樂都含有微量古柯鹼,他還成為外科醫師局部麻醉的最愛,直到造成惱人的藥物成癮與濫用之後,它才被列為禁藥。本集就來說說古柯鹼從愛用、濫用、到禁用的黑歷史!

4. 鴉片類藥物與人類的愛恨情仇

比起古柯鹼,鴉片類藥物與人類有更深的糾葛。1980、90年代,美國藥廠積極的推銷鴉片類止痛劑、淡化成癮的可能性,當年造成的成癮人口到現在還處理不完。無獨有偶,2018年奈及利亞也出現了感冒糖漿上癮人潮,人們濫用含有可待因的感冒糖漿,最後還需要國家下令禁止進口。本集就來介紹嗎啡、可待因、海洛英、吩坦尼等等的鴉片類藥物,他們是毒還是藥?怎麼平衡療效與成癮性?造成的社會問題又如何解決?

5. 沙利竇邁畸形兒事件

一支用來抑制孕婦害喜症狀的良藥最後卻成了畸形兒的元兇。沙利竇邁(Thalidomide)1957年於西德推出後迅速成為受歡迎的成藥並且暢銷46國,一年之後畸形兒的比例異常升高,才有人察覺這似乎與沙利竇邁有關。當年有兩位吹哨者挺身而出與藥廠進行的攻防戰,對日後的藥物安全管制政策有著深遠影響。孩子啊,打開Podcast,聽我們訴說這場可歌可泣的醫療傳奇!

簡單投票三步驟

Step 1 登入/註冊泛科學會員:https://lihi1.com/yK0i7

Step 2 選好 2個 你想聽的主題,在本篇文章底下留言。

(即日起至11/21午夜票選截止,隔天公布得票數最高的兩個主題。)
Step 3 12/7 和 12/14,鎖定泛泛泛科學 Podcast https://lihi1.com/KIvmh,就會有你想聽的最毒物質喔!

文章難易度
所有討論 22
stage_96
26 篇文章 ・ 50 位粉絲
此為「科科齊打交」系列討論專用帳號!希望能藉由大家的討論,一起打造屬於我們的魔幻舞台! PanSci編輯部將會盡力蒐集資料,提供可以協助討論的科學內容。 想邀請科夥伴們在閱讀完相關內容後,藉由留言的方式,與我們分享你的想法! 「霹靂卡霹靂拉拉波波麗娜貝貝魯多。」

0

1
1

文字

分享

0
1
1
圖形處理單元與人工智慧
賴昭正_96
・2024/06/24 ・6944字 ・閱讀時間約 14 分鐘

  • 作者/賴昭正|前清大化學系教授、系主任、所長;合創科學月刊

我擔心人工智慧可能會完全取代人類。如果人們能設計電腦病毒,那麼就會有人設計出能夠自我改進和複製的人工智慧。 這將是一種超越人類的新生命形式。

——史蒂芬.霍金(Stephen Hawking) 英國理論物理學家

大約在八十年前,當第一台數位計算機出現時,一些電腦科學家便一直致力於讓機器具有像人類一樣的智慧;但七十年後,還是沒有機器能夠可靠地提供人類程度的語言或影像辨識功能。誰又想到「人工智慧」(Artificial Intelligent,簡稱 AI)的能力最近十年突然起飛,在許多(所有?)領域的測試中擊敗了人類,正在改變各個領域——包括假新聞的製造與散佈——的生態。

圖形處理單元(graphic process unit,簡稱 GPU)是這場「人工智慧」革命中的最大助手。它的興起使得九年前還是個小公司的 Nvidia(英偉達)股票從每股不到 $5,上升到今天(5 月 24 日)每股超過 $1000(註一)的全世界第三大公司,其創辦人(之一)兼首席執行官、出生於台南的黃仁勳(Jenson Huang)也一躍成為全世界排名 20 內的大富豪、台灣家喻戶曉的名人!可是多少人了解圖形處理單元是什麼嗎?到底是時勢造英雄,還是英雄造時勢?

黃仁勳出席2016年台北國際電腦展
Nvidia 的崛起究竟是時勢造英雄,還是英雄造時勢?圖/wikimedia

在回答這問題之前,筆者得先聲明筆者不是學電腦的,因此在這裡所能談的只是與電腦設計細節無關的基本原理。筆者認為將原理轉成實用工具是專家的事,不是我們外行人需要了解的;但作為一位現在的知識分子或公民,了解基本原理則是必備的條件:例如了解「能量不滅定律」就可以不用仔細分析,即可判斷永動機是騙人的;又如現在可攜帶型冷氣機充斥市面上,它們不用往室外排廢熱氣,就可以提供屋內冷氣,讀者買嗎?

