0

0
2

文字

分享

0
0
2

第五次生物大滅絕的元兇是二氧化碳!?——《地球毀滅記》序言

天下文化_96
・2019/03/04 ・3528字 ・閱讀時間約 7 分鐘 ・SR值 552 ・八年級

-----廣告,請繼續往下閱讀-----

史上發生的五次生物大滅絕

地球歷史上曾發生五次全球性的生物滅絕,所有動物在突然間幾乎被除滅盡淨,這就是所謂的「五大滅絕事件」。

依據過往定義,「大滅絕」指的是地球上過半數物種,在一百萬年內完全遭到消滅。但現在發現很多例子裡,生物滅絕的速度遠較此為快。更精細的地質年代學已經把地球歷史上,幾次最嚴重的全面浩劫發生時期縮短到數千年,甚至更短期內就滅絕殆盡。要形容這樣的事情,更貼切的說法是「哈米吉多頓」[註1]

在這個陰鬱悲戚的兄弟會裡頭,最著名的成員名喚「白堊紀末大滅絕」。(非鳥類的)恐龍在六千六百萬年前滅絕,就是它幹的好事。然而,白堊紀末這場禍事只是生命歷史最晚近的一次大滅絕;在臨近曼哈頓島的懸崖上,我看到某場火山災劫留下的石質餘燼,這場災劫比恐龍之逝還要早一億三千五百萬年,當時的鱷類及全球的珊瑚礁生態系嚴重受創,世界此後完全不同。

所謂的「大滅絕」,是指一百萬年內(或在更短的期間內),地球上超過半數物種完全遭到消滅。圖/pxhere

在此之前,還曾發生三次主要大滅絕,但這些更古老的災難全被「霸王龍(Tyrannosaurus rex)末日」搶盡鋒頭,在大眾想像裡幾乎總是受到忽視。說來也不無道理,首先,恐龍是化石紀錄裡極富魅力的角色,是地球歷史的天王巨星,鑽研更早期那些更不受矚目時代的古生物學家,都把恐龍鄙為華而不實的特大號怪獸。

因為如此,在媒體分給古生物學的稀少版面上,恐龍就霸占了一大半。更何況,恐龍連滅絕的方式都獨具風格,牠們生命最後一刻,是因直徑六英里的小行星撞擊墨西哥而中止的。過去三十年,地質學家搜遍化石紀錄,試圖尋找其他四場主要大滅絕是遭毀滅性小行星撞擊的證據,卻總是鎩羽而歸。

-----廣告,請繼續往下閱讀-----
儘管地質學家過去三十年來搜遍了化石紀錄,卻依舊沒有任何證明表示其他四場大滅絕是因毀滅性小行星撞擊所致。圖/pixabay

誰才是大滅絕真凶?二氧化碳脫穎而出

某些非此領域的天文學家,仍主張小行星週期性撞上地球,是造成過去每一次大滅絕的原因,但這些假設實際上完全得不到化石紀錄的支持。事實上,全球浩劫最可靠也最常見的推手,是氣候與海洋的劇烈變化,驅動力就是地質力量自身。

過去三億年來,三場最慘烈的大滅絕都與大陸等級的大規模熔岩流有關,這是超乎人類想像的熔岩噴發,連地球系統[註2]的宏偉機制都會因此故障。地球生命具備適應能力,但能力總有限度;火山有本事把整片大陸徹底翻轉,也有本事製造出毀天滅地等級的氣候與海洋亂象。這些罕有的天翻地覆大噴發發生時,是地球最最淒慘的時期,火山噴出的二氧化碳灌飽大氣,地球化成地獄般的腐爛墳墓,海水也因高溫酸化而缺乏氧氣。