CPU 與 GPU

不管是大型電腦或個人電腦都需具有「中央處理單元」(central process unit,簡稱 CPU)。CPU 是電腦的「腦」,其電子電路負責處理所有軟體正確運作所需的所有任務,如算術、邏輯、控制、輸入和輸出操作等等。雖然早期的設計即可以讓一個指令同時做兩、三件不同的工作;但為了簡單化,我們在這裡所談的工作將只是執行算術和邏輯運算的工作(arithmetic and logic unit,簡稱 ALU),如將兩個數加在一起。在這一簡化的定義下,CPU 在任何一個時刻均只能執行一件工作而已。

-----廣告,請繼續往下閱讀-----

在個人電腦剛出現只能用於一般事物的處理時,CPU 均能非常勝任地完成任務。但電腦圖形和動畫的出現帶來了第一批運算密集型工作負載後,CPU 開始顯示心有餘而力不足:例如電玩動畫需要應用程式處理數以萬計的像素(pixel),每個像素都有自己的顏色、光強度、和運動等, 使得 CPU 根本沒辦法在短時間內完成這些工作。於是出現了主機板上之「顯示插卡」來支援補助 CPU。

1999 年,英偉達將其一「具有集成變換、照明、三角形設定/裁剪、和透過應用程式從模型產生二維或三維影像的單晶片處理器」(註二)定位為「世界上第一款 GPU」,「GPU」這一名詞於焉誕生。不像 CPU,GPU 可以在同一個時刻執行許多算術和邏輯運算的工作,快速地完成圖形和動畫的變化。

依序計算和平行計算

一部電腦 CPU 如何計算 7×5+6/3 呢?因每一時刻只能做一件事,所以其步驟為:

  • 計算 7×5;
  • 計算 6/3;
  • 將結果相加。

總共需要 3 個運算時間。但如果我們有兩個 CPU 呢?很多工作便可以同時(平行)進行:

-----廣告,請繼續往下閱讀-----
  • 同時計算 7×5 及 6/3;
  • 將結果相加。

只需要 2 個運算時間,比單獨的 CPU 減少了一個。這看起來好像沒節省多少時間,但如果我們有 16 對 a×b 要相加呢?單獨的 CPU 需要 31 個運算的時間(16 個 × 的運算時間及 15 個 + 的運算時間),而有 16 個小 CPU 的 GPU 則只需要 5 個運算的時間(1 個 × 的運算時間及 4 個 + 的運算時間)!

現在就讓我們來看看為什麼稱 GPU 為「圖形」處理單元。圖一左圖《我愛科學》一書擺斜了,如何將它擺正成右圖呢? 一句話:「將整個圖逆時針方向旋轉 θ 即可」。但因為左圖是由上百萬個像素點(座標 x, y)組成的,所以這句簡單的話可讓 CPU 忙得不亦樂乎了:每一點的座標都必須做如下的轉換

x’ = x cosθ + y sinθ

y’ = -x sinθ+ y cosθ

-----廣告,請繼續往下閱讀-----

即每一點均需要做四個 × 及兩個 + 的運算!如果每一運算需要 10-6 秒,那麼讓《我愛科學》一書做個簡單的角度旋轉,便需要 6 秒,這豈是電動玩具畫面變化所能接受的?

圖形處理的例子

人類的許多發明都是基於需要的關係,因此電腦硬件設計家便開始思考:這些點轉換都是獨立的,為什麼我們不讓它們同時進行(平行運算,parallel processing)呢?於是專門用來處理「圖形」的處理單元出現了——就是我們現在所知的 GPU。如果一個 GPU 可以同時處理 106 運算,那上圖的轉換只需 10-6 秒鐘!

GPU 的興起

GPU 可分成兩種:

  • 整合式圖形「卡」(integrated graphics)是內建於 CPU 中的 GPU,所以不是插卡,它與 CPU 共享系統記憶體,沒有單獨的記憶體組來儲存圖形/視訊,主要用於大部分的個人電腦及筆記型電腦上;早期英特爾(Intel)因為不讓插卡 GPU 侵蝕主機的地盤,在這方面的研發佔領先的地位,約佔 68% 的市場。
  • 獨立顯示卡(discrete graphics)有不與 CPU 共享的自己專用內存;由於與處理器晶片分離,它會消耗更多電量並產生大量熱量;然而,也正是因為有自己的記憶體來源和電源,它可以比整合式顯示卡提供更高的效能。

2007 年,英偉達發布了可以在獨立 GPU 上進行平行處理的軟體層後,科學家發現獨立 GPU 不但能夠快速處理圖形變化,在需要大量計算才能實現特定結果的任務上也非常有效,因此開啟了為計算密集型的實用題目編寫 GPU 程式的領域。如今獨立 GPU 的應用範圍已遠遠超出當初圖形處理,不但擴大到醫學影像和地震成像等之複雜圖像和影片編輯及視覺化,也應用於駕駛、導航、天氣預報、大資料庫分析、機器學習、人工智慧、加密貨幣挖礦、及分子動力學模擬(註三)等其它領域。獨立 GPU 已成為人工智慧生態系統中不可或缺的一部分,正在改變我們的生活方式及許多行業的遊戲規則。英特爾在這方面發展較遲,遠遠落在英偉達(80%)及超微半導體公司(Advance Micro Devices Inc.,19%,註四)之後,大約只有 1% 的市場。

-----廣告,請繼續往下閱讀-----
典型的CPU與GPU架構

事實上現在的中央處理單元也不再是真正的「單元」,而是如圖二可含有多個可以同時處理運算的核心(core)單元。GPU 犧牲大量快取和控制單元以獲得更多的處理核心,因此其核心功能不如 CPU 核心強大,但它們能同時高速執行大量相同的指令,在平行運算中發揮強大作用。現在電腦通常具有 2 到 64 個核心;GPU 則具有上千、甚至上萬的核心。

結論

我們一看到《我愛科學》這本書,不需要一點一點地從左上到右下慢慢掃描,即可瞬間知道它上面有書名、出版社等,也知道它擺斜了。這種「平行運作」的能力不僅限於視覺,它也延伸到其它感官和認知功能。例如筆者在清華大學授課時常犯的一個毛病是:嘴巴在講,腦筋思考已經不知往前跑了多少公里,常常為了追趕而越講越快,將不少學生拋到腦後!這不表示筆者聰明,因為研究人員發現我們的大腦具有同時處理和解釋大量感官輸入的能力。

人工智慧是一種讓電腦或機器能夠模擬人類智慧和解決問題能力的科技,因此必須如人腦一樣能同時並行地處理許多資料。學過矩陣(matrix)的讀者應該知道,如果用矩陣和向量(vector)表達,上面所談到之座標轉換將是非常簡潔的(註五)。而矩陣和向量計算正是機器學習(machine learning)演算法的基礎!也正是獨立圖形處理單元最強大的功能所在!因此我們可以了解為什麼 GPU 會成為人工智慧開發的基石:它們的架構就是充分利用並行處理,來快速執行多個操作,進行訓練電腦或機器以人腦之思考與學習的方式處理資料——稱為「深度學習」(deep learning)。

黃仁勳在 5 月 22 日的發布業績新聞上謂:「下一次工業革命已經開始了:企業界和各國正與英偉達合作,將價值數萬億美元的傳統資料中心轉變為加速運算及新型資料中心——人工智慧工廠——以生產新商品『人工智慧』。人工智慧將為每個產業帶來顯著的生產力提升,幫助企業降低成本和提高能源效率,同時擴大收入機會。」

附錄

人工智慧的實用例子:下面一段是微軟的「copilot」代書、谷歌的「translate」代譯之「one paragraph summary of GPU and AI」。讀完後,讀者是不是認為筆者該退休了?

-----廣告,請繼續往下閱讀-----

GPU(圖形處理單元)和 AI(人工智慧)之間的協同作用徹底改變了高效能運算領域。GPU 具有平行處理能力,特別適合人工智慧和機器學習所需的複雜資料密集運算。這導致了影像和視訊處理等領域的重大進步,使自動駕駛和臉部辨識等技術變得更加高效和可靠。NVIDIA 開發的平行運算平台 CUDA 進一步提高了 GPU 的效率,使開發人員能夠透過將人工智慧問題分解為更小的、可管理的、可同時處理的任務來解決這些問題。這不僅加快了人工智慧研究的步伐,而且使其更具成本效益,因為 GPU 可以在很短的時間內執行與多個 CPU 相同的任務。隨著人工智慧的不斷發展,GPU 的角色可能會變得更加不可或缺,推動各產業的創新和新的可能性。大腦透過神經元網路實現這一目標,這些神經元網路可以獨立但有凝聚力地工作,使我們能夠執行複雜的任務,例如駕駛、導航、觀察交通信號、聽音樂並同時規劃我們的路線。此外,研究表明,與非人類動物相比,人類大腦具有更多平行通路,這表明我們的神經處理具有更高的複雜性。這個複雜的系統證明了我們認知功能的卓越適應性和效率。我們可以一邊和朋友聊天一邊走在街上,一邊聽音樂一邊做飯,或一邊聽講座一邊做筆記。人工智慧是模擬人類腦神經網路的科技,因此必須能同時並行地來處理許多資料。研究人員發現了人腦通訊網路具有一個在獼猴或小鼠中未觀察獨特特徵:透過多個並行路徑傳輸訊息,因此具有令人難以置信的多任務處理能力。