大規模熔岩流造成過去三億年中三場最慘烈的大滅絕。圖/pxhere

然而,無論火山或小行星,似乎都不必為較早的大滅絕負責任;板塊事件[註3]、甚至生物自身,或許才是過度消耗二氧化碳、毒害海洋的元凶。大陸規模的火山活動可能讓二氧化碳指數狂飆,但在更早,也可說更為神祕的滅絕事件裡,二氧化碳濃度反而大幅減少,地球被囚禁在冰牢中。最常把這顆行星發展進度打亂的,不是其他天體的轟然撞擊,而是地球系統窩裡反;由此看來,地球的不幸大多都是禍起蕭牆。

地球的不幸大多都是禍起蕭牆。圖/pixabay

幸運的是,打從複雜生命體出現以來,上述這些超級災變鮮少發生,地球在超過五億歲月裡僅遭殃五次(大約發生於四億四千五百萬年前、三億七千四百萬年前、兩億五千兩百萬年前、兩億一百萬年前,以及六千六百萬年前)。但在我們這個世界裡,這些往事卻蕩起令人驚恐的回音──畢竟這個世界正經歷數千萬年來未有的、甚至是數億年來未有的劇變。「二氧化碳濃度高的時期,特別是二氧化碳濃度急遽升高的時期,恰巧與大滅絕重合,(此事)很明顯,」華盛頓大學古生物學家暨二疊紀末大滅絕專家瓦爾德(Peter Wald)如是說:「就是造成生物滅絕的原因。」

-----廣告,請繼續往下閱讀-----

如果人類繼續瘋狂排碳?然後你就熱死了

人類文明很積極在證明,要把埋藏岩石裡的巨量碳元素快速釋放到大氣,超級火山可不是唯一途徑。碳與遠古生命共同埋存了數億年,現代人把這些碳挖出來,送進活塞或發電廠,一把火燒盡。這就是現代文明大規模進行物質代謝的方式。

如果我們堅持完成這任務,把能燒的都燒光,猶如人造超級火山般讓大氣充滿碳,那麼世界將會變得很熱,真的很熱,就像過往曾發生的那樣。現在最酷熱的熱浪體驗,就將成為普遍狀況,而世界許多地方仍然會有更高的熱浪,把氣溫推往未知之境,呈現超越人類生理強韌極限的新威脅。

人類活動正讓大氣充滿碳。圖/pixabay

倘若事情果真至此,我們這顆行星會回歸遠古的某種模樣,雖然這在化石紀錄裡曾數度現形,但我們卻對之全然陌生。氣溫高的時代未必是逆境,在恐龍滿天下的白堊紀,大氣裡二氧化碳濃度高得驚人,地球因此遠比現代溫暖。只是,一旦氣候或海洋化學的改變是突然出現的,就會對生命造成莫大傷害。最糟的情況下,地面上放眼所及,盡毀於這些突發的氣候變化造成的結果:

熱到足以致命的各大洲內陸、酸化缺氧的海洋,以及橫掃全球的大規模死亡。

面對碳循環劇變,把握時間、鑑往而知今

這就是地質學近年來所揭示的事實,也是現代社會最關注的未來隱憂。地球歷史上最慘烈的五章,都與碳循環劇變有關;漫長光陰裡,這個基本元素在生物體內與地層中(以及這兩個儲藏庫之間)不斷遊走,但若把碳突然大量注入大氣與海洋,會讓維繫生命的化學過程整個當機。

-----廣告,請繼續往下閱讀-----

正因如此,久遠之前的大滅絕如今成為學術界備受矚目的研究課題。寫作本書期間,我與許多科學家接觸,這些人大部分都不把地球歷史的「瀕死經驗」當成純粹學術問題,而是想藉由鑑往而知今,瞭解地球這顆行星面對我們正加諸的這些衝擊,會如何反應。vip-popki.net/en

圖/pixabay

學術界正在進行的這些對話,卻顯然與大眾文化的認知大相逕庭。關於二氧化碳是否為推動氣候變化的要角,當前的討論好像認為兩者關聯僅限於理論或電腦模型;然而,我們現在進行的實驗曾快速把大量二氧化碳排入大氣,這種狀況事實上已在地質歷史中多次重演,從未有善終。