註解

(註一)當讀者看到此篇文章時,其股票已一股換十股,現在每一股約在 $100 左右。

(註二)組裝或升級過個人電腦的讀者或許還記得「英偉達精視 256」(GeForce 256)插卡吧?

(註三)筆者於 1984 年離開清華大學到 IBM 時,就是參加了被認為全世界使用電腦時間最多的量子化學家、IBM「院士(fellow)」Enrico Clementi 的團隊:因為當時英偉達還未有可以在 GPU 上進行平行處理的軟體層,我們只能自己寫軟體將 8 台中型電腦(非 IBM 品牌!)與一大型電腦連接來做平行運算,進行分子動力學模擬等的科學研究。如果晚生 30 年或許就不會那麼辛苦了?

-----廣告,請繼續往下閱讀-----

(註四)補助個人電腦用的 GPU 品牌到 2000 年時只剩下兩大主導廠商:英偉達及 ATI(Array Technology Inc.)。後者是出生於香港之四位中國人於 1985 年在加拿大安大略省成立,2006 年被超微半導體公司收購,品牌於 2010 年被淘汰。超微半導體公司於 2014 年 10 月提升台南出生之蘇姿豐(Lisa Tzwu-Fang Su)博士為執行長後,股票從每股 $4 左右,上升到今天每股超過 $160,其市值已經是英特爾的兩倍,完全擺脫了在後者陰影下求生存的小眾玩家角色,正在挑戰英偉達的 GPU 市場。順便一題:超微半導體公司現任總裁(兼 AI 策略負責人)為出生於台北的彭明博(Victor Peng);與黃仁勳及蘇姿豐一樣,也是小時候就隨父母親移居到美國。

(註五)

延伸閱讀

  • 熱力學與能源利用」,《科學月刊》,1982 年 3 月號;收集於《我愛科學》(華騰文化有限公司,2017 年 12 月出版),轉載於「嘉義市政府全球資訊網」。
  • 網路安全技術與比特幣」,《科學月刊》,2020 年 11 月號;轉載於「善科教育基金會」的《科技大補帖》專欄。
文章難易度

討論功能關閉中。

賴昭正_96
43 篇文章 ・ 53 位粉絲
成功大學化學工程系學士,芝加哥大學化學物理博士。在芝大時與一群留學生合創「科學月刊」。一直想回國貢獻所學,因此畢業後不久即回清大化學系任教。自認平易近人,但教學嚴謹,因此穫有「賴大刀」之惡名!於1982年時當選爲 清大化學系新一代的年青首任系主任兼所長;但壯志難酬,兩年後即辭職到美留浪。晚期曾回台蓋工廠及創業,均應「水土不服」而鎩羽而歸。正式退休後,除了開始又爲科學月刊寫文章外,全職帶小孫女(半歲起);現已成七歲之小孫女的BFF(2015)。首先接觸到泛科學是因爲科學月刊將我的一篇文章「愛因斯坦的最大的錯誤一宇宙論常數」推薦到泛科學重登。

1

1
2

文字

分享

1
1
2
精神個案系列:罌粟上癮的天鵝與鸚鵡
胡中行_96
・2023/06/25 ・2539字 ・閱讀時間約 5 分鐘

-----廣告,請繼續往下閱讀-----

中歐國家斯洛伐克西南部,緊鄰匈牙利的邊界上,有個人口約3萬幾千人的小鎮,叫作 Komárno。[1-3]農夫 Balints Pam 在當地種植罌粟已有多年,卻是第一次見到這種景象:[4]根據歐洲的新聞媒體報導,由於近年氣候變化,喀爾巴阡山脈地區冬季溫暖,許多野生天鵝全年滯留,不再隨季節移動。[4]候鳥遷徙的主要目的為覓食,[5]既然不走了,缺乏食物的時候,多少便去田裡逛逛。Balints Pam 的作物當然也難逃一劫。[4]

罌粟田示意圖。圖/Katarzyna Pe on Unsplash

罌粟

在罌粟屬(Papaver)之下,鴉片罌粟(Papaver somniferum L.)和渥美罌粟(Papaver setigerum D.C.)這兩個種,皆含有嗎啡(morphine)、可待因(codeine)、蒂巴因(thebaine)、那可汀(noscapine或narcotine)與罌粟鹼(papaverine)。不過,以上 5 個鴉片生物鹼(opium alkaloids)在鴉片罌粟中的含量,均勝過渥美罌粟。[6]因此,作為經濟作物,種植前者才划算。

鴉片罌粟的花瓣脫落後 5 至 10 天,可以收成其蒴果中的乳膠,乾燥即為鴉片(opium),也就是萃取嗎啡等藥物的原料。如果整株草本植物擺著任它繼續長,接下來在成熟的蒴果裡,便會有能以機器採收,適合做麵包及糕點的罌粟籽。1970 年代以前,人們以為乳膠流完才生出來的罌粟籽,不含藥用成份。後來才發現,原來它們亦有鴉片生物鹼,吃了藥檢也會呈陽性。好在經過清洗和其他處理後,含量會降低。科學家推測,這是因為罌粟籽在蒴果裡成長時,只是外面沾到乳膠,內部並不受影響。[6]

罌粟乳膠。圖/George Chernilevsky on Wikimedia Commons(CC BY-SA 4.0)

捷克與斯洛伐克一帶,常見的鴉片罌粟品種裡,[註1]11 個得在春季播種;另外 3 個則於冬季種植。[7]若在 2 月底到 3 月初,埋下前者的種子;大約同年 7、8 月,即可收成。[8, 9]2023 年 2 月,滂沱降雨在 Balints Pam 的田裡,匯成一潭大水窪。飲水和春芽引來了野生天鵝。[4]

-----廣告,請繼續往下閱讀-----

經濟損失

前述的種植、採收與清洗等方法、程序和注意事項,是給人類參考的;入侵Balints Pam家罌粟田的天鵝,才不管那麼多。牠們從根到花,一網打盡。[4]以成年的疣鼻天鵝(mute swan;學名Cygnus olor)為例,一隻體重約 11 到 19 公斤,每日食用的植物可達 4 公斤重。[10] [註2]牠們從零星造訪,到呼朋引伴,最後毒癮已深,對罌粟田趨之若鶩,流連望返。4 個月下來超過 200 隻天鵝,破壞了 5 公頃的田地,造成 Balints Pam 約 1 萬歐元的損失。更慘的是,由於以往牠們極少傷害作物,所以斯洛伐克的農業保險和國家補償,都不涵蓋此項。[4]

成群的天鵝來了…當然不只男版《天鵝湖》的陣仗。圖/New York City Center on Giphy

嗑毒的鸚鵡

全球許多地方均有合法的罌粟種植產業,例如:中南美洲、加拿大、澳大利亞、印度、中國、羅馬尼亞、匈牙利、伊朗、土耳其、西班牙、法國、英國、荷蘭、奧地利、德國、波蘭、捷克和斯洛伐克等。[6, 11]其中印度也有類似的案例,不過搞破壞的是鸚鵡。[12]

2015 年該國的某些罌粟田,開始有鸚鵡出現。2017 年政府為此發出警告。然而鸚鵡聰明絕頂,刻意降低行動的音量,並選在農夫劃開蒴果後進攻。當農地採用擴音廣播嚇阻,癮頭難戒的鸚鵡不僅沒嚇得鳥獸散,還拿出鳥窮則啄的決心,力拼到底。[12]且不論這驅趕成效有多失敗,為何同樣遭殃,斯洛伐克農夫 Balints Pam 卻沒有積極抵禦?

印度罌粟田裡的鸚鵡。影/Asian News International on Twitter

垂死的天鵝

天鵝在斯洛伐克屬於保育類動物,別說舉槍射殺,就連攪擾都算違法。因此,這則關於天鵝的故事,雖不如《天鵝湖》般淒美,但註定是齣悲劇。Balints Pam 田裡的天鵝疲倦、恍惚,飛不起來,而且即至 2023 年 6 月為止,已有幾十隻中毒身亡。[4]那麼現在該怎麼辦呢?