除了各家氣候模型一致的可怕預測之外,還有地質史上由二氧化碳造成的氣候變化的例證,我們要深以為借鏡。這些事件能為現代人面臨的危機提供指引甚至診斷,就像胸痛病人告知醫生,自己有心臟病史一樣。但是,把這個類比拉得太遠也會有風險。地球自誕生以來曾呈現多種不同樣貌,雖然在某些顯見而令人擔心的面向上,現今地球及其未來展望,與地球史上一些最駭人的篇章呼應;但在更多方面,我們所面臨的生物危機是空前絕後的。

幸好我們仍有時間,縱然人類這物種已證明自己的毀滅性,我們的所作所為還是遠不及過往全球災變的恣意破壞與屠殺。那些是地球歷史的死蔭幽谷,而人類的墓誌銘還不必添上「造成第六次大滅絕」這條血淋淋的控訴;在噩耗多於佳音的世界裡,這已經算是好消息了。

-----廣告,請繼續往下閱讀-----

 

譯注

  1. 哈米吉多頓(Armageddon)出自聖經〈啟示錄〉16:16,是世界末日時上帝與惡魔決戰的戰場,後來引申為「世界末日」之意。
  2. 地球系統(earth system)指地球上互相影響的物理、化學與生化過程。
  3. 板塊事件(tectonic events)指地殼構造出現變化。

 

 

本文摘自《地球毀滅記:五次生物大滅絕,誰是真凶?》,天下文化,2018 年 9 月出版。

-----廣告,請繼續往下閱讀-----
文章難易度
天下文化_96
142 篇文章 ・ 623 位粉絲
天下文化成立於1982年。一直堅持「傳播進步觀念,豐富閱讀世界」,已出版超過2,500種書籍,涵括財經企管、心理勵志、社會人文、科學文化、文學人生、健康生活、親子教養等領域。每一本書都帶給讀者知識、啟發、創意、以及實用的多重收穫,也持續引領台灣社會與國際重要管理潮流同步接軌。

0

1
1

文字

分享

0
1
1
伺服器過熱危機!液冷與 3D VC 技術如何拯救高效運算?
鳥苷三磷酸 (PanSci Promo)_96
・2025/04/11 ・3194字 ・閱讀時間約 6 分鐘

-----廣告,請繼續往下閱讀-----

本文與 高柏科技 合作,泛科學企劃執行。

當我們談論能擊敗輝達(NVIDIA)、Google、微軟,甚至是 Meta 的存在,究竟是什麼?答案或許並非更強大的 AI,也不是更高速的晶片,而是你看不見、卻能瞬間讓伺服器崩潰的「熱」。

 2024 年底至 2025 年初,搭載 Blackwell 晶片的輝達伺服器接連遭遇過熱危機,傳聞 Meta、Google、微軟的訂單也因此受到影響。儘管輝達已經透過調整機櫃設計來解決問題,但這場「科技 vs. 熱」的對決,才剛剛開始。 

不僅僅是輝達,微軟甚至嘗試將伺服器完全埋入海水中,希望藉由洋流降溫;而更激進的做法,則是直接將伺服器浸泡在冷卻液中,來一場「浸沒式冷卻」的實驗。

-----廣告,請繼續往下閱讀-----

但這些方法真的有效嗎?安全嗎?從大型數據中心到你手上的手機,散熱已經成為科技業最棘手的難題。本文將帶各位跟著全球散熱專家 高柏科技,一同看看如何用科學破解這場高溫危機!

運算=發熱?為何電腦必然會發熱?

為什麼電腦在運算時溫度會升高呢? 圖/unsplash

這並非新問題,1961年物理學家蘭道爾在任職於IBM時,就提出了「蘭道爾原理」(Landauer Principle),他根據熱力學提出,當進行計算或訊息處理時,即便是理論上最有效率的電腦,還是會產生某些形式的能量損耗。因為在計算時只要有訊息流失,系統的熵就會上升,而隨著熵的增加,也會產生熱能。

換句話說,當計算是不可逆的時候,就像產品無法回收再利用,而是進到垃圾場燒掉一樣,會產生許多廢熱。

要解決問題,得用科學方法。在一個系統中,我們通常以「熱設計功耗」(TDP,Thermal Design Power)來衡量電子元件在正常運行條件下產生的熱量。一般來說,TDP 指的是一個處理器或晶片運作時可能會產生的最大熱量,通常以瓦特(W)為單位。也就是說,TDP 應該作為這個系統散熱的最低標準。每個廠商都會公布自家產品的 TDP,例如AMD的CPU 9950X,TDP是170W,GeForce RTX 5090則高達575W,伺服器用的晶片,則可能動輒千瓦以上。

-----廣告,請繼續往下閱讀-----

散熱不僅是AI伺服器的問題,電動車、儲能設備、甚至低軌衛星,都需要高效散熱技術,這正是高柏科技的專長。

「導熱介面材料(TIM)」:提升散熱效率的關鍵角色

在電腦世界裡,散熱的關鍵就是把熱量「交給」導熱效率高的材料,而這個角色通常是金屬散熱片。但散熱並不是簡單地把金屬片貼在晶片上就能搞定。

現實中,晶片表面和散熱片之間並不會完美貼合,表面多少會有細微間隙,而這些縫隙如果藏了空氣,就會變成「隔熱層」,阻礙熱傳導。

為了解決這個問題,需要一種關鍵材料,導熱介面材料(TIM,Thermal Interface Material)。它的任務就是填補這些縫隙,讓熱可以更加順暢傳遞出去。可以把TIM想像成散熱高速公路的「匝道」,即使主線有再多車道,如果匝道堵住了,車流還是無法順利進入高速公路。同樣地,如果 TIM 的導熱效果不好,熱量就會卡在晶片與散熱片之間,導致散熱效率下降。

-----廣告,請繼續往下閱讀-----

那麼,要怎麼提升 TIM 的效能呢?很直覺的做法是增加導熱金屬粉的比例。目前最常見且穩定的選擇是氧化鋅或氧化鋁,若要更高效的散熱材料,則有氮化鋁、六方氮化硼、立方氮化硼等更高級的選項。

典型的 TIM 是由兩個成分組成:高導熱粉末(如金屬或陶瓷粉末)與聚合物基質。大部分散熱膏的特點是流動性好,盡可能地貼合表面、填補縫隙。但也因為太「軟」了,受熱受力後容易向外「溢流」。或是造成基質和熱源過分接觸,高分子在高溫下發生熱裂解。這也是為什麼有些導熱膏使用一段時間後,會出現乾裂或表面變硬。

為了解決這個問題,高柏科技推出了凝膠狀的「導熱凝膠」,說是凝膠,但感覺起來更像黏土。保留了可塑性、但更有彈性、更像固體。因此不容易被擠壓成超薄,比較不會熱裂解、壽命也比較長。

OK,到這裡,「匝道」的問題解決了,接下來的問題是:這條散熱高速公路該怎麼設計?你會選擇氣冷、水冷,還是更先進的浸沒式散熱呢?

-----廣告,請繼續往下閱讀-----

液冷與 3D VC 散熱技術:未來高效散熱方案解析

除了風扇之外,目前還有哪些方法可以幫助電腦快速散熱呢?圖/unsplash

傳統的散熱方式是透過風扇帶動空氣經過散熱片來移除熱量,也就是所謂的「氣冷」。但單純的氣冷已經達到散熱效率的極限,因此現在的散熱技術有兩大發展方向。

其中一個方向是液冷,熱量在經過 TIM 後進入水冷頭,水冷頭內的不斷流動的液體能迅速帶走熱量。這種散熱方式效率好,且增加的體積不大。唯一需要注意的是,萬一元件損壞,可能會因為漏液而損害其他元件,且系統的成本較高。如果你對成本有顧慮,可以考慮另一種方案,「3D VC」。