-----廣告,請繼續往下閱讀-----
抓天鵝?讓專業的來!圖/New York City Ballet on GIPHY

「農民應該申請下一季的豁免權,以便驅離鳥類。」自然保育部門的官員口氣事不關己:「早在那裏的就用手趕走,除此以外別無他法」。[4]事發 4 個月後,Balints Pam 終於獲得許可,請動保人員來把天鵝抓去勒戒。[13]

滯留斯洛伐克罌粟田的天鵝。影/DW News on Twitter

  

備註

  1. 品種(varieties)是種(species)下面的分類。[14]
  2. 網路上的中、英文新聞報導,似乎都沒指出種類;但是從參考資料 13 的影片看來,像是疣鼻天鵝。

參考資料

  1. Komárno“. (29 OCT 2014) Encyclopædia Britannica, UK.
  2. European Union. ‘Komárno’. Travel to Slovakia. (Accessed on 20 JUN 2023)
  3. Nitriansky kraj – Characteristic of the region’. (24 FEB 2023) Statistical Office of the Slovak Republic.
  4. In Slovakia, swans became “drug addicts” after feasting in a poppy field’. (11 JUN 2023) Baltics News, Estonia.
  5. Ramon A. (17 FEB 2021) ‘Climate change affects birds in Europe and North-America differently than in the Mediterranean, and could expose them to a climate trap’. CREAF el Blog, Spain.
  6. Carlin MG, Dean JR, Ames JM. (2020) ‘Opium Alkaloids in Harvested and Thermally Processed Poppy Seeds’. Frontiers in Chemistry, 8:737.
  7. Mikšík V, Lohr V. (2020) ‘The Czech Republic Producer of Breadseed Poppy’. Ministry of Agriculture of the Czech Republic.
  8. Farmers’. Sotiva Seed Ltd, Hungary. (Accessed on 20 JUN 2023)
  9. Košťál D, Čechovičová G. (07 MAY 2019) ‘Traditional and More Desired Poppy’. Grand Magazine, Slovakia.
  10. Invasive species: mute swan’. (15 JUN 2017) Environment and Climate Change Canada, Government of Canada.
  11. Yazici L. (2022) ‘Influence of different sowing times on yield and biochemical characteristics of different opium poppy (Papaver somniferum L.) genotypes’. Journal of King Saud University – Science, 34(8):102337.
  12. Felton J. (02 MAR 2019) ‘Opium-addicted parrots are wreaking havoc on poppy farms in India’. Business Insider, U.S.
  13. Curr M. (14 JUN 2023) ‘Poppy-addicted swans go cold turkey’. Deutsche Welle, Germany.
  14. Oxford University Press. ‘Variety’. Oxford Reference, UK. (Accessed on 21 JUN 2023)
所有討論 1
胡中行_96
169 篇文章 ・ 65 位粉絲
曾任澳洲臨床試驗研究護理師,以及臺、澳劇場工作者。 西澳大學護理碩士、國立台北藝術大學戲劇學士(主修編劇)。邀稿請洽臉書「荒誕遊牧」,謝謝。

0

12
2

文字

分享

0
12
2
開創鴉片蛇毒中醫藥研究,臺灣第一位醫學博士——杜聰明
PanSci_96
・2023/02/03 ・3714字 ・閱讀時間約 7 分鐘

-----廣告,請繼續往下閱讀-----

  • 文/郭立媛

1954 年夏季處於炎熱高溫的南臺灣,一間禮堂內湧入了近百人,臺下有許多穿著西裝或紳士服的男士們,一個個坐姿直挺聆聽臺上講者的發言,頻頻點頭應和;多數的學生們除了忙著拭去臉上的汗水,同時也更加勤奮地用手搧風消暑,與在座貴賓、家長仔細聆聽的樣貌呈現強烈對比。

講臺上站著一位六旬老人,用著流利優雅的閩南語,對這群剛進入高雄醫學院的學生們講述著「樂學至上,研究第一」的精神信念。

這位老人就是高雄醫學院(今高雄醫學大學)的創辦人,同時也是第一位臺灣醫學博士——杜聰明。

杜聰明在日治時期就有崇高的社會地位,是當時許多臺籍學生的偶像,戰後更在醫界擁有巨大影響力,因此在他創辦高醫後,有許多學生或舊識,紛紛將子弟送來高醫就讀,這些來自醫生家庭的子弟,許多是父子兩代都師承杜聰明,成為一段杏林佳話。

1954 年高雄醫學院成立暨開學典禮會場。圖/參考資料 1

體格丙下破格錄取,臺灣第一位醫學博士

杜聰明(1893-1986),號思牧,臺北淡水人。1909 年自滬尾公學校畢業後,以榜首考取臺灣總督府醫學校,但因體格檢查被評定為丙下,險遭除名,幸有當時的代理校長長野純藏將其破格錄取。

-----廣告,請繼續往下閱讀-----

杜聰明在醫學校期間閱讀許多科學家傳記,最敬重德國的柯霍(Robert Koch,1843-1910)和法國的巴斯德(Louis Pasteur, 1822-1895)這兩名細菌學家。或許是師法這些研究者,醫學校畢業後,杜聰明選擇從事醫學研究,他先進入總督府研究所擔任助手,次年在堀內次雄老師的引薦下,前往日本京都帝國大學醫學部深造,通過了學力測驗後進入賀屋隆吉教授的內科教室,一年後再轉到森島庫太教授的藥物學教室做研究。

1922 年 11 月 23 日《臺灣日日新報》關於杜聰明獲得臺灣首位博士的報導。圖/參考資料 2

1921 年,杜聰明以高等官的身份返臺,擔任臺灣總督府醫學校助教授,是當時第三位被任命為日本高等官的臺灣人。1922 年甫滿 30 歲的杜聰明不僅已升任教授,同年底也順利通過博士申請,成為全日本國第 955 號博士,也是首位獲得日本博士學位的外地人,更是日治時期全臺灣第一位榮獲博士學位者,頓時成為臺灣各界矚目的焦點。

在當時,要取得博士學位本身已非常困難,尤其又是醫學領域。杜聰明身為土生土長於殖民地的臺灣人,卻能得醫學博士,不僅帶給許多臺灣人希望,同時也成為日本殖民政府有力的政策宣傳工具,往後只要提到臺灣,杜聰明的名字就一再被人提起,連帶被冠上了「臺灣第一位醫學博士」的頭銜。

杜聰明於 1942 年 7 月 3 日正式敘陞一等高官,身穿敕任官禮裝,為日治時期臺灣人官位最高者。圖/參考資料 3

鴉片、蛇毒、中醫藥,研究深具臺灣在地特色

校上課的時間外,杜聰明幾乎都待在研究所內做實驗。1925 年底杜聰明出發前往歐美留學,觀摩考察世界一流的研究室,為時約兩年半,1928 年人在巴黎的杜聰明還拜訪了正在環球旅行的林獻堂父子。

-----廣告,請繼續往下閱讀-----

自歐美留學回國後的杜聰明,重新開設藥理學教室,但此時他身邊只有兩位助手和一位醫專應屆畢業生,但杜聰明不以為意,他認為比起實驗室的規模大小,最重要的是研究者的態度,此後他便開始投入鴉片、蛇毒、中醫藥等三項深具臺灣在地特色之研究。

杜聰明(後排中)與更生院的鴉片隱患者。圖/參考資料 4

鴉片癮者是臺灣社會長久以來的問題,不知多少人為此傾家蕩產,因此杜聰明在鴉片戒癮研究方面,主張以「漸減法」治療矯正吸食鴉片和施打嗎啡患者的毒癮,並發明微量嗎啡成分定性定量檢查法,藉由尿液檢查來決定療程,這種「尿檢法」至今仍是毒品檢驗的主要方式。

在日本政府的支持下,杜聰明帶領學生在愛愛寮及臺北更生院內進行大規模的鴉片戒癮療法,以總督府所設立的臺北更生院院內人數統計,在設立後的 17 年間共矯正了鴉片煙癮者 11,498 人。1937 年 8 月,杜聰明更因鴉片戒癮研究之成就,榮獲了日本學術協會賞。

除了鴉片的問題,身處熱帶潮濕地區的臺灣,經常出沒的毒蛇也是杜聰明所關注的研究焦點。原先日人對臺灣毒蛇研究多侷限於免疫學和血清學研究的範圍,杜聰明則將研究方向轉為其所擅長的毒物學和藥理學,更將蛇毒製成的鎮痛劑進行人體實驗,後來由李鎮源繼續傳承蛇毒的研究工作。關於臺灣蛇毒之研究,杜聰明共計發表 100 多篇論文,成績豐碩。

-----廣告,請繼續往下閱讀-----

然而,杜聰明對於傳統的中醫藥也極有興趣,他主張應該要用現代科學角度去研究分析,也曾建議統治者讓中西醫研究一元化,雖未被採納,但他在生藥及中藥的藥理研究上仍有不少成果。

1930 年代在他擔任臺北帝國大學醫學部教授時,仍嘗試向學校當局提出設立漢醫學研究機關之建議;甚至到戰後初期,也曾向當局建議在臺大醫學院第一附屬醫院增設漢藥治療科,可惜最後仍未能如願。

造就臺灣的醫學教育,至高雄創設醫學院

在杜聰明所主持的藥理學教室中,先後有 40 名醫專畢業生跟隨杜聰明研究,共發表 131 篇論文,杜聰明因此建立其學術地位。1936 年,臺北帝國大學醫學部成立後,杜聰明被延攬為醫學部教授,是當時唯一的臺灣人教授,主持藥理學研究室,先後造就了 40 餘位醫學博士。