3D VC 的原理很像是氣冷加液冷的結合。3D VC 顧名思義,就是把均溫板層層疊起來,變成3D結構。雖然均溫板長得也像是一塊金屬板,原理其實跟散熱片不太一樣。如果看英文原文的「Vapor Chamber」,直接翻譯是「蒸氣腔室」。

在均溫板中,會放入容易汽化的工作流體,當流體在熱源處吸收熱量後就會汽化,當熱量被帶走,汽化的流體會被冷卻成液體並回流。這種利用液體、氣體兩種不同狀態進行熱交換的方法,最大的特點是:導熱速度甚至比金屬的熱傳導還要更快、熱量的分配也更均勻,不會有熱都聚集在入口(熱源處)的情況,能更有效降溫。

-----廣告,請繼續往下閱讀-----

整個 3DVC 的設計,是包含垂直的熱導管和水平均溫板的 3D 結構。熱導管和均溫板都是採用氣、液兩向轉換的方式傳遞熱量。導熱管是電梯,能快速把散熱工作帶到每一層。均溫板再接手將所有熱量消化掉。最後當空氣通過 3DVC,就能用最高的效率帶走熱量。3DVC 跟水冷最大的差異是,工作流體移動的過程經過設計,因此不用插電,成本僅有水冷的十分之一。但相對的,因為是被動式散熱,其散熱模組的體積相對水冷會更大。

從 TIM 到 3D VC,高柏科技一直致力於不斷創新,並多次獲得國際專利。為了進一步提升 3D VC 的散熱效率並縮小模組體積,高柏科技開發了6項專利技術,涵蓋系統設計、材料改良及結構技術等方面。經過設計強化後,均溫板不僅保有高導熱性,還增強了結構強度,顯著提升均溫速度及耐用性。

隨著散熱技術不斷進步,有人提出將整個晶片組或伺服器浸泡在冷卻液中的「浸沒式冷卻」技術,將主機板和零件完全泡在不導電的特殊液體中,許多冷卻液會選擇沸點較低的物質,因此就像均溫板一樣,可以透過汽化來吸收掉大量的熱,形成泡泡向上浮,達到快速散熱的效果。

然而,因為水會導電,因此替代方案之一是氟化物。雖然效率差了一些,但至少可以用。然而氟化物的生產或廢棄時,很容易產生全氟/多氟烷基物質 PFAS,這是一種永久污染物,會對環境產生長時間影響。目前各家廠商都還在試驗新的冷卻液,例如礦物油、其他油品,又或是在既有的液體中添加奈米碳管等特殊材質。

-----廣告,請繼續往下閱讀-----

另外,把整個主機都泡在液體裡面的散熱邏輯也與原本的方式大相逕庭。如何重新設計液體對流的路線、如何讓氣泡可以順利上浮、甚至是研究氣泡的出現會不會影響元件壽命等等,都還需要時間來驗證。

高柏科技目前已將自家產品提供給各大廠商進行相容性驗證,相信很快就能推出更強大的散熱模組。

-----廣告,請繼續往下閱讀-----
文章難易度

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
0

文字

分享

0
3
0
從「衛生紙」開始的環保行動:一起愛地球,從 i 開始
鳥苷三磷酸 (PanSci Promo)_96
・2024/12/03 ・1592字 ・閱讀時間約 3 分鐘

-----廣告,請繼續往下閱讀-----

你是否也曾在抽衛生紙的瞬間,心頭閃過「這會不會讓更多森林消失」的擔憂?當最後一張衛生紙用完,內心的愧疚感也油然而生……但先別急著責怪自己,事實上,使用木製品和紙張也能很永續!只要我們選對來源、支持永續木材,你的每一個購物決策,都能將對地球的影響降到最低。

二氧化碳是「植物的食物」:碳的循環旅程

樹木的主食是水與二氧化碳,它們從空氣中吸收二氧化碳,並利用這些碳元素形成枝葉與樹幹。最終這些樹木會被砍伐,切成木材或搗成紙漿,用於各種紙張與木製品的製造。

木製品在到達其使用年限後,無論是被燃燒還是自然分解,都會重新釋放出二氧化碳。不過在碳循環中,這些釋出的二氧化碳,來自於原本被樹木「吸收」的那些二氧化碳,因此並不會增加大氣中的碳總量。

只要我們持續種植新樹,碳循環就能不斷延續,二氧化碳在不同型態間流轉,而不會大量增加溫室氣體在大氣中的總量。因為具備循環再生的特性,讓木材成為相對環保的資源。

但,為了木製品而砍伐森林,真的沒問題嗎?當然會有問題!

-----廣告,請繼續往下閱讀-----
從吸碳到固碳的循環

砍對樹,很重要

實際上,有不少木材來自於樹木豐富的熱帶雨林。然而,熱帶雨林是無數動植物的棲息地,它們承載著地球豐富的生物多樣性。當這些森林被非法砍伐,不僅生態系統遭到破壞,還有一個嚴重的問題–黃碳,也就是那些大量儲存在落葉與土壤有機質中的碳,會因為上方森林的消失重新將碳釋放進大氣之中。這些原本是森林的土地,將從固碳變成排碳大戶。

不論是黃碳問題,還是要確保雨林珍貴的生物多樣性不被影響,經營得當的人工永續林,能將對環境的影響降到最低,是紙漿和木材的理想來源。永續林的經營者通常需要注重環境保護與生態管理,確保砍下每顆樹木後,都有新的樹木接續成長。木材反覆在同一片土地上生成,因此不用再砍伐更多的原始林。在這樣的循環經營下,我們才能不必冒著破壞原始林的風險,繼續享用木製品。

人工永續林的經營者需要注重環境保護與生態管理,確保砍下每顆樹木後,都有新的樹木接續成長。

如何確保你手中的紙張來自永續林?

如果你擔心自己無意中購買了對環境不友善的商品,而不敢下手,只要認明FSC(森林管理委員會)認證與 PEFC(森林認證制度)認證標章,就能確保紙漿來源不是來自原始林。並且從森林到工廠、再到產品,流程都能被追蹤,為你把關每一張紙的生產過程合乎永續。

只要認明 FSC(森林管理委員會)認證與 PEFC(森林認證制度)認證標章,就能確保紙漿來源不是來自原始林。

家樂福「從 i 開始」:環境友善購物新選擇

不僅是紙張,家樂福自有品牌的產品都已經通過了環保認證,幫助消費者在日常生活中輕鬆實踐環保。選擇 FSC 與 PEFC 標章只是第一步,你還可以在購物時認明家樂福的「從 i 開始」價格牌,這代表商品在生產過程中已經符合多項國際認證永續發展標準。

-----廣告,請繼續往下閱讀-----

「從 i 開始」涵蓋十大環保行動,從營養飲食、無添加物、有機產品,到生態農業、動物福利、永續漁業、減少塑料與森林保育,讓你每一項購物選擇都能與環境保護密切相關。無論是買菜、買肉,還是日常生活用品,都能透過簡單的選擇,為地球盡一份力。

選擇 FSC 與 PEFC 標章只是第一步,你還可以在購物時認明家樂福的「從 i 開始」價格牌
-----廣告,請繼續往下閱讀-----

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia

0

3
1

文字

分享

0
3
1
溫室效應有救了?把二氧化碳埋進地底吧!  
鳥苷三磷酸 (PanSci Promo)_96
・2024/03/25 ・1389字 ・閱讀時間約 2 分鐘

-----廣告,請繼續往下閱讀-----

本文由 台灣中油股份有限公司 委託,泛科學企劃執行。 

近年全球對於氣候變遷的關注日益增加,各國紛紛宣布淨零排放(Net Zero Emissions)的目標,聯手應對氣候變遷所帶來的挑戰。淨零排放是指將全球人為排放的溫室氣體量和人為移除的量相抵銷後為零。而「碳捕存再利用技術(Carbon Capture Utilization and Storage,簡稱 CCUS)」技術被視為達成淨零重要的措施之一。 

CCUS 示意圖。圖/INPEX CCS and CCUS Business Introduction Video 2022 

「碳捕存再利用技術 CCUS」是什麼? 

CCUS 技術可以有效地將二氧化碳從大氣中捕捉並封存,進而減少溫室氣體的排放。CCUS 包含捕捉、運輸、封存或再利用三個階段,也就是將二氧化碳抓下來,並且存起來或是轉換成其他有價值的化學原料。關於如何捕捉二氧化碳,可以參考我們先前拍的影片《減碳速度太慢?現在已經能主動把二氧化碳抓下來!?抓下來的二氧化碳又去了哪裡?》。 

至於捉下二氧化碳之後,該存放在哪裡呢?科學家們看上一個經過數千萬年驗證、最適合儲存的地方——地底。沒錯,地底可不只有石頭跟蜥蜴人,只要這些石頭中存在孔隙,就可以儲存氣體或液體。最常見的就是天然氣與石油。現在,我們只要將二氧化碳儲存到這些孔隙就好。 

-----廣告,請繼續往下閱讀-----

封存的地質條件也很簡單,第一,要有一層擁有良好空隙率及滲透性的「儲集層」,通常是砂岩。第二,有一層緻密、不透水且幾乎無孔隙的岩石,用來阻擋儲集層的氣體向上逸散的「蓋層」,常見的是頁岩。只要儲集層在下,蓋層在上,就是一個理想的儲存環境。 

臺灣哪裡適合地質封存? 

臺灣由東往西,從西部麓山帶、西部平原、濱海到臺灣海峽,都有深度達 10 公里的廣大沉積層,並且砂岩與頁岩交替出現,可說是良好的儲氣構造。 

至於臺灣適合封存二氧化碳的地點,有個很直接的作法,就是參考石油、天然氣的儲存場域就好,也就是所謂的「枯竭油氣層」。將開採過的天然氣或石油的空間,重新拿來儲存二氧化碳。而臺灣的油氣田,主要集中在西部的苗栗與臺南一帶,在 1959~2016 年,累計產了 500 億立方公尺的天然氣,和超過 500 萬公秉的凝結油。 

臺灣油氣田位置圖。圖/《科學發展》2017 年 6 月第 534 期
鐵砧山每年封存 10 萬噸二氧化碳(相當於通霄鎮 1/3 人口一年的二氧化碳排放量)。圖/台灣中油

而至今這些枯竭油氣田,適合來做二氧化碳的封存。例如苗栗縣通霄鎮的鐵砧山是臺灣目前陸上發現最大的油氣田,不只是封閉型背斜構造,更擁有厚實緻密的緻密蓋岩層。在原有油氣田枯竭後,從民國 77 年開始轉為天然氣儲氣窖利用原始天然氣儲層調節北部用氣的方式,已持續超過 35 年。因此中油也正規劃在鐵砧山氣田選擇合適的蓋層和鹽水層,進行小規模的二氧化碳注入,作為全國首座碳封存的示範場址。並同時進行多面向的長期監測,驗證二氧化碳封存的可行性與安全性。 

-----廣告,請繼續往下閱讀-----

更多詳細內容及國際 CCUS 案例,歡迎觀看影片解惑! 

-----廣告,請繼續往下閱讀-----

討論功能關閉中。

鳥苷三磷酸 (PanSci Promo)_96
224 篇文章 ・ 313 位粉絲
充滿能量的泛科學品牌合作帳號!相關行銷合作請洽:contact@pansci.asia