1945 年日本戰敗投降,杜聰明負責接收臺北帝國大學醫學院及附屬醫院、熱帶醫學研究所、赤十字會醫院,順利完成接收工作。之後,獲任命為臺灣大學醫學院院長兼附屬醫院院長,以及熱帶醫學研究所所長。

-----廣告,請繼續往下閱讀-----

1947 年爆發二二八事件,杜聰明在友人通知下,幸運地迴避風險,同時也保住臺大醫學院的實驗教室與多數儀器,但在此之後,對於政治的熱情逐漸降溫,將全數心力都放在醫學教育上。

經歷臺大校園及臺大醫院一系列的人事變化、制度改革後,他仍積極爭取設立牙醫學系和藥學系,至 1953 年 8 月,臺灣大學終於通過設置牙醫學系和藥學系案,但也因此得罪校方行政部門,最終杜聰明遭校方強制解聘,只能黯然離開醫學院院長職務。

杜聰明離開臺大後,1954 年 7 月在南臺灣創辦了高雄醫學院,來實踐他的醫學教育理想。

首屆招收了 61 名醫學系學生,師資則多由杜聰明從臺大力邀而來。1963 至 1966 年間,因人事及財政問題而爆發「高醫風波」,導致杜聰明於 1966 年 10 月辭職。但此時高雄醫學院已頗具規模,為國內醫學教育重鎮。

-----廣告,請繼續往下閱讀-----

而當時的臺灣省政府為了解決當時原住民部落存在著「無醫村」的問題,轉而向杜聰明尋求協助。鑑於許多醫科畢業生多不肯前往山地服務,在省府的委託之下,1958、1959 年杜聰明協助在高雄醫學院特設公費的「山地醫師醫學專修科」,專門招收原住民青年,經過四年的醫學教育後,必須到山地部落的衛生所服務滿十年,藉此來解決山地原住民醫療缺乏的問題。後來省政府考量地處海島的澎湖縣也是醫療資源不足,因此在原住民青年外,另外增加 4 個澎湖縣的學生名額。

杜聰明(右四)與第一屆山地醫師專科班的畢業生合影。圖/ 參考資料 5

堅定於研究與教育,深刻影響臺灣醫學史

杜聰明有感於身體瘦小,自醫學校時代開始,每日早晨勤於鍛鍊身體,數十年如一日,平時也喜好游泳,在擔任高雄醫學院院長期間,每週前往西子灣游泳健身。

家人記憶中的他,白天待在學校的實驗室,回家後也總是在讀書、研究,是真正全心投入研究的典範。杜聰明也勤於寫作,除了大量發表相關研究成果,他也詳細記錄自己的各類演講稿、出國考察見聞;自 30 歲起,更努力練習書法,每天都要練字至少四張,藉以修心養性,至今許多後輩、學生都仍保留他的墨寶。

杜聰明善用時間勤練書法,每天練字成為終生的嗜好。圖/參考資料 6

綜觀杜聰明的一生,在面對不同的統治政權,都能堅定地扮演好醫學研究實踐者和醫學教育推動者的角色,不僅在鴉片戒癮、蛇毒和中醫藥理三方面有開創性的研究成果,戰後更積極推動臺灣的醫學教育發展,培育出許多優秀的醫學界人士。

-----廣告,請繼續往下閱讀-----

杜聰明畢生投入醫學研究和教育的卓越成果,堪稱為近代臺灣醫學史上影響最深刻的人物。

參考資料

  1. 杜祖健提供,轉引自:楊玉齡,《一代醫人杜聰明》,臺北:天下遠見,2002,頁 262。
  2. 〈新醫學博士 杜聰明氏〉,《臺灣日日新報》,1922 年 11 月 23 日,日刊版 07。
  3. 杜淑純口述,曾秋美、尤美琪訪問整理,《杜聰明與我:杜淑純女士訪談錄》,新北:國史館,2005,頁 8。
  4. 原載於《杜聰明先生榮哀錄》,轉引自:楊玉齡,《一代醫人杜聰明》,臺北:天下遠見,2002,頁 137。
  5. 原載於《中外畫報》雜誌,振聲攝。轉引自:楊玉齡,《一代醫人杜聰明》,臺北:天下遠見,2002,頁 302。
  6. 杜祖健提供,轉引自:楊玉齡,《一代醫人杜聰明》,臺北:天下遠見,2002,頁 165。
PanSci_96
1224 篇文章 ・ 2301 位粉絲
PanSci的編輯部帳號,會發自產內容跟各種消息喔